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xv

PREFACE

It has been over thirty years since we published the first edition of this book. Over that period, 
our original contention that numerical methods and computers would figure more prominently 
in the engineering curriculum—particularly in the early parts—has been dramatically borne 
out. Many universities now offer freshman, sophomore, and junior courses in both introductory 
computing and numerical methods. In addition, many of our colleagues are integrating 
 computer-oriented problems into other courses at all levels of the curriculum. Thus, this new 
edition is still founded on the basic premise that student engineers should be provided with a 
strong and early introduction to numerical methods. Consequently, we have endeavored to 
maintain many of the features that made previous editions accessible to both lower- and upper-
level undergraduates. These include:

∙ Problem Orientation. Engineering students learn best when they are motivated by 
problems. This is particularly true for mathematics and computing. Consequently, we 
have approached numerical methods from a problem-solving perspective.

∙ Student-Oriented Pedagogy. We have developed several features to make this book 
as student-friendly as possible. These include the overall organization, the use of 
introductions and epilogues to consolidate major topics and the extensive use of 
worked examples and case studies from all areas of engineering. We have also endeav-
ored to keep our explanations straightforward and oriented practically.

∙ Computational Tools. We empower our students by helping them utilize the standard 
“point-and-shoot” numerical problem-solving capabilities of packages like Excel, 
MATLAB, and Mathcad software. However, students are also shown how to develop 
simple, well-structured programs to extend the base capabilities of those environ-
ments. This knowledge carries over to standard programming languages such as Visual 
Basic, C/C++, Python, and modern versions of Fortran. We believe that the deem-
phasis of computer programming represents a “dumbing down” of the engineering 
curriculum. The bottom line is that if engineers are not content to be tool limited, 
they will have to write code. Only now they may be called “macros” or “scripts.” This 
book is designed to empower them to do that. 

Beyond these original principles, the eighth edition includes new material on cubic splines, 
Monte Carlo integration, and supplementary material on hyperbolic partial differential 
equations. It also has new and expanded problem sets. Many of the problems have been 
modified so that they yield different numerical solutions from previous editions. In addition, 
a variety of new problems have been included.
 As always, our primary intent in writing this book is to provide students with a sound 
introduction to numerical methods. We believe that motivated students who enjoy numer-
ical methods, computers, and mathematics will, in the end, make better engineers. If our 
book fosters an enthusiasm for these subjects, we will consider our efforts a success.
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PA R T  O N E

2

MODELING, COMPUTERS,  
AND ERROR ANALYSIS

 PT1.1 MOTIVATION
Numerical methods are techniques by which mathematical problems are formulated so 
that they can be solved with arithmetic operations. Although there are many kinds of 
numerical methods, they have one common characteristic: they invariably involve large 
numbers of tedious arithmetic calculations. It is little wonder that with the development 
of fast, efficient digital computers, the role of numerical methods in engineering problem 
solving has increased dramatically in recent years.

PT1.1.1 Noncomputer Methods
Beyond providing increased computational firepower, the widespread availability of com-
puters (especially personal computers) and their partnership with numerical methods has 
had a significant influence on the actual engineering problem-solving process. In the 
precomputer era there were generally three different ways in which engineers approached 
problem solving:

1. Solutions were derived for some problems using analytical, or exact, methods. These 
solutions were often useful and provided excellent insight into the behavior of some 
systems. However, analytical solutions can be derived for only a limited class of 
problems. These include those that can be approximated with linear models and 
those that have simple geometry and low dimensionality. Consequently, analytical 
solutions are of limited practical value because most real problems are nonlinear and 
involve complex shapes and processes.

2. Graphical solutions were used to characterize the behavior of systems. These 
graphical solutions usually took the form of plots or nomographs. Although graphical 
techniques can often be used to solve complex problems, the results are not very 
precise. Furthermore, graphical solutions (without the aid of computers) are extremely 
tedious and awkward to implement. Finally, graphical techniques are often limited 
to problems that can be described using three or fewer dimensions.

3. Calculators and slide rules were used to implement numerical methods manually. 
Although in theory such approaches should be perfectly adequate for solving complex 
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 PT1.1 MOTIVATION 3

problems, in actuality several difficulties are encountered. Manual calculations are 
slow and tedious. Furthermore, consistent results are elusive because of simple 
blunders that arise when numerous manual tasks are performed.

 During the precomputer era, significant amounts of energy were expended on the 
solution technique itself, rather than on problem definition and interpretation (Fig. PT1.1a). 
This unfortunate situation existed because so much time and drudgery were required to 
obtain numerical answers using precomputer techniques.
 Today, computers and numerical methods provide an alternative for such compli-
cated calculations. Using computer power to obtain solutions directly, you can  approach 
these calculations without recourse to simplifying assumptions or time-intensive tech-
niques. Although analytical solutions are still extremely valuable both for problem 
solving and for providing insight, numerical methods represent alternatives that greatly 
enlarge your capabilities to confront and solve problems. As a result, more time is 
available for the use of your creative skills. Thus, more emphasis can be placed on 
problem formulation and solution interpretation and the incorporation of total system, 
or “holistic,” awareness (Fig. PT1.1b).

FIGURE PT1.1
The three phases of engineer-
ing problem solving in (a) the  
precomputer and (b) the  
computer era. The sizes of the 
boxes indicate the level of  
emphasis directed toward each 
phase. Computers facilitate the 
implementation of solution 
techniques and thus allow 
more emphasis to be placed 
on the creative aspects of 
problem formulation and inter-
pretation of results.

INTERPRETATION

Ease of calculation
allows holistic thoughts
and intuition to develop;

system sensitivity and behavior
can be studied

FORMULATION

In-depth exposition
of relationship of

problem to fundamental
laws

SOLUTION

Easy-to-use
computer
method

(b)

INTERPRETATION

In-depth analysis
limited by time-

consuming solution

FORMULATION

Fundamental
laws explained

briefly

SOLUTION

Elaborate and often
complicated method to
make problem tractable

(a)
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4 MODELING, COMPUTERS, AND ERROR ANALYSIS

PT1.1.2 Numerical Methods and Engineering Practice
Since the late 1940s the widespread availability of digital computers has led to a veri-
table explosion in the use and development of numerical methods. At first, this growth 
was somewhat limited by the cost of access to large mainframe computers, and, conse-
quently, many engineers continued to use simple analytical approaches in a significant 
portion of their work. Needless to say, the recent evolution of inexpensive personal 
computers has given us ready access to powerful computational capabilities. There are 
several additional reasons why you should study numerical methods:

1. Numerical methods are extremely powerful problem-solving tools. They are capable 
of handling large systems of equations, nonlinearities, and complicated geometries 
that are not uncommon in engineering practice and that are often impossible to solve 
analytically. As such, they greatly enhance your problem-solving skills.

2. During your careers, you may often have occasion to use commercially available 
prepackaged, or “canned,” computer programs that involve numerical methods. The 
intelligent use of these programs is often predicated on knowledge of the basic 
theory underlying the methods.

3. Many problems cannot be approached using canned programs. If you are conversant 
with numerical methods and are adept at computer programming, you can design 
your own programs to solve problems without having to buy or commission expensive 
software.

4. Numerical methods are an efficient vehicle for learning to use computers. It is well 
known that an effective way to learn programming is to actually write computer 
programs. Because numerical methods are for the most part designed for 
implementation on computers, they are ideal for this purpose. Further, they are 
especially well-suited to illustrate the power and the limitations of computers. When 
you successfully implement numerical methods on a computer and then apply them 
to solve otherwise intractable problems, you will be provided with a dramatic 
demonstration of how computers can serve your professional development. At the 
same time, you will also learn to acknowledge and control the errors of approximation 
that are part and parcel of large-scale numerical calculations.

5. Numerical methods provide a vehicle for you to reinforce your understanding of 
mathematics. Because one function of numerical methods is to reduce higher 
mathematics to basic arithmetic operations, they get at the “nuts and bolts” of some 
otherwise obscure topics. Enhanced understanding and insight can result from this 
alternative perspective.

 PT1.2 MATHEMATICAL BACKGROUND
Every part in this book requires some mathematical background. Consequently, the intro-
ductory material for each part includes a section, such as the one you are reading, on 
mathematical background. Because Part One itself is devoted to background material on 
mathematics and computers, this section does not involve a review of a specific math-
ematical topic. Rather, we take this opportunity to introduce you to the types of math-
ematical subject areas covered in this book. As summarized in Fig. PT1.2, these are
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f(x)

x

Root

x2

x1

Solution

Minimum

f(x)

x

Interpolation

f(x)

x

f(x)

x

Regression

f(x)

I

(a) Part 2: Roots of equations
Solve f(x) = 0 for x.

(c) Part 4: Optimization

(b) Part 3: Linear algebraic equations
Given the a’s and the c’s, solve
a11x1 + a12x2 = c1

a21x1 + a22x2 = c2

for the x’s.

Determine x that gives optimum f(x).

(e) Part 6: Integration
I = ∫a

b f (x) dx

Find the area under the curve.

(d) Part 5: Curve fitting

x

FIGURE PT1.2
Summary of the numerical 
 methods covered in this book.
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y

x

(g) Part 8: Partial di�erential equations
Given

solve for u as a function of
x and y.

= f (x, y)∂2u
∂x2

∂2u
∂y2+

t

Slope =
f(ti, yi)

y

Δt

ti ti + 1

( f ) Part 7: Ordinary di�erential equations
Given

solve for y as a function of t.
yi + 1 = yi + f (ti , yi ) Δt

≅ = f (t, y)
dy
dt

Δy
Δt

FIGURE PT1.2 
(concluded)

1. Roots of Equations (Fig. PT1.2a). These problems are concerned with the value of 
a variable or a parameter that satisfies a single nonlinear equation. These problems 
are especially valuable in engineering design contexts where it is often impossible 
to explicitly solve design equations for parameters.

2. Systems of Linear Algebraic Equations (Fig. PT1.2b). These problems are similar in 
spirit to roots of equations in the sense that they are concerned with values that 
satisfy equations. However, in contrast to satisfying a single equation, a set of values 
is sought that simultaneously satisfies a set of linear algebraic equations. Such 
equations arise in a variety of problem contexts and in all disciplines of engineering. 
In particular, they originate in the mathematical modeling of large systems of 
interconnected elements such as structures, electric circuits, and fluid networks. 
However, they are also encountered in other areas of numerical methods such as 
curve fitting and differential equations.

3. Optimization (Fig. PT1.2c). These problems involve determining a value or values 
of an independent variable that correspond to a “best,” or optimal, value of a function. 
Thus, as in Fig. PT1.2c, optimization involves identifying maxima and minima. Such 
problems occur routinely in engineering design contexts. They also arise in a number 
of other numerical methods. We address both single- and multivariable unconstrained 
optimization. We also describe constrained optimization with particular emphasis on 
linear programming.

4. Curve Fitting (Fig. PT1.2d). You will often have occasion to fit curves to data points. 
The techniques developed for this purpose can be divided into two general categories: 
regression and interpolation. Regression is employed where there is a significant 
degree of error associated with the data. Experimental results are often of this kind. 
For these situations, the strategy is to derive a single curve that represents the general 
trend of the data without necessarily matching any individual points. In contrast, 
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interpolation is used where the objective is to determine intermediate values between 
relatively error-free data points. Such is usually the case for tabulated information. 
For these situations, the strategy is to fit a curve directly through the data points 
and use the curve to predict the intermediate values.

5. Integration (Fig. PT1.2e). As depicted, a physical interpretation of numerical 
integration is the determination of the area under a curve. Integration has many 
applications in engineering practice, ranging from the determination of the centroids 
of oddly shaped objects to the calculation of total quantities based on sets of discrete 
measurements. In addition, numerical integration formulas play an important role in 
the solution of differential equations.

6. Ordinary Differential Equations (Fig. PT1.2f ). Ordinary differential equations are 
of great significance in engineering practice. This is because many physical laws are 
couched in terms of the rate of change of a quantity rather than the magnitude of 
the quantity itself. Examples range from population-forecasting models (rate of 
change of population) to the acceleration of a falling body (rate of change of velocity). 
Two types of problems are addressed: initial-value and boundary-value problems. In 
addition, the computation of eigenvalues is covered.

7. Partial Differential Equations (Fig. PT1.2g). Partial differential equations are used 
to characterize engineering systems where the behavior of a physical quantity is 
couched in terms of its rate of change with respect to two or more independent 
variables. Examples include the steady-state distribution of temperature on a heated 
plate (two spatial dimensions) or the time-variable temperature of a heated rod (time 
and one spatial dimension). Two fundamentally different approaches are employed 
to solve partial differential equations numerically. In the present text, we will 
emphasize finite-difference methods that approximate the solution in a pointwise 
fashion (Fig. PT1.2g). However, we will also present an introduction to finite-
element methods, which use a piecewise approach.

 PT1.3 ORIENTATION
Some orientation might be helpful before proceeding with our introduction to numer-
ical methods. The following is intended as an overview of the material in Part One. 
In addition, some objectives have been included to focus your efforts when studying 
the material.

PT1.3.1 Scope and Preview
Figure PT1.3 is a schematic representation of the material in Part One. We have designed 
this diagram to provide you with a global overview of this part of the book. We believe 
that a sense of the “big picture” is critical to developing insight into numerical methods. 
When reading a text, it is often possible to become lost in technical details. Whenever 
you feel that you are losing the big picture, refer back to Fig. PT1.3 to reorient yourself. 
Every part of this book includes a similar figure.
 Figure PT1.3 also serves as a brief preview of the material covered in Part One. 
Chapter 1 is designed to orient you to numerical methods and to provide motivation by 
demonstrating how these techniques can be used in the engineering modeling process. 
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FIGURE PT1.3
Schematic of the organization of the material in Part One: Modeling, Computers, and Error Analysis.
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Chapter 2 is an introduction and review of computer-related aspects of numerical meth-
ods and suggests the level of computer skills you should acquire to efficiently apply 
succeeding information. Chapters 3 and 4 deal with the important topic of error analysis, 
which must be understood for the effective use of numerical methods. In addition, an 
epilogue is included that introduces the trade-offs that have such great significance for 
the effective implementation of numerical methods.

PT1.3.2 Goals and Objectives
Study Objectives. Upon completing Part One, you should be adequately prepared to 
embark on your studies of numerical methods. In general, you should have gained a 
fundamental understanding of the importance of computers and the role of approximations 
and errors in the implementation and development of numerical methods. In addition to 
these general goals, you should have mastered each of the specific study objectives listed 
in Table PT1.1.

Computer Objectives. Upon completing Part One, you should have mastered 
sufficient computer skills to develop your own software for the numerical methods in 
this text. You should be able to develop well-structured and reliable computer programs 

TABLE PT1.1 Specific study objectives for Part One.

 1. Recognize the difference between analytical and numerical solutions.
 2. Understand how conservation laws are employed to develop mathematical models of physical 

systems.
 3. Define top-down and modular design.
 4. Delineate the rules that underlie structured programming.
 5. Be capable of composing structured and modular programs in a high-level computer language.
 6. Know how to translate structured flowcharts and pseudocode into code in a high-level language.
 7. Start to familiarize yourself with any software packages that you will be using in conjunction with 

this text.
 8. Recognize the distinction between truncation and round-off errors.
 9. Understand the concepts of significant figures, accuracy, and precision.
 10. Recognize the difference between true relative error εt, approximate relative error εa, and 

acceptable error εs, and understand how εa and εs are used to terminate an iterative 
computation.

 11. Understand how numbers are represented in digital computers and how this representation 
induces round-off error. In particular, know the difference between single and extended 
precision.

 12. Recognize how computer arithmetic can introduce and amplify round-off errors in calculations. In 
particular, appreciate the problem of subtractive cancellation.

 13. Understand how the Taylor series and its remainder are employed to represent continuous 
functions.

 14. Know the relationship between finite divided differences and derivatives.
 15. Be able to analyze how errors are propagated through functional relationships.
 16. Be familiar with the concepts of stability and condition.
 17. Familiarize yourself with the trade-offs outlined in the Epilogue of Part One.
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10 MODELING, COMPUTERS, AND ERROR ANALYSIS

on the basis of pseudocode, flowcharts, or other forms of algorithms. You should have 
developed the capability to document your programs so that they may be effectively 
employed by users. Finally, in addition to your own programs, you may be using 
software packages along with this book. Packages like Excel, Mathcad, or The 
MathWorks, Inc. MATLAB® program are examples of such software. You should 
become familiar with these packages, so that you will be comfortable using them to 
solve numerical problems later in the text.
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C H A P T E R

1
Mathematical Modeling and 
Engineering Problem Solving

Knowledge and understanding are prerequisites for the effective implementation of any 
tool. No matter how impressive your tool chest, you will be hard-pressed to repair a car 
if you do not understand how it works.
 This is particularly true when using computers to solve engineering problems. 
 Although they have great potential utility, computers are practically useless without a 
fundamental understanding of how engineering systems work.
 This understanding is initially gained by empirical means—that is, by observation 
and experiment. However, while such empirically derived information is essential, it is 
only half the story. Over years and years of observation and experiment, engineers and 
scientists have noticed that certain aspects of their empirical studies occur repeatedly. 
Such general behavior can then be expressed as fundamental laws that essentially embody 
the cumulative wisdom of past experience. Thus, most engineering problem solving 
 employs the two-pronged approach of empiricism and theoretical analysis (Fig. 1.1).
 It must be stressed that the two prongs are closely coupled. As new measurements are 
taken, the generalizations may be modified or new ones developed. Similarly, the general-
izations can have a strong influence on the experiments and observations. In particular, 
generalizations can serve as organizing principles that can be employed to synthesize ob-
servations and experimental results into a coherent and comprehensive framework from 
which conclusions can be drawn. From an engineering problem-solving perspective, such 
a framework is most useful when it is expressed in the form of a mathematical model.
 The primary objective of this chapter is to introduce you to mathematical modeling 
and its role in engineering problem solving. We will also illustrate how numerical meth-
ods figure in the process.

 1.1 A SIMPLE MATHEMATICAL MODEL
A mathematical model can be broadly defined as a formulation or equation that expresses 
the essential features of a physical system or process in mathematical terms. In a very 
general sense, it can be represented as a functional relationship of the form

Dependent
variable = f  (

independent
variables , parameters, forcing

functions) (1.1)
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12 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

where the dependent variable is a characteristic that usually reflects the behavior or state 
of the system; the independent variables are usually dimensions, such as time and space, 
along which the system’s behavior is being determined; the parameters are reflective of 
the system’s properties or composition; and the forcing functions are external influences 
acting upon the system.
 The actual mathematical expression of Eq. (1.1) can range from a simple algebraic 
relationship to large complicated sets of differential equations. For example, on the 
basis of his observations, Newton formulated his second law of motion, which states 
that the time rate of change of momentum of a body is equal to the resultant force 
acting on it. The mathematical expression, or model, of the second law is the well-
known equation

F = ma (1.2)

where F = net force acting on the body (N, or kg m/s2), m = mass of the object (kg), 
and a = its acceleration (m/s2).

Implementation

Numeric or
graphic results

Mathematical
model

Problem
definition

THEORY DATA

Problem-solving tools:
computers, statistics,
numerical methods,

graphics, etc.

Societal interfaces:
scheduling, optimization,

communication,
public interaction,

etc.

FIGURE 1.1
The engineering problem- 
solving process.
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 1.1 A SIMPLE MATHEMATICAL MODEL 13

 The second law can be recast in the format of Eq. (1.1) by merely dividing both 
sides by m to give

a =
F

m
 (1.3)

where a = the dependent variable reflecting the system’s behavior, F = the forcing func-
tion, and m = a parameter representing a property of the system. Note that for this 
simple case there is no independent variable because we are not yet predicting how 
 acceleration varies in time or space.
 Equation (1.3) has several characteristics that are typical of mathematical models of 
the physical world:

1. It describes a natural process or system in mathematical terms.
2. It represents an idealization and simplification of reality. That is, the model ignores 

negligible details of the natural process and focuses on its essential manifestations. 
Thus, the second law does not include the effects of relativity that are of minimal 
importance when applied to objects and forces that interact on or about the earth’s 
surface at velocities and on scales visible to humans.

3. Finally, it yields reproducible results and, consequently, can be used for predictive 
purposes. For example, if the force on an object and the mass of an object are known, 
Eq. (1.3) can be used to compute acceleration.

 Because of its simple algebraic form, the solution of Eq. (1.2) can be obtained eas-
ily. However, other mathematical models of physical phenomena may be much more 
complex and either cannot be solved exactly or require more sophisticated mathematical 
techniques than simple algebra for their solution. To illustrate a more complex model of 
this kind, Newton’s second law can be used to determine the terminal velocity of a free-
falling body near the earth’s surface. Our falling body will be a parachutist (Fig. 1.2). A 
model for this case can be derived by expressing the acceleration as the time rate of 
change of the velocity (dυ∕dt) and substituting it into Eq. (1.3) to yield

dυ

dt
=

F

m
 (1.4)

where υ is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of 
change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
 Next, we will express the net force in terms of measurable variables and parameters. For 
a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two 
opposing forces, the downward pull of gravity FD and the upward force of air resistance FU:

F = FD + FU (1.5)

If the downward force is assigned a positive sign, the second law can be used to formu-
late the force due to gravity, as

FD = mg (1.6)

where g = the gravitational constant, or the acceleration due to gravity, which is approxi-
mately equal to 9.81 m/s2.

FU

FD

FIGURE 1.2
Schematic diagram of the 
forces acting on a falling 
 parachutist. FD is the down-
ward force due to gravity. FU is 
the upward force due to air  
resistance.
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14 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

 Air resistance can be formulated in a variety of ways. A simple approach is to as-
sume that it is linearly proportional to velocity1 and acts in an upward direction, as in

FU = −cυ (1.7)

where c = a proportionality constant called the drag coefficient (kg/s). Thus, the greater 
the fall velocity, the greater the upward force due to air resistance. The parameter c 
 accounts for properties of the falling object, such as shape or surface roughness, that 
affect air resistance. For the present case, c might be a function of the type of jumpsuit 
or the orientation used by the parachutist during free-fall.
 The net force is the difference between the downward and upward force. Therefore, 
Eqs. (1.4) through (1.7) can be combined to yield

dυ

dt
=

mg − cυ

m
 (1.8)

or simplifying the right side,

dυ

dt
= g −

c

m
  υ (1.9)

Equation (1.9) is a model that relates the acceleration of a falling object to the forces 
acting on it. It is a differential equation because it is written in terms of the differential 
rate of change (dυ∕dt) of the variable that we are interested in predicting. However, in 
contrast to the solution of Newton’s second law in Eq. (1.3), the exact solution of 
Eq.  (1.9) for the velocity of the falling parachutist cannot be obtained using simple 
 algebraic manipulation. Rather, more advanced techniques, such as those of calculus, 
must be applied to obtain an exact or analytical solution. For example, if the parachutist 
is initially at rest (υ = 0 at t = 0), calculus can be used to solve Eq. (1.9) for

υ(t) =
gm

c
 (1 − e− (c∕m)t) (1.10)

Note that Eq. (1.10) is cast in the general form of Eq. (1.1), where υ(t) = the dependent 
variable, t = the independent variable, c and m = parameters, and g = the forcing function.

 EXAMPLE 1.1 Analytical Solution to the Falling Parachutist Problem
Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot air 
balloon. Use Eq. (1.10) to compute velocity prior to opening the chute. The drag coefficient 
is equal to 12.5 kg/s.

Solution. Inserting the parameters into Eq. (1.10) yields

υ(t) =
9.81(68.1)

12.5
 (1 − e− (12.5∕68.1)t) = 53.44 (1 − e−0.18355t)

which can be used to compute

1In fact, the relationship is actually nonlinear and might better be represented by a power relationship such as 
FU = −cυ2. We will explore how such nonlinearities affect the model in problems at the end of this chapter.
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 1.1 A SIMPLE MATHEMATICAL MODEL 15

t, s v, m/s

 0 0.00
 2 16.42
 4 27.80
 6 35.68
 8 41.14
10 44.92
12 47.54
∞ 53.44

According to the model, the parachutist accelerates rapidly (Fig. 1.3). A velocity of 44.92 
m/s is attained after 10 s. Note also that after a sufficiently long time, a constant veloc-
ity, called the terminal velocity, of 53.44 m/s is reached. This velocity is constant be-
cause, eventually, the force of gravity will be in balance with the air resistance. Thus, 
the net force is zero and acceleration has ceased.

 Equation (1.10) is called an analytical, or exact, solution because it exactly satisfies 
the original differential equation. Unfortunately, there are many mathematical models that 
cannot be solved exactly. In many of these cases, the only alternative is to develop a 
numerical solution that approximates the exact solution.
 As mentioned previously, numerical methods are those in which the mathematical 
problem is reformulated so that it can be solved by arithmetic operations. This can be 

FIGURE 1.3
The analytical solution to the 
falling parachutist problem as 
computed in Example 1.1.  
Velocity increases with time 
and asymptotically approaches 
a terminal velocity.

0
0

20

40

4 8 12

t, s

v,
 m

/s

Terminal velocity
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16 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

 illustrated for Newton’s second law by realizing that the time rate of change of velocity 
can be  approximated by (Fig. 1.4):

dυ

dt
 ≅ 

Δυ

Δt
=

υ(ti+1) − υ(ti)
ti+1 − ti

 (1.11)

where Δυ and Δt = differences in velocity and time, respectively, computed over finite 
intervals, υ(ti) = velocity at an initial time ti, and υ(ti+1) = velocity at some later time ti+1. 
Note that dυ/dt ≅ Δυ∕Δt is approximate because Δt is finite. Remember from calculus that

dυ

dt
= lim

Δt→0
 
Δυ

Δt

Equation (1.11) represents the reverse process.
 Equation (1.11) is called a finite divided difference approximation of the derivative 
at time ti. It can be substituted into Eq. (1.9) to give

 
υ(ti+1) − υ(ti)

ti+1 − ti

= g −
c

m
  υ(ti)

This equation can then be rearranged to yield

υ(ti+1) = υ(ti) + [g −
c

m
  υ(ti)](ti+1 − ti) (1.12)

 Notice that the term in brackets is the right-hand side of the differential equation 
itself [Eq. (1.9)]. That is, it provides a means to compute the rate of change or slope of υ. 
Thus, the differential equation has been transformed into an equation that can be used 
to determine the velocity algebraically at ti+1 using the slope and previous values of υ 

FIGURE 1.4
The use of a finite difference 
to approximate the first deriva-
tive of v with respect to t.

v(ti+1)

v(ti)

Δv

True slope
dv/dt

Approximate slope
Δv
Δt

v(ti+1) – v(ti)
ti+1 – ti 

=

ti+1ti t

Δt
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 1.1 A SIMPLE MATHEMATICAL MODEL 17

and t. If you are given an initial value for velocity at some time ti, you can easily compute 
velocity at a later time ti+1. This new value of velocity at ti+1 can in turn be employed to 
extend the computation to velocity at ti+2 and so on. Thus, at any time along the way,

New value = old value + slope × step size

Note that this approach is formally called Euler’s method.

 EXAMPLE 1.2 Numerical Solution to the Falling Parachutist Problem
Problem Statement. Perform the same computation as in Example 1.1 but use 
Eq.  (1.12) to compute the velocity. Employ a step size of 2 s for the calculation.

Solution. At the start of the computation (ti = 0), the velocity of the parachutist is zero. 
Using this information and the parameter values from Example 1.1, Eq. (1.12) can be 
used to compute velocity at ti+1 = 2 s:

υ = 0 + [9.81 −
12.5
68.1

(0)]2 = 19.62 m/s

For the next interval (from t = 2 to 4 s), the computation is repeated, with the result

υ = 19.62 + [9.81 −
12.5
68.1

(19.62)]2 = 32.04 m/s

The calculation is continued in a similar fashion to obtain additional values:

t, s v, m/s

 0 0.00
 2 19.62
 4 32.04
 6 39.90
 8 44.87
10 48.02
12 50.01
∞ 53.44

 The results are plotted in Fig. 1.5 along with the exact solution. It can be seen that 
the numerical method captures the essential features of the exact solution. However, be-
cause we have employed straight-line segments to approximate a continuously curving 
function, there is some discrepancy between the two results. One way to minimize such 
discrepancies is to use a smaller step size. For example, applying Eq. (1.12) at l-s intervals 
results in a smaller error, as the straight-line segments track closer to the true solution. 
Using hand calculations, the effort associated with using smaller and smaller step sizes 
would make such numerical solutions impractical. However, with the aid of the computer, 
large numbers of calculations can be performed easily. Thus, you can accurately model the 
velocity of the falling parachutist without having to solve the differential equation exactly.

 As in the previous example, a computational price must be paid for a more accurate 
numerical result. Each halving of the step size to attain more accuracy leads to a doubling 
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18 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

of the number of computations. Thus, we see that there is a trade-off between accuracy 
and computational effort. Such trade-offs figure prominently in numerical methods and 
constitute an important theme of this book. Consequently, we have devoted the Epilogue 
of Part One to an introduction to more of these trade-offs.

 1.2 CONSERVATION LAWS AND ENGINEERING
Aside from Newton’s second law, there are other major organizing principles in engineering. 
Among the most important of these are the conservation laws. Although they form the 
basis for a variety of complicated and powerful mathematical models, the great conserva-
tion laws of science and engineering are conceptually easy to understand. They all boil 
down to

Change = increases − decreases (1.13)

This is precisely the format that we employed when using Newton’s law to develop a 
force balance for the falling parachutist [Eq. (1.8)].
 Although simple, Eq. (1.13) embodies one of the most fundamental ways in which 
conservation laws are used in engineering—that is, to predict changes with respect to 
time. We give Eq. (1.13) the special name time-variable (or transient) computation.
 Aside from predicting changes, another way in which conservation laws are applied 
is for cases where change is nonexistent. If change is zero, Eq. (1.13) becomes

Change = 0 = increases − decreases

or

Increases = decreases (1.14)

0
0

20

40

4 8 12

t, s

v,
 m

/s

Terminal velocity

Exact, analytical solution

Approximate, numerical solution

FIGURE 1.5
Comparison of the numerical 
and analytical solutions for the 
falling parachutist problem.
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Thus, if no change occurs, the increases and decreases must be in balance. This case, 
which is also given a special name—the steady-state computation—has many applica-
tions in engineering. For example, for steady-state incompressible fluid flow in pipes, 
the flow into a junction must be balanced by flow going out, as in

Flow in = flow out

For the junction in Fig. 1.6, the balance can be used to compute that the flow out of the 
fourth pipe must be 60.
 For the falling parachutist, steady-state conditions would correspond to the case 
where the net force was zero, or [Eq. (1.8) with dυ∕dt = 0]

mg = cυ (1.15)

Thus, at steady state, the downward and upward forces are in balance, and Eq. (1.15) 
can be solved for the terminal velocity

υ =
mg

c

 Although Eqs. (1.13) and (1.14) might appear trivially simple, they embody the two 
fundamental ways that conservation laws are employed in engineering. As such, they will 
form an important part of our efforts in subsequent chapters to illustrate the connection 
between numerical methods and engineering. Our primary vehicles for making this con-
nection are the engineering applications that appear at the end of each part of this book.
 Table 1.1 summarizes some of the simple engineering models and associated conserva-
tion laws that will form the basis for many of these engineering applications. Most of the 
chemical engineering applications will focus on mass balances for reactors. The mass balance 
is derived from the conservation of mass. It specifies that the change of mass of a chemical 
in the reactor depends on the amount of mass flowing in minus the mass flowing out.
 Both the civil and mechanical engineering applications will focus on models devel-
oped from the conservation of momentum. For civil engineering, force balances are 
utilized to analyze structures such as the simple truss in Table 1.1. The same principles 
are employed for the mechanical engineering applications to analyze the transient 
 up-and-down motions, or vibrations, of an automobile.

Pipe 2
Flow in = 80

Pipe 3
Flow out = 120

Pipe 4
Flow out = ?

Pipe 1
Flow in = 100

FIGURE 1.6
A flow balance for steady-state 
incompressible fluid flow at the 
junction of pipes.
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TABLE 1.1  Devices and types of balances that are commonly used in the four major areas of engineering. For each 
case, the conservation law upon which the balance is based is specified.

Structure

Civil engineering Conservation of
momentum

Chemical engineering

Field Device Organizing Principle Mathematical Expression

Conservation of mass

Force balance:

Mechanical engineering Conservation of
momentum

Machine Force balance:

Electrical engineering Conservation of charge Current balance:

Conservation of energy Voltage balance:

Mass balance:
Reactors Input Output

Over a unit of time period
 Δmass = inputs – outputs

At each node
 Σ horizontal forces (FH) = 0
 Σ vertical forces (FV) = 0

For each node
 Σ current (i ) = 0

Around each loop
 Σ emf’s – Σ voltage drops for resistors = 0
 Σ ξ – Σ iR = 0

–FV

+FV

+FH–FH

+ i2

– i3+ i1+

–

Circuit
i1R1

i3R3

i2R2 ξ

Upward force

Downward force

x = 0

m = downward force – upward forced2x
dt2
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TABLE 1.2  Some practical issues that will be explored in the engineering applications 
at the end of each part of this book.

 1. Nonlinear versus linear. Much of classical engineering depends on linearization to permit 
analytical solutions. Although this is often appropriate, expanded insight can often be gained if 
nonlinear problems are examined.

 2. Large versus small systems. Without a computer, it is often not feasible to examine systems with 
over three interacting components. With computers and numerical methods, more realistic 
multicomponent systems can be examined.

 3. Nonideal versus ideal. Idealized laws abound in engineering. Often there are nonidealized 
alternatives that are more realistic but more computationally demanding. Approximate numerical 
approaches can facilitate the application of these nonideal relationships.

 4. Sensitivity analysis. Because they are so involved, many manual calculations require a great deal 
of time and effort for successful implementation. This sometimes discourages the analyst from 
implementing the multiple computations that are necessary to examine how a system responds 
under different conditions. Such sensitivity analyses are facilitated when numerical methods allow 
the computer to assume the computational burden.

 5. Design. It is often a straightforward proposition to determine the performance of a system as a 
function of its parameters. It is usually more difficult to solve the inverse problem—that is, 
determining the parameters when the required performance is specified. Numerical methods and 
computers often permit this task to be implemented in an efficient manner.

 Finally, the electrical engineering applications employ both current and energy bal-
ances to model electric circuits. The current balance, which results from the conservation 
of charge, is similar in spirit to the flow balance depicted in Fig. 1.6. Just as flow must 
balance at the junction of pipes, electric current must balance at the junction of electric 
wires. The energy balance specifies that the changes of voltage around any loop of the 
circuit must add up to zero. The engineering applications are designed to illustrate how 
numerical methods are actually employed in the engineering problem-solving process. 
As such, they will permit us to explore practical issues (Table 1.2) that arise in real-world 
applications. Making these connections between mathematical techniques such as nu-
merical methods and engineering practice is a critical step in tapping their true potential. 
Careful examination of the engineering applications will help you to take this step.

PROBLEMS

1.1 Use calculus to solve Eq. (1.9) for the case where the initial 
velocity υ(0) is nonzero.
1.2 Repeat Example 1.2. Compute the velocity to t = 10 s, with a 
step size of (a) 1 and (b) 0.5 s. Can you make any statement regard-
ing the errors of the calculation based on the results?
1.3 Rather than the linear relationship of Eq. (1.7), you might 
choose to model the upward force on the parachutist as a second-
order relationship,

FU = −c′v ∣v∣

where c′ = a bulk second-order drag coefficient (kg/m). Note that 
the second-order term could be represented as v2 if the parachutist 
always fell in the downward direction. For the present case, we use 

the more general representation, v |v|, so that the proper sign is ob-
tained for both the downward and the upward directions.
(a) Using calculus, obtain the closed-form solution for the case 

where the jumper is initially at rest (υ = 0 at t = 0).
(b) Repeat the numerical calculation in Example 1.2 with the same 

initial condition and parameter values, but with second-order 
drag. Use a value of 0.225 kg/m for cd′.

1.4 For the free-falling parachutist with linear drag, assume a first 
jumper is 70 kg and has a drag coefficient of 12 kg/s. If a second jumper 
has a drag coefficient of 15 kg/s and a mass of 75 kg, how long will it 
take him to reach the same velocity the first jumper reached in 10 s?
1.5 Compute the velocity of a parachutist using Euler’s method for 
the case where m = 80 kg and c = 10 kg/s. Perform the calculation 
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22 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

from t = 0 to 20 s with a step size of 1 s. Use an initial condition 
that the parachutist has an upward velocity of 20 m/s at t = 0. At 
t = 10 s, assume that the chute is instantaneously  deployed so that 
the drag coefficient jumps to 50 kg/s.
1.6 The following information is available for a bank account:

Date Deposits Withdrawals Interest Balance

5/1 1512.33
220.13 327.26

6/1
216.80 378.61

7/1
450.25 106.80

8/1
127.31 350.61

9/1

Note that the money earns interest, which is computed as

Interest = iBi

where i = the interest rate expressed as a fraction per month and Bi = 
the initial balance at the beginning of the month.
(a) Use the conservation of cash to compute the balance on 6/1, 

7/1, 8/1, and 9/1 if the interest rate is 1% per month (i =  
0.01/month). Show each step in the computation.

(b) Write a differential equation for the cash balance in the form

dB

dt
= f (D(t), W(t), i)

 where t = time (months), D(t) = deposits as a function of time 
($/month), W(t) = withdrawals as a function of time ($/month). 
For this case, assume that interest is compounded continu-
ously; that is, interest = iB.

(c) Use Euler’s method with a time step of 0.5 month to simulate 
the balance. Assume that the deposits and withdrawals are ap-
plied uniformly over the month.

(d) Develop a plot of balance versus time for (a) and (c).
1.7 The amount of a uniformly distributed radioactive contaminant 
contained in a closed reactor is measured by its concentration c 
(becquerel/liter, or Bq/L). The contaminant decreases at a decay 
rate proportional to its concentration—that is,

decay rate = −kc

where k is a constant with units of day−1. Therefore, according to 
Eq. (1.13), a mass balance for the reactor can be written as

 
dc

dt
 = −kc

 (
change
in mass) = (

decrease
by decay)

(a) Use Euler’s method to solve this equation from t = 0 to 1 d with 
k = 0.2 d−1. Employ a step size of Δt = 0.1. The concentration 
at t = 0 is 10 Bq/L.

(b) Plot the solution on a semilog graph (i.e., ln c versus t) and 
determine the slope. Interpret your results.

1.8 A group of 35 students attend a class in a room that measures 
11 m by 8 m by 3 m. Each student takes up about 0.075 m3 and 
gives out about 80 W of heat (1 W = 1 J/s). Calculate the air tem-
perature rise during the first 15 minutes of the class if the room is 
completely sealed and insulated. Assume the heat capacity, Cυ, for 
air is 0.718 kJ/(kg K). Assume air is an ideal gas at 20°C and 
101.325 kPa. Note that the heat absorbed by the air Q is related to 
the mass of the air m, the heat capacity, and the change in tempera-
ture by the following relationship:

Q = m ∫T2

T1

CυdT = mCυ (T2 − T1)

The mass of air can be obtained from the ideal gas law:

PV =
m

Mwt
  RT

where P is the gas pressure, V is the volume of the gas, Mwt is the 
molecular weight of the gas (for air, 28.97 kg/kmol), and R is the 
ideal gas constant [8.314 kPa m3/(kmol K)].
1.9 A storage tank contains a liquid at depth y, where y = 0 when 
the tank is half full (Fig. P1.9). Liquid is withdrawn at a constant 
flow rate Q to meet demands. The contents are resupplied at a sinu-
soidal rate 3Q sin2(t).

y

0

FIGURE P1.9

Equation (1.13) can be written for this system as

 
d(Ay)

dt
 = 3Q sin 

2(t)   − Q

(
change in
volume ) = (inflow) − (outflow)

or, since the surface area A is constant,

dy

dt
= 3

Q

A
  sin 

2(t) −
Q

A
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Use Euler’s method to solve for the depth y from t = 0 to 10 d with 
a step size of 0.5 d. The parameter values are A = 1200 m2 and  
Q = 500 m3/d. Assume that the initial condition is y = 0.
1.10 For the same storage tank described in Prob. 1.9, suppose that 
the outflow is not constant but rather depends on the depth. For this 
case, the differential equation for depth can be written as

dy

dt
= 3

Q

A
   sin 

2(t) −
α(1 + y)1.5

A

Use Euler’s method to solve for the depth y from t = 0 to 10 d with a step 
size of 0.5 d. The parameter values are A = 1200 m2, Q = 500 m3/d, and 
α = 150. Assume that the initial condition is y = 0.
1.11 Apply the conservation of volume (see Prob. 1.9) to simulate 
the level of liquid in a conical storage tank (Fig. P1.11). The liquid 
flows in at a sinusoidal rate of Qin = 3 sin2(t) and flows out accord-
ing to

Qout = 3(y − yout)
1.5 y > yout

Qout = 0 y ≤ yout

where flow has units of m3/d and y = the elevation of the water sur-
face above the bottom of the tank (m). Use Euler’s method to solve 
for the depth y from t = 0 to 8 d with a step size of 0.4 d. The param-
eter values are rtop = 2.5 m, ytop = 4 m, and yout = 1 m.  Assume that 
the level is initially below the outlet pipe with y(0) = 0.75 m.

ytop

y

yout

0

Qin

Qout
s

1

rtop

FIGURE P1.11

1.12 In our example of the free-falling parachutist, we assumed that 
the acceleration due to gravity was a constant value. Although this is 
a decent approximation when we are examining falling objects near 
the surface of the earth, the gravitational force decreases as we move 
above sea level. A more general representation based on Newton’s 
inverse square law of gravitational attraction can be written as

g(x) = g(0)
R2

(R + x)2

where g(x) = gravitational acceleration at altitude x (in m) mea-
sured upward from the earth’s surface (m/s2), g(0) = gravitational 
acceleration at the earth’s surface (≅ 9.81 m/s2), and R = the earth’s 
radius (≅ 6.37 × 106 m).
(a) In a fashion similar to the derivation of Eq. (1.9), use a force 

balance to derive a differential equation for velocity as a func-
tion of time that utilizes this more complete representation of 
gravitation. However, for this derivation, assume that upward 
velocity is positive.

(b) For the case where drag is negligible, use the chain rule to ex-
press the differential equation as a function of altitude rather 
than time. Recall that the chain rule is

dυ

dt
=

dυ

dx
 
dx

dt

(c) Use calculus to obtain the closed-form solution where υ = υ0 at 
x = 0.

(d) Use Euler’s method to obtain a numerical solution from x = 0 
to 100,000 m using a step size of 10,000 m where the initial 
velocity is 1400 m/s upward. Compare your result with the 
analytical solution.

1.13 Suppose that a spherical droplet of liquid evaporates at a rate 
that is proportional to its surface area,

dV

dt
= −kA

where V = volume (mm3), t = time (min), k = the evaporation rate 
(mm/min), and A = surface area (mm2). Use Euler’s method to 
compute the volume of the droplet from t = 0 to 10 min using a step 
size of 0.25 min. Assume that k = 0.1 mm/min and that the droplet 
initially has a radius of 3 mm. Assess the validity of your results by 
determining the radius of your final computed volume and verify-
ing that it is consistent with the evaporation rate.
1.14 Newton’s law of cooling says that the temperature of a body 
changes at a rate proportional to the difference between its 
 temperature and that of the surrounding medium (the ambient 
temperature),

dT

dt
= −k(T − Ta)

where T = the temperature of the body (°C), t = time (min),  
k = the proportionality constant (per minute), and Ta = the ambi-
ent temperature (°C). Suppose that a cup of coffee originally has 
a temperature of 68°C. Use Euler’s method to compute the 
 temperature from t = 0 to 10 min using a step size of 1 min if  
Ta = 21°C and k = 0.019/min.
1.15 As depicted in Fig. P1.15, an RLC circuit consists of three 
elements: a resistor (R), an inductor (L), and a capacitor (C). The 
flow of current across each element induces a voltage drop. 
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(a) Substitute in Eq. (1.10) and develop an analytical solution for 
distance as a function of time. Assume that x(0) = 0.

(b) Use Euler’s method to numerically integrate Eqs. (P1.17) and 
(1.9) in order to determine both the velocity and distance fallen 
as a function of time for the first 10 s of free-fall using the same 
parameters as in Example 1.2.

(c) Develop a plot of your numerical results together with the ana-
lytical solution.

1.18 You are working as a crime-scene investigator and must pre-
dict the temperature of a homicide victim over a 5-hr period. You 
know that the room where the victim was found was at 12°C when 
the body was discovered.
(a) Use Newton’s law of cooling (Prob. 1.14) and Euler’s method 

to compute the victim’s body temperature for the 5-hr period 
using values of k = 0.12/hr and Δt = 0.5 hr. Assume that the 
victim’s body temperature at the time of death was 37°C and 
that the room temperature was at a constant value of 12°C over 
the 5-hr period.

(b) Further investigation reveals that the room temperature had actu-
ally dropped linearly from 20 to 12°C over the 5-hr period. Repeat 
the same calculation as in (a) but incorporate this new information.

(c) Compare the results from (a) and (b) by plotting them on the 
same graph.

1.19 Suppose that a parachutist with linear drag (m = 70 kg,  
c = 12.5 kg/s) jumps from an airplane flying at an altitude of 200 m 
with a horizontal velocity of 180 m/s relative to the ground.
(a) Write a system of four differential equations for x, y, υx = dx/dt, 

and υy = dy/dt.
(b) If the initial horizontal position is defined as x = 0, use Euler’s 

methods with Δt = 1 s to compute the jumper’s position over 
the first 10 s.

(c) Develop plots of y versus t and y versus x. Use the plots to 
graphically estimate when and where the jumper would hit the 
ground if the chute failed to open.

(d) At what angle would the parachutist be traveling in the last 
whole second before impact?

1.20 As noted in Prob. 1.3, drag is more accurately represented as 
depending on the square of velocity. A more fundamental represen-
tation of the drag force, which assumes turbulent conditions (i.e., a 
high Reynolds number), can be formulated as

Fd = −1
2

 ρACdυ∣υ∣

where Fd = the drag force (N), ρ = fluid density (kg/m3), A = the frontal 
area of the object on a plane perpendicular to the direction of motion 
(m2), υ = velocity (m/s), and Cd = a dimensionless drag coefficient.
(a) Write the pair of differential equations for velocity and position (see 

Prob. 1.17) to describe the vertical motion of a sphere with diameter 
d (m) and a density of ρs (kg/m3). The differential equation for 
 velocity should be written as a function of the sphere’s diameter.

 Kirchhoff’s second voltage law states that the algebraic sum of 
these voltage drops around a closed circuit is zero,

iR + L  

di

dt
+

q

C
= 0

where i = current, R = resistance, L = inductance, t = time, q = charge, 
and C = capacitance. In addition, the current is related to charge as in

dq

dt
= i

(a) If the initial values are i(0) = 0 and q(0) = 0.5 C, use Euler’s 
method to solve this pair of differential equations from t = 0 to 
0.1 s using a step size of Δt = 0.01 s. Employ the following 
parameters for your calculation: R = 250 Ω, L = 5 H, and  
C = 10–4 F.

(b) Develop a plot of i and q versus t.

q

CiR

Resistor Inductor Capacitor

i

di
dt

L

FIGURE P1.15

1.16 A fluid is pumped into the network shown in Fig. P1.16. If  
Q2 = 0.7, Q3 = 0.5, Q7 = 0.1, and Q8 = 0.3 m3/s, determine the other 
flows.

Q1

Q10 Q9 Q8

Q3 Q5

Q7Q6Q4Q2

FIGURE P1.16

1.17 The velocity is equal to the rate of change of distance x (m),

dx

dt
= υ(t)  (P1.17)
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1.22 As described in Prob. 1.21, in addition to the downward force 
of gravity (weight) and drag, an object falling through a fluid is also 
subject to a buoyancy force that is proportional to the displaced 
volume. For example, for a sphere with diameter d (m), the sphere’s 
volume is V = πd3/6 and its projected area is A = πd2/4. The buoy-
ancy force can then be computed as FB = –ρVg. We neglected buoy-
ancy in our derivation of Eq. (1.9) because it is relatively small for 
an object like a parachutist moving through air. However, for a 
more dense fluid like water, it becomes more prominent.
(a) Derive a differential equation in the same fashion as Eq. (1.9), 

but include the buoyancy force and represent the drag force as 
described in Prob. 1.20.

(b) Rewrite the differential equation from (a) for the special case 
of a sphere.

(c) Use the equation developed in (b) to compute the terminal 
 velocity (i.e., for the steady-state case). Use the following 
 parameter values for a sphere falling through water: sphere 
 diameter = 1.1 cm, sphere density = 2650 kg/m3, water density =  
1000 kg/m3, and Cd = 0.47.

(d) Use Euler’s method with a step size of Δt = 0.03125 s to nu-
merically solve for the velocity from t = 0 to 0.25 s with an 
initial velocity of zero.

1.23 As depicted in Fig. P1.23, the downward deflection y (m) of a 
cantilever beam with a uniform load w (kg/m) can be computed as

y =
w

24EI
 (x4 − 4Lx3 + 6L2x2)

where x = distance (m), E = the modulus of elasticity = 2 × 1011 
Pa, I = moment of inertia = 3.3 × 10–4 m4, w = 12,000 N/m, and 
L = length = 4 m. This equation can be differentiated to yield the 
slope of the downward deflection as a function of x:

dy

dx
=

w

24EI
  (4x3 − 12Lx2 + 12L2x)

If y = 0 at x = 0, use this equation with Euler’s method (Δx = 0.125 m) 
to compute the deflection from x = 0 to L. Develop a plot of your results 
along with the analytical solution computed with the first equation.

y

w

x = 0 x = L

0

FIGURE P1.23
A cantilever beam.

1.24 Use Archimedes’ principle to develop a steady-state force bal-
ance for a spherical ball of ice floating in seawater (Fig. P1.24). The 
force balance should be expressed as a third-order polynomial  (cubic) 

(b) Use Euler’s method with a step size of Δt = 2 s to compute the posi-
tion and velocity of a sphere over the first 14 s. Employ the follow-
ing parameters in your calculation: d = 125 cm, ρ = 1.3 kg/m3, 
ρs = 2650 kg/m3, and Cd = 0.475. Assume that the sphere has 
the initial conditions: y(0) = −100 m and υ(0) = –45 m/s.

(c) Develop a plot of your results (i.e., y and υ versus t) and use it 
to graphically estimate when the sphere would hit the ground.

(d) Compute the value for the bulk second-order drag coefficient 
cd′ (kg/m). Note that, as described in Prob. 1.3, the bulk second-
order drag coefficient is the term in the final differential equa-
tion for velocity that multiplies the term υ ∣υ∣.

1.21 As depicted in Fig. P1.21, a spherical particle settling through a 
quiescent fluid is subject to three forces: the downward force of gravity 
(FG), and the upward forces of buoyancy (FB) and drag (FD). Both the 
gravity and buoyancy forces can be computed with Newton’s second 
law, with the latter equal to the weight of the displaced fluid. For lami-
nar flow, the drag force can be computed with Stokes’s law,

FD = 3πμdυ

where μ = the dynamic viscosity of the fluid (N s/m2), d = the 
particle diameter (m), and υ = the particle’s settling velocity 
(m/s). Note that the mass of the particle can be expressed as the 
product of the particle’s volume and density ρs (kg/m3) and the 
mass of the displaced fluid can be computed as the product of the 
particle’s volume and the fluid’s density ρ (kg/m3). The volume of 
a sphere is πd3/6. In addition, laminar flow corresponds to the case 
where the dimensionless Reynolds number, Re, is less than 1, 
where Re = ρdυ/μ.
(a) Use a force balance for the particle to develop the differential 

equation for dυ/dt as a function of d, ρ, ρs, and μ.
(b) At steady-state, use this equation to solve for the particle’s ter-

minal velocity.
(c) Employ the result of (b) to compute the particle’s terminal 

 velocity in m/s for a spherical silt particle settling in water:  
d = 8 μm, ρ = 1 g/cm3, ρs = 2.7 g/cm3, and μ = 0.014 g/(cm s).

(d) Check whether flow is laminar.
(e) Use Euler’s method to compute the velocity from t = 0 to 2−15 s 

with Δt = 2−18 s given the provided parameters along with the 
initial condition: υ (0) = 0.

FG

FD FB

d

FIGURE P1.21
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1.26 Figure P1.26 shows the forces exerted on a hot air balloon 
system.

FD

FP

FG

FB

db

FIGURE P1.26
Forces on a hot air balloon: FB = buoyancy, FG = weight of 
gas, FP = weight of payload (including the balloon envelope), 
and FD = drag. Note that the direction of the drag is down-
ward when the balloon is rising.

Formulate the drag force as 

FD =
1
2

 ρaυ
2ACd

where ρa = air density (kg/m3), υ = velocity (m/s), A = projected 
frontal area (m2), and Cd = the dimensionless drag coefficient 
(≅ 0.47 for a sphere). Note also that the total mass of the balloon 
consists of two components:

m = mG + mP

where mG = the mass of the gas inside the expanded balloon (kg), 
and mP = the mass of the payload (basket, passengers, and the un-
expanded balloon = 265 kg). Assume that the ideal gas law holds 
(P = ρRT), that the balloon is a perfect sphere with a diameter of 

in terms of height of the cap above the water line (h), the seawater’s 
density (ρf), the ball’s density (ρs), and the ball’s radius (r).

h

r

FIGURE P1.24

1.25 Beyond fluids, Archimedes’ principle has proven useful in 
geology when applied to solids on the earth’s crust. Figure P1.25 
depicts one such case where a lighter conical granite mountain 
“floats on” a denser basalt layer at the earth’s surface. Note that the 
part of the cone below the surface is formally referred to as a frus-
tum. Develop a steady-state force balance for this case in terms of 
the following parameters: basalt’s density (ρb), granite’s density 
(ρg), the cone’s bottom radius (r), and the height above (h1) and 
below (h2) the earth’s surface.

H

Basalt

Granite

h1

h2

r1

r2

FIGURE P1.25
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The normal (ambient) air density, ρ = 1.2 kg/m3

(a) Use a force balance to develop the differential equation for 
dυ/dt as a function of the model’s fundamental parameters.

(b) At steady-state, calculate the particle’s terminal velocity.
(c) Use Euler’s method and Excel to compute the velocity from 

t = 0 to 60 s with Δt = 2 s given the previous parameters 
along with the initial condition: υ(0) = 0. Develop a plot of 
your results.

17.3 m, and that the heated air inside the envelope is at roughly the 
same pressure as the outside air.

Other necessary parameters are:
Normal atmospheric pressure, P = 101,300 Pa
The gas constant for dry air, R = 287 J/(kg K)
The air inside the balloon is heated to an average temperature,  

T = 100°C
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C H A P T E R

2
Programming and Software

In Chap. 1, we used a net force to develop a mathematical model to predict the fall 
velocity of a parachutist. This model took the form of a differential equation,

dυ

dt
= g −

c

m
 υ

We also learned that a solution to this equation could be obtained by a simple numerical 
approach called Euler’s method,

υi+1 = υi +
dυi

dt
Δt

 Given an initial condition, this equation can be implemented repeatedly to compute 
the velocity as a function of time. However, to obtain good accuracy, many small steps 
must be taken. This would be extremely laborious and time-consuming to implement by 
hand. However, with the aid of the computer, such calculations can be performed easily.
 So our next task is to figure out how to do this. The present chapter will introduce 
you to how the computer is used as a tool to obtain such solutions.

 2.1 PACKAGES AND PROGRAMMING
Today, there are two types of software users. On one hand, there are those who take what 
they are given. That is, they limit themselves to the capabilities found in the software’s 
standard mode of operation. For example, it is a straightforward proposition to solve a 
system of linear equations or to generate a plot of x-y values with either Excel or MATLAB 
software. Because this usually involves a minimum of effort, most users tend to adopt this 
“vanilla” mode of operation. In addition, since the designers of these packages anticipate 
most typical user needs, many meaningful problems can be solved in this way.
 But what happens when problems arise that are beyond the standard capability of 
the tool? Unfortunately, throwing up your hands and saying, “Sorry boss, no can do!” is 
not acceptable in most engineering circles. In such cases, you have two alternatives.
 First, you can look for a different package and see if it is capable of solving the 
problem. That is one of the reasons we have chosen to cover both Excel and MATLAB 
in this book. As you will see, neither one is all encompassing and each has different 
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strengths. By being conversant with both, you will greatly increase the range of problems 
you can address.
 Second, you can grow and become a “power user” by learning to write Excel/VBA1 
macros or MATLAB M-files. And what are these? They are nothing more than computer 
programs that allow you to extend the capabilities of these tools. Because engineers should 
never be content to be tool limited, they will do whatever is necessary to solve their prob-
lems. A powerful way to do this is to learn to write programs in the Excel and MATLAB 
environments. Furthermore, the programming skills required for macros and M-files are the 
same as those needed to effectively develop programs in languages like Fortran 90 or C.
 The major goal of the present chapter is to show you how this can be done. However, 
we do assume that you have been exposed to the rudiments of computer programming. 
Therefore, our emphasis here is on facets of programming that directly affect its use in 
engineering problem solving.

2.1.1 Computer Programs
Computer programs are merely a set of instructions that direct the computer to perform 
a certain task. Since many individuals write programs for a broad range of applications, 
most high-level computer languages, like Fortran 90 and C, have rich capabilities. 
 Although some engineers might need to tap the full range of these capabilities, most 
merely require the ability to perform engineering-oriented numerical calculations.
 Looked at from this perspective, we can narrow down the complexity to a few 
 programming topics. These are

∙ Simple information representation (constants, variables, and type declarations).
∙ Advanced information representation (data structure, arrays, and records).
∙ Mathematical formulas (assignment, priority rules, and intrinsic functions).
∙ Input/output.
∙ Logical representation (sequence, selection, and repetition).
∙ Modular programming (functions and subroutines).

 Because we assume that you have had some prior exposure to programming, we will 
not spend time on the first four of these areas. At best, we offer them as a checklist that 
covers what you will need to know to implement the programs that follow.
 However, we will devote some time to the last two topics. We emphasize logical 
representation because it is the single area that most influences an algorithm’s coherence 
and understandability. We include modular programming because it also contributes 
greatly to a program’s organization. In addition, modules provide a means to archive 
useful algorithms in a convenient format for subsequent applications.

 2.2 STRUCTURED PROGRAMMING
In the early days of computers, programmers usually did not pay much attention to whether 
their programs were clear and easy to understand. Today, it is recognized that there are 
many benefits to writing organized, well-structured code. Aside from the obvious benefit 

1VBA is the acronym for Visual Basic for Applications.
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of making software much easier to share, it also helps generate much more efficient pro-
gram development. That is, well-structured algorithms are invariably easier to debug and 
test, resulting in programs that take a shorter time to develop, test, and update.
 Computer scientists have systematically studied the factors and procedures needed to 
develop high-quality software of this kind. In essence, structured programming is a set 
of rules that prescribe good style habits for the programmer. Although structured pro-
gramming is flexible enough to allow considerable creativity and personal expression, its 
rules impose enough constraints to render the resulting codes far superior to unstructured 
versions. In particular, the finished product is more elegant and easier to understand.
 A key idea behind structured programming is that any numerical algorithm can be 
composed using the three fundamental control structures: sequence, selection, and rep-
etition. By limiting ourselves to these structures, the resulting computer code will be 
clearer and easier to follow.
 In the following paragraphs, we will describe each of these structures. To keep this 
description generic, we will employ flowcharts and pseudocode. A flowchart is a visual 
or graphical representation of an algorithm. The flowchart employs a series of blocks and 
arrows, each of which represents a particular operation or step in the algorithm (Fig. 2.1). 
The arrows represent the sequence in which the operations are implemented.
 Not everyone involved with computer programming agrees that flowcharting is a 
productive endeavor. In fact, some experienced programmers do not advocate flow-
charts. However, we feel that there are three good reasons for studying them. First, they 
are still used for expressing and communicating algorithms. Second, even if they are 
not employed routinely, there will be times when they will prove useful in planning, 
unraveling, or communicating the logic of your own or someone else’s program. Finally, 
and most important for our purposes, they are excellent pedagogical tools. From a 

FIGURE 2.1
Symbols used in flowcharts.

SYMBOL NAME

Terminal

Flowlines

Process

Input/output

Decision

Junction

O	-page
connector

Count-controlled
loop

FUNCTION

Represents the beginning or end of a program.

Represent the flow of logic. The humps on the horizontal arrow indicate that
it passes over and does not connect with the vertical flowlines.

Represents calculations or data manipulations.

Represents inputs or outputs of data and information.

Represents a comparison, question, or decision that determines alternative
paths to be followed.

Represents the confluence of flowlines.

Represents a break that is continued on another page.

Used for loops that repeat a prespecified number of iterations.
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 teaching perspective, they are ideal vehicles for visualizing some of the fundamental 
control structures employed in computer programming.
 An alternative approach to express an algorithm that bridges the gap between flow-
charts and computer code is called pseudocode. This technique uses code-like statements 
in place of the graphical symbols of the flowchart. We have adopted some style conventions 
for the pseudocode in this book. Keywords such as IF, DO, INPUT, etc., are capitalized, 
whereas the conditions, processing steps, and tasks are in lowercase. Additionally, the 
processing steps are indented. Thus the keywords form a “sandwich” around the steps 
to visually define the extent of each control structure.
 One advantage of pseudocode is that it is easier to develop a program with it than 
with a flowchart. The pseudocode is also easier to modify and share with others.  However, 
because of their graphic form, flowcharts sometimes are better suited for visualizing 
complex algorithms. In the present text, we will use flowcharts for pedagogical purposes. 
Pseudocode will be our principal vehicle for communicating algorithms related to 
 numerical methods.

2.2.1 Logical Representation
Sequence. The sequence structure expresses the trivial idea that unless you direct it 
otherwise, the computer code is to be implemented one instruction at a time. As in Fig. 2.2, 
the structure can be expressed generically as a flowchart or as pseudocode.

Selection. In contrast to the step-by-step sequence structure, selection provides a 
means to split the program’s flow into branches based on the outcome of a logical con-
dition. Figure 2.3 shows the two most fundamental ways for doing this.
 The single-alternative decision, or IF/THEN structure (Fig. 2.3a), allows for a detour 
in the program flow if a logical condition is true. If it is false, nothing happens and the 
program moves directly to the next statement following the ENDIF. The double-alternative 
decision, or IF/THEN/ELSE structure (Fig. 2.3b), behaves in the same manner for a true 
condition. However, if the condition is false, the program implements the code between 
the ELSE and the ENDIF.

FIGURE 2.2
(a) Flowchart and  
(b) pseudocode for the  
sequence structure.

Instruction1

Instruction2

Instruction3

Instruction4

Instruction1
Instruction2
Instruction3
Instruction4

(a) Flowchart (b) Pseudocode
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 Although the IF/THEN and the IF/THEN/ELSE constructs are sufficient to construct 
any numerical algorithm, two other variants are commonly used. Suppose that the ELSE 
clause of an IF/THEN/ELSE contains another IF/THEN. For such cases, the ELSE and 
the IF can be combined in the IF/THEN/ELSEIF structure shown in Fig. 2.4a.
 Notice how in Fig. 2.4a there is a chain, or “cascade,” of decisions. The first one is 
the IF statement, and each successive decision is an ELSEIF statement. Going down the 
chain, the first condition encountered that tests true will cause a branch to its correspond-
ing code block followed by an exit of the structure. At the end of the chain of conditions, 
if all the conditions have tested false, an optional ELSE block can be included.
 The CASE structure is a variant on this type of decision making (Fig. 2.4b). Rather 
than testing individual conditions, the branching is based on the value of a single test 
expression. Depending on its value, different blocks of code will be implemented. In 
addition, an optional block can be implemented if the expression takes on none of the 
prescribed values (CASE ELSE).

Repetition. Repetition provides a means to implement instructions repeatedly. The 
resulting constructs, called loops, come in two “flavors” distinguished by how they are 
terminated.

FIGURE 2.3
Flowchart and pseudocode for 
simple selection constructs.  
(a) Single-alternative selection 
(IF/THEN) and (b) double- 
alternative selection  
(IF/THEN/ELSE).

(a) Single-alternative structure (IF/THEN)

(b) Double-alternative structure (IF/THEN/ELSE)

Flowchart Pseudocode

IF condition THEN
 True block
ENDIF

True
Condition

?

True Block

IF condition THEN
 True block
ELSE
 False block
ENDIF

TrueFalse
Condition

?

True BlockFalse Block
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 The first and most fundamental type is called a decision loop because it terminates 
based on the result of a logical condition. Figure 2.5 shows the most generic type of 
decision loop, the DOEXIT construct, also called a break loop. This structure repeats 
until a logical condition is true.
 It is not necessary to have two blocks in this structure. If the first block is not 
included, the structure is sometimes called a pretest loop because the logical test is 
performed before anything occurs. Alternatively, if the second block is omitted, it is 

(a) Multiple-alternative structure (IF/THEN/ELSEIF)

(b) CASE structure (SELECT or SWITCH)

Flowchart Pseudocode

SELECT CASE Test Expression
 CASE Value1
  Block1
 CASE Value2
  Block2
 CASE Value3
      Block3
 CASE ELSE
      Block4
END SELECT

Value1 Value2 Value3 Else

Test
expression

Block1 Block2 Block3 Block4

IF condition1  THEN
 Block1
ELSEIF condition2
 Block2
ELSEIF condition3
 Block3
ELSE
 Block4
ENDIF

TrueFalse

True

True

Condition1

?

False

Condition3

?

False

Condition2

?
Block1

Block2

Block3Block4

FIGURE 2.4
Flowchart and pseudocode for supplementary selection or branching constructs. (a) Multiple-
alternative selection (IF/THEN/ELSEIF) and (b) CASE construct.
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called a posttest loop. Because both blocks are included, the general case in Fig. 2.5 is 
sometimes called a midtest loop.
 It should be noted that the DOEXIT loop was introduced in Fortran 90 in an effort 
to simplify decision loops. This control construct is a standard part of the Excel/VBA 
macro language but is not standard in C or MATLAB, which use the so-called WHILE 
structure. Because we believe that the DOEXIT is superior, we have adopted it as our 
decision loop structure throughout this book. In order to ensure that our algorithms are 
directly implemented in both MATLAB and Excel, we will show how the break loop 
can be simulated with the WHILE structure later in this chapter (see Sec. 2.5).
 The break loop in Fig. 2.5 is called a logical loop because it terminates on a logical 
condition. In contrast, a count-controlled or DOFOR loop (Fig. 2.6) performs a specified 
number of repetitions, or iterations.
 The count-controlled loop works as follows. The index (represented as i in Fig. 2.6) 
is a variable that is set at an initial value of start. The program then tests whether the 
index is less than or equal to the final value, finish. If so, it executes the body of the 

FIGURE 2.5
The DOEXIT or break loop.

False

True
Condition

?

DO
 Block1
 IF condition EXIT
 Block2
ENDDO

Flowchart Pseudocode

Block1

Block2

FIGURE 2.6
The count-controlled or 
 DOFOR construct.

i = startTrue

False

i > finish
? i = i + step

DOFOR i = start, finish, step
 Block
ENDDO

Flowchart Pseudocode

Block
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loop, and then cycles back to the DO statement. Every time the ENDDO statement is 
encountered, the index is automatically increased by the step. Thus the index acts as a 
counter. Then, when the index is greater than the final value (finish), the computer au-
tomatically exits the loop and transfers control to the line following the ENDDO state-
ment. Note that for nearly all computer languages, including those of Excel and MATLAB, 
if the step is omitted, the computer assumes it is equal to 1.2
 The numerical algorithms outlined in the following pages will be developed exclu-
sively from the structures outlined in Figs. 2.2 through 2.6. The following example 
 illustrates the basic approach by developing an algorithm to determine the roots of a 
quadratic equation.

 EXAMPLE 2.1 Algorithm for Roots of a Quadratic
Problem Statement. The roots of a quadratic equation,

ax2 + bx + c = 0

can be determined with the quadratic formula,

x1

x2
=

−b ± √∣b2 − 4ac∣
2a

 (E2.1.1)

Develop an algorithm that does the following:

Step 1: Prompts the user for the coefficients, a, b, and c.
Step 2:  Implements the quadratic formula, guarding against all eventualities (for example,  

avoiding division by zero and allowing for complex roots).
Step 3: Displays the solution, that is, the values for x.
Step 4: Allows the user the option to return to step 1 and repeat the process.

Solution. We will use a top-down approach to develop our algorithm. That is, we will 
successively refine the algorithm rather than trying to work out all the details the first 
time around.
 To do this, let us assume for the present that the quadratic formula is foolproof 
regardless of the values of the coefficients (obviously not true, but good enough for now). 
A structured algorithm to implement the scheme is

DO
  INPUT a, b, c
  r1 = (−b + SQRT(b2 − 4ac))∕(2a)
  r2 = (−b − SQRT(b2 − 4ac))∕(2a)
  DISPLAY r1, r2
  DISPLAY 'Try again? Answer yes or no'
  INPUT response
  IF response = 'no' EXIT
ENDDO

2A negative step can be used. In such cases, the loop terminates when the index is less than the final value.
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 A DOEXIT construct is used to implement the quadratic formula repeatedly as long as 
the condition is false. The condition depends on the value of the character variable response. 
If response is equal to ‘yes’ the calculation is implemented. If not, that is, response = ‘no’ 
the loop terminates. Thus, the user controls termination by inputting a value for response.
 Now although the above algorithm works for certain cases, it is not foolproof. Depend-
ing on the values of the coefficients, the algorithm might not work. Here is what can happen:

∙ If a = 0, an immediate problem arises because of division by zero. In fact, close 
inspection of Eq. (E2.1.1) indicates that two different cases can arise. That is,

If b ≠ 0, the equation reduces to a linear equation with one real root, −c∕b.
If b = 0, then no solution exists. That is, the problem is trivial.

∙ If a ≠ 0, two possible cases occur depending on the value of the discriminant,  
d = b2 − 4ac. That is,

If d ≥ 0, two real roots occur.
If d < 0, two complex roots occur.

 Notice how we have used indentation to highlight the decisional structure that underlies 
the mathematics. This structure then readily translates to a set of coupled IF/THEN/ELSE 
structures that can be inserted in place of the shaded statements in the previous code to give 
the final algorithm:

DO
  INPUT a, b, c
  r1 = 0: r2 = 0: i1 = 0: i2 = 0
  IF a = 0 THEN
    IF b ≠ 0 THEN
      r1 = −c∕b
    ELSE
      DISPLAY "Trivial solution"
    ENDIF
  ELSE
    discr = b2 − 4 * a * c
    IF discr ≥ 0 THEN
      r1 = (−b + Sqrt(discr))∕(2 * a)
      r2 = (−b − Sqrt(discr))∕(2 * a)
    ELSE
      r1 = −b∕(2 * a)
      r2 = r1
      i1 = Sqrt(Abs(discr))∕(2 * a)
      i2 = −il
    ENDIF
  ENDIF
  DISPLAY r1, r2, i1, i2
  DISPLAY 'Try again? Answer yes or no'
  INPUT response
  IF response = 'no' EXIT
  ENDDO
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 The approach in the foregoing example can be employed to develop an algorithm 
for the parachutist problem. Recall that, given an initial condition for time and velocity, 
the problem involved iteratively solving the formula

υi+1 = υi +
dυi

dt
Δt (2.1)

Now also remember that if we desired to attain good accuracy, we would need to employ 
small steps. Therefore, we would probably want to apply the formula repeatedly from 
the initial time to the final time. Consequently, an algorithm to solve the problem would 
be based on a loop.
 For example, suppose that we started the computation at t = 0 and wanted to predict 
the velocity at t = 4 s using a time step of Δt = 0.5 s. We would, therefore, need to 
apply Eq. (2.1) eight times, that is,

n =
4

0.5
= 8

where n = the number of iterations of the loop. Because this result is exact, that is, the 
ratio is an integer, we can use a count-controlled loop as the basis for the algorithm. 
Here is an example of the pseudocode:

g = 9.81
INPUT cd, m
INPUT ti, vi, tf, dt
t = ti
v = vi
n = (tf − ti) ∕ dt
DOFOR i = 1 TO n
  dvdt = g − (cd ∕ m) * v
  v = v + dvdt * dt
  t = t + dt
ENDDO
DISPLAY v

 Although this scheme is simple to program, it is not foolproof. In particular, it will 
work only if the computation interval is evenly divisible by the time step.3 In order to 
cover such cases, a decision loop can be substituted in place of the shaded area in the 
previous pseudocode. The final result is

g = 9.81
INPUT cd, m
INPUT ti, vi, tf, dt
t = ti
v = vi

3This problem is compounded by the fact that computers use base-2 number representation for their internal 
math. Consequently, some apparently evenly divisible numbers do not yield integers when the division is 
implemented on a computer. We will cover this in Chap. 3.
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h = dt
DO
  IF t + dt > tf THEN
    h = tf − t
  ENDIF
  dvdt = g − (cd ∕ m) * v
  v = v + dvdt * h
  t = t + h
  IF t ≥ tf EXIT
ENDDO
DISPLAY v

 As soon as we enter the loop, we use an IF/THEN structure to test whether adding 
t + dt will take us beyond the end of the interval. If it does not, which would usually 
be the case at first, we do nothing. If it does, we would need to shorten the interval by 
setting the variable step h to t f − t. By doing this, we guarantee that the next step falls 
exactly on t f. After we implement this final step, the loop will terminate because the 
condition t ≥ t f will test true.
 Notice that before entering the loop, we assign the value of the time step, dt, to 
another variable, h. We create this dummy variable so that our routine does not change 
the given value of dt if and when we shorten the time step. We do this in anticipation 
that we might need to use the original value of dt somewhere else in the event that this 
code is integrated within a larger program.
 It should be noted that the algorithm is still not foolproof. For example, the user 
could have mistakenly entered a step size greater than the calculation interval, for 
 example, t f − ti = 5 and dt = 20. Thus, you might want to include error traps in your 
code to catch such errors and to then allow the user to correct the mistake.

 2.3 MODULAR PROGRAMMING
Imagine how difficult it would be to study a textbook that had no chapters, sections, or 
paragraphs. Breaking complicated tasks or subjects into more manageable parts is one 
way to make them easier to handle. In the same spirit, computer programs can be divided 
into small subprograms, or modules, that can be developed and tested separately. This 
approach is called modular programming.
 The most important attribute of modules is that they be as independent and self-
contained as possible. In addition, they are typically designed to perform a specific, 
well-defined function and have one entry and one exit point. As such, they are usually 
short (generally 50 to 100 instructions in length) and highly focused.
 In standard high-level languages such as Fortran 90 or C, the primary programming 
element used to represent each module is the procedure. A procedure is a series of com-
puter instructions that together perform a given task. Two types of procedures are com-
monly employed: functions and subroutines. The former usually returns a single result, 
whereas the latter returns several.
 In addition, it should be mentioned that much of the programming related to software 
packages like Excel and MATLAB involves the development of subprograms. Hence, 
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Excel macros and MATLAB functions are designed to receive some information, perform 
a calculation, and return results. Thus, modular thinking is also consistent with how 
programming is implemented in package environments.
 Modular programming has a number of advantages. The use of small, self-contained 
units makes the underlying logic easier to devise and to understand for both the developer 
and the user. Development is facilitated because each module can be perfected in isolation. 
In fact, for large projects, different programmers can work on individual parts. Modular 
design also increases the ease with which a program can be debugged and tested because 
errors can be more easily isolated. Finally, program maintenance and modification are 
 facilitated. This is primarily due to the fact that new modules can be developed to perform 
additional tasks and then easily incorporated into the already coherent and organized scheme.
 While all these attributes are reason enough to use modules, the most important 
reason related to numerical engineering problem solving is that they allow you to main-
tain your own library of useful modules for later use in other programs. This will be the 
philosophy of this book: All the algorithms will be presented as modules.
 This approach is illustrated in Fig. 2.7, which shows a function developed to imple-
ment Euler’s method. Notice that this function application and the previous versions 
differ in how they handle input/output. In the former versions, input and output directly 
come from (via INPUT statements) and to (via DISPLAY statements) the user. In the 
function, the inputs are passed into the FUNCTION via its argument list

Function Euler(dt, ti, tf, yi)

and the output is returned via the assignment statement

y = Euler(dt, ti, tf, yi)

 In addition, recognize how generic the routine has become. There are no references 
to the specifics of the parachutist problem. For example, rather than calling the dependent 

FUNCTION Euler(dt, ti, tf, yi)
t = ti
y = yi
h = dt
DO
  IF t + dt > tf THEN
    h = tf − t
  ENDIF
  dydt = dy(t, y)
  y = y + dydt * h
  t = t + h
  IF t ≥ tf EXIT
ENDDO
Euler = y
END Euler

FIGURE 2.7
Pseudocode for a function 
that solves a differential equa-
tion using Euler’s method.
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variable υ for velocity, the more generic label, y, is used within the function. Further, 
notice that the derivative is not computed within the function by an explicit equation. 
Rather, another function, dy, must be invoked to compute it. This acknowledges the fact 
that we might want to use this function for many different problems beyond solving for 
the parachutist’s velocity.

 2.4 EXCEL
Excel is the spreadsheet produced by Microsoft, Inc. Spreadsheets are a special type of 
mathematical software that allow the user to enter and perform calculations on rows and 
columns of data. As such, they are a computerized version of a large accounting work-
sheet on which large interconnected calculations can be implemented and displayed. 
Because the entire calculation is updated when any value on the sheet is changed, spread-
sheets are ideal for “what if?” sorts of analysis.
 Excel has some built-in numerical capabilities, including equation solving, curve 
fitting, and optimization. It also includes VBA as a macro language that can be used to 
implement numerical calculations. Finally, it has several visualization tools, such as 
graphs and three-dimensional surface plots, that serve as valuable adjuncts for numerical 
analysis. In the present section, we will show how these capabilities can be used to solve 
the parachutist problem.
 To do this, let us first set up a simple spreadsheet. As shown below, the first step 
involves entering labels and numbers into the spreadsheet cells.

 Before we write a macro program to calculate the numerical value, we can make 
our subsequent work easier by attaching names to the parameter values. To do this, select 
cells A3:B5 (the easiest way to do this is by moving the mouse to A3, holding down the 
left mouse button and dragging down to B5). Next, go to the Formulas tab and in the 
Defined Names group, click Create from Selection. This will open the Create Names 
from Selection dialog box, where the Left column box should be automatically selected. 
Then click OK to create the names. To verify that this has worked properly, select cell B3 
and check that the label “m” appears in the name box (located on the left side of the 
sheet just below the menu bars).
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 Move to cell C8 and enter the analytical solution (Eq. 1.9),

=9.81*m∕cd*(1−exp(−cd∕m*A8))

When this formula is entered, the value 0 should appear in cell C8. Then copy the for-
mula down to cell C9 to give a value of 16.405 m/s.
 All the above is typical of the standard use of Excel. For example, at this point you 
could change parameter values and see how the analytical solution changes.
 Now, we will illustrate how VBA macros can be used to extend the standard capa-
bilities. Figure 2.8 lists pseudocode alongside Excel/VBA code for all the control struc-
tures described in Sec. 2.2 (Figs. 2.3 through 2.6). Notice how, although the details 
differ, the structure of the pseudocode and the VBA code are identical.
 We can now use some of the constructs from Fig. 2.8 to write a macro function to 
numerically compute velocity. Open VBA by selecting4

Tools Macro Visual Basic Editor

Once inside the Visual Basic Editor (VBE), select

Insert Module

and a new code window will open up. The following VBA function can be developed 
directly from the pseudocode in Fig. 2.7. Type it into the code window.

Option Explicit

Function Euler(dt, ti, tf, yi, m, cd)

Dim h As Double, t As Double, y As Double, dydt As Double
t = ti
y = yi
h = dt
Do
  If t + dt > tf Then
    h = tf − t
  End If
  dydt = dy(t, y, m, cd)
  y = y + dydt * h
  t = t + h
  If t >= tf Then Exit Do
Loop
Euler = y
End Function

 Compare this macro with the pseudocode from Fig. 2.7 and recognize how similar 
they are. Also, see how we have expanded the function’s argument list to include the 
necessary parameters for the parachutist velocity model. The resulting velocity, υ, is then 
passed back to the spreadsheet via the function name.
4The hot key combination Alt-F11 is even quicker!
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(a) Pseudocode

IF/THEN:
IF condition THEN
  True block
ENDIF

IF/THEN/ELSE:
IF condition THEN
  True block
ELSE
  False block
ENDIF

IF/THEN/ELSEIF:
IF condition1 THEN
  Block1
ELSEIF condition2
  Block2
ELSEIF condition3
  Block3
ELSE
  Block4
ENDIF

CASE:
SELECT CASE Test Expression
  CASE Value1
    Block1
  CASE Value2
    Block2
  CASE Value3
    Block3
  CASE ELSE
    Block4
END SELECT

DOEXIT:
DO
  Block1
  IF condition EXIT
  Block2
ENDDO

COUNT-CONTROLLED LOOP:
DOFOR i = start, finish, step
  Block
ENDDO

(b) Excel/VBA

If b <> 0 Then
  r1 = −c ∕ b
End If

If a < 0 Then
  b = Sqr(Abs(a))
Else
  b = Sqr(a)
End If

If class = 1 Then
  x = x + 8
ElseIf class < 1 Then
  x = x − 8
ElseIf class < 10 Then
  x = x − 32
Else
  x = x − 64
End If

Select Case a + b
  Case Is < −50
    x = −5
  Case Is < 0
    x = −5 − (a + b) ∕ 10
  Case Is < 50
    x = (a + b) ∕ 10
  Case Else
    x = 5
End Select

Do
  i = i + 1
  If i >= 10 Then Exit Do
  j = i*x
Loop

For i = 1 To 10 Step 2
  x = x + i
Next i

FIGURE 2.8
The fundamental control 
 structures in (a) pseudocode 
and (b) Excel/VBA.
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 Also notice how we have included another function to compute the derivative. This 
can be entered in the same module by typing it directly below the Euler function,

Function dy(t, v, m, cd)
Const g As Double = 9.81
dy = g − (cd ∕ m) * v
End Function

The final step is to return to the spreadsheet and invoke the function by entering the 
following formula in cell B9

=Euler(dt,A8,A9,B8,m,cd)

The result of the numerical integration, 16.531, will appear in cell B9.
 You should appreciate what has happened here. When you enter the function into 
the spreadsheet cell, the parameters are passed into the VBA program where the calcula-
tion is performed and the result is then passed back and displayed in the cell. In effect, 
the VBA macro language allows you to use Excel as your input/output mechanism. All 
sorts of benefits arise from this fact.
 For example, now that you have set up the calculation, you can play with it. Suppose 
that the jumper was much heavier, say, m = 100 kg (about 220 lb). Enter 100 into cell B3 
and the spreadsheet will update immediately to show a value of 17.438 in cell B9. Change 
the mass back to 68.1 kg and the previous result, 16.531, automatically reappears in cell B9.
 Now let us take the process one step further by filling in some additional numbers for 
the time. Enter the numbers 4, 6, . . . , 16 in cells A10 through A16. Then copy the formu-
las from cells B9:C9 down to rows 10 through 16. Notice how the VBA program calculates 
the numerical result correctly for each new row. (To verify this, change dt to 2 and compare 
with the results previously computed by hand in Example 1.2.) An additional embellishment 
would be to develop an x-y plot of the results using the Excel Chart Wizard.
 The final spreadsheet is shown below. We now have created a pretty nice problem-
solving tool. You can perform sensitivity analyses by changing the values for each of 

 2.4 EXCEL 43
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the parameters. As each new value is entered, the computation and the graph will be 
automatically updated. It is this interactive nature that makes Excel so powerful. How-
ever, recognize that the ability to solve this problem hinges on being able to write the 
macro with VBA.
 It is the combination of the Excel environment with the VBA programming language 
that truly opens up a world of possibilities for engineering problem solving. In the com-
ing chapters, we will illustrate how this is accomplished.

 2.5 MATLAB
MATLAB is the flagship software product of The MathWorks, Inc., which was cofounded 
by the numerical analysts Cleve Moler and John N. Little. As the name implies, MATLAB 
was originally developed as a matrix laboratory. To this day, the major element of MAT-
LAB is still the matrix. Mathematical manipulations of matrices are very conveniently 
implemented in an easy-to-use, interactive environment. To these matrix manipulations, 
MATLAB has added a variety of numerical functions, symbolic computations, and visu-
alization tools. As a consequence, the present version represents a fairly comprehensive 
technical computing environment.
 MATLAB has a variety of functions and operators that allow convenient implemen-
tation of many of the numerical methods developed in this book. These will be described 
in detail in the individual chapters that follow. In addition, programs can be written as 
so-called M-files that can be used to implement numerical calculations. Let us explore 
how this is done.
 First, you should recognize that normal MATLAB use is closely related to program-
ming. For example, suppose that we wanted to determine the analytical solution to the 
parachutist problem. This could be done with the following series of MATLAB commands

>> g=9.81;
>> m=68.1;
>> cd=12.5;
>> tf=2;
>> v=g*m∕cd*(1−exp(−cd∕m*tf))

with the result being displayed as

v =
    16.4217

Thus, the sequence of commands is just like the sequence of instructions in a typical 
programming language.
 Now what if you want to deviate from the sequential structure. Although there are 
some neat ways to inject some nonsequential capabilities in the standard command mode, 
the inclusion of decisions and loops is best done by creating a MATLAB document called 
an M-file. To do this, make the menu selection

File New Script
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and a new window will open with a heading “MATLAB Editor/Debugger.” In this 
 window, you can type and edit MATLAB programs. Type the following code there:

g=9.81;
m=68.1;
cd=12.5;
tf=2;
v=g*m∕cd*(1−exp(−cd∕m*tf))

 Notice how the commands are written in exactly the way they would be written in 
the front end of MATLAB. Save the program with the name: analpara. MATLAB will 
automatically attach the extension .m to denote it as an M-file: analpara.m.
 To run the program, you must go back to the command mode. The most direct way 
to do this is to click on the “MATLAB Command Window” button on the task bar (which 
is usually at the bottom of the screen).
 The program can now be run by typing the name of the M-file, analpara, which 
should look like

>> analpara

If you have done everything correctly, MATLAB should respond with the correct answer:

v =
    16.4217

 Now one problem with the foregoing is that it is set up to compute one case only. You 
can make it more flexible by having the user input some of the variables. For example, 
suppose that you wanted to assess the impact of mass on the velocity at 2 s. The M-file 
could be rewritten as the following to accomplish this

g=9.81;
m=input('mass (kg): ');
cd=12.5;
tf=2;
v=g*m∕cd*(1−exp(−cd∕m*tf))

Save this as analpara2.m. If you typed analpara2 while being in command mode, the 
prompt would show

mass (kg):

The user could then enter a value like 100, and the result will be displayed as

v =
    17.3597

 Now it should be pretty clear how we can program a numerical solution with an 
M-file. In order to do this, we must first understand how MATLAB handles logical and 
looping structures. Figure 2.9 lists pseudocode alongside MATLAB code for all the 
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(a) Pseudocode

IF/THEN:
IF condition THEN
  True block
ENDIF

IF/THEN/ELSE:
IF condition THEN
  True block
ELSE
  False block
ENDIF

IF/THEN/ELSEIF:
IF condition1 THEN
  Block1
ELSEIF condition2
  Block2
ELSEIF condition3
  Block3
ELSE
  Block4
ENDIF

CASE:
SELECT CASE Test Expression
  CASE Value1
    Block1
  CASE Value2
    Block2
  CASE Value3
    Block3
  CASE ELSE
    Block4
END SELECT

DOEXIT:
DO
  Block1
  IF condition EXIT
  Block2
ENDDO

COUNT-CONTROLLED LOOP:
DOFOR i = start, finish, step
Block
ENDDO

(b) MATLAB

if b ~= 0
  r1 = −c ∕ b;
end

if a < 0
  b = sqrt(abs(a));
else
  b = sqrt(a);
end

if class == 1
  x = x + 8;
elseif class < 1
  x = x − 8;
elseif class < 10
  x = x − 32;
else
  x = x − 64;
end

switch a + b
  case 1
    x = −25;
  case 2
    x = −5 − (a + b) ∕ 10;
  case 3
    x = (a + b) ∕ 10;
  otherwise
    x = 5;
end

while (1)
  i = i + 1;
  if i >= 10, break, end
  j = i*x;
end

for i = 1:2:10
  x = x + i;
end

FIGURE 2.9
The fundamental control 
 structures in (a) pseudocode 
and (b) the MATLAB program-
ming language.
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control structures from Sec. 2.2. Although the structures of the pseudocode and the 
MATLAB code are very similar, there are some slight differences that should be noted.
 In particular, look at how we have represented the DOEXIT structure. In place of 
the DO, we use the statement while (1). Because MATLAB interprets the number 1 as 
corresponding to “true,” this statement will repeat infinitely in the same manner as the 
DO statement. The loop is terminated with a break command. This command transfers 
control to the statement following the end statement that terminates the loop.
 Also notice that the parameters of the count-controlled loop are ordered differently. For 
the pseudocode, the loop parameters are specified as start, finish, step. For  
MATLAB, the parameters are ordered as start:step:finish.
 The following MATLAB M-file can now be developed directly from the pseudocode 
in Fig. 2.7. Type it into the MATLAB Editor/Debugger:

g=9.81;
m=input('mass (kg): ');
cd=12.5;
ti=0;
tf=2;
vi=0;
dt=0.1;
t = ti;
v = vi;
h = dt;
while (1)
  if t + dt > tf
    h = tf − t;
  end
  dvdt = g − (cd ∕ m) * v;
   v = v + dvdt * h;
  t = t + h;
  if t >= tf, break, end
end
disp('velocity (m/s):')
disp(v)

Save this file as numpara.m and return to the command mode and run it by entering: 
numpara. The following output should result:

mass (kg): 100

velocity (m/s):
17.4559

 As a final step in this development, let us take the above M-file and convert it into 
a proper function. This can be done in the following M-file based on the pseudocode 
from Fig. 2.7:

function yy = euler(dt,ti,tf,yi,m,cd)
t = ti;
y = yi;
h = dt;

cha32077_ch02_028-056.indd   47 7/13/19   2:56 PM



48 PROGRAMMING AND SOFTWARE

while (1)
  if t + dt > tf
    h = tf − t;
  end
  dydt = dy(t, y, m, cd);
  y = y + dydt * h;
  t = t + h;
  if t >= tf, break, end
end
yy = y;

Save this file as euler.m and then create another M-file to compute the derivative,

function dydt = dy(t, v, m, cd)
g = 9.81;
dydt = g − (cd ∕ m) * v;

Save this file as dy.m and return to the command mode. In order to invoke the function 
and see the result, you can type in the following commands:

>> m=68.1;
>> cd=12.5;
>> ti=0;
>> tf=2.;
>> vi=0;
>> dt=0.1;
>> euler(dt,ti,tf,vi,m,cd)

When the last command is entered, the answer will be displayed as

ans =
16.5478

 It is the combination of the MATLAB environment with the M-file programming 
language that truly opens up a world of possibilities for engineering problem solving. In 
the coming chapters we will illustrate how this is accomplished.

 2.6 MATHCAD
Mathcad attempts to bridge the gap between spreadsheets like Excel and notepads. It was 
originally developed by Allen Razdow of MIT who cofounded Mathsoft, Inc., which 
published the first commercial version in 1986. Today, Mathsoft is part of Parametric 
Technology Corporation (PTC) and Mathcad is in version 15.
 Mathcad is essentially an interactive notepad that allows engineers and scientists to 
perform a number of common mathematical, data-handling, and graphical tasks. Informa-
tion and equations are input to a “whiteboard” design environment that is similar in spirit 
to a page of paper. Unlike a programming tool or spreadsheet, Mathcad’s interface 
 accepts and displays natural mathematical notation using keystrokes or menu palette 
clicks—with no programming required. Because the worksheets contain live calculations, 
a single keystroke that changes an input or equation instantly returns an updated result.
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 Mathcad can perform tasks in either numeric or symbolic mode. In numeric mode, 
Mathcad functions and operators give numerical responses, whereas in symbolic mode results 
are given as general expressions or equations. Maple V, a comprehensive symbolic math 
package, is the basis of the symbolic mode and was incorporated into Mathcad in 1993.
 Mathcad has a variety of functions and operators that allow convenient implementa-
tion of many of the numerical methods developed in this book. These will be described 
in detail in succeeding chapters. In the event that you are unfamiliar with Mathcad, 
 Appendix C also provides a primer on using this powerful software.

 2.7 OTHER LANGUAGES AND LIBRARIES
In Secs. 2.4 and 2.5, we showed how Excel and MATLAB function procedures for 
Euler’s method could be developed from an algorithm expressed as pseudocode. You 
should recognize that similar functions can be written in high-level languages like Fortran 
90 and C++. For example, a Fortran 90 function for Euler’s method is

Function Euler(dt, ti, tf, yi, m, cd)

REAL dt, ti, tf, yi, m, cd
Real h, t, y, dydt

t = ti
y = yi
h = dt
Do
   If (t + dt > tf) Then
     h = tf − t
  End If
  dydt = dy(t, y, m, cd)
  y  =  y + dydt * h
  t  = t + h
  If (t >= tf) Exit
End Do
Euler = y
End Function

 For C, the result would look quite similar to the MATLAB function. The point is 
that once a well-structured algorithm is developed in pseudocode form, it can be readily 
implemented in a variety of programming environments.
 In this book, our approach will be to provide you with well-structured procedures 
written as pseudocode. This collection of algorithms then constitutes a numerical library 
that can be accessed to perform specific numerical tasks in a range of software tools and 
programming languages.
 Beyond your own programs, you should be aware that commercial programming 
libraries contain many useful numerical procedures. For example, the Numerical Recipe 
library includes a large range of algorithms written in Fortran and C.5 These procedures 
are described in both book (for example, Press et al. 2007) and electronic form.
5Numerical Recipe procedures are also available in book and electronic format for Pascal, MS BASIC, and 
MATLAB. Information on all the Numerical Recipe products can be found at http://www.nr.com/.
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2.4 The sine function can be evaluated by the following infinite series:

 cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · ·

Write an algorithm to implement this formula so that it computes 
and prints out the values of cos x as each term in the series is added. 
In other words, compute and print in sequence the values for

 cos x = 1

 cos x = 1 −
x2

2!

 cos x = 1 −
x2

2!
+

x4

4!

up to the order term n of your choosing. For each of the preceding, 
compute and display the percent relative error as

% error =
true − series approximation

true
× 100%

Write the algorithm as (a) a structured flowchart and (b) pseudocode.
2.5 Develop, debug, and document a program for Prob. 2.4 in either a 
high-level language or a macro language of your choice. Employ the 
library function for the cosine in your computer to determine the true 
value. Have the program print out the series approximation and the error 
at each step. As a test case, employ the program to compute sin(1.25) for 
up to and including the term x10/10!. Interpret your results.
2.6 The following algorithm is designed to determine a grade for a 
course that consists of quizzes, homework, and a final exam:

Step 1: Input course number and name.
Step 2:  Input weighting factors for quizzes (WQ), homework (WH), 

and the final exam (WF).
Step 3:  Input quiz grades and determine an average quiz grade (AQ).
Step 4:  Input homework grades and determine an average home-

work grade (AH).
Step 5:  If this course has a final exam grade, continue to step 6. If 

not, go to step 9.
Step 6: Input final exam grade (FE).
Step 7: Determine average grade AG according to

AG =
WQ × AQ + WH × AH + WF × FE

WQ + WH + WF
× 100%

Step 8: Go to step 10.
Step 9: Determine average grade AG according to

AG =
WQ × AQ + WH × AH

WQ + WH
× 100%

2.1 Write pseudocode to implement the flowchart depicted in 
Fig. P2.1. Make sure that proper indentation is included to make 
the structure clear.

F

F

F

T

T

T

x = 75 x = 0

x = x – 50

x < 200

x ≤ 50

x < 100

FIGURE P2.1

2.2 Rewrite the following pseudocode using proper indentation:

 DO
 i = i + 1
 IF z > 50 EXIT
 x = x + 5
 IF x > 5 THEN
 y = x
 ELSE
 y = 0
 ENDIF
 z = x + y
 ENDDO

2.3 Develop, debug, and document a program to determine the 
roots of a quadratic equation, ax2 + bx + c, in either a high-level 
language or a macro language of your choice. Use a subroutine 
procedure to compute the roots (either real or complex). Perform 
test runs for the cases (a) a = 1, b = 6, c = 2; (b) a = 0, b = −4,  
c = 1.6; (c) a = 3, b = 2.5, c = 7.

PROBLEMS
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2.8 An amount of money P is invested in an account where interest 
is compounded at the end of the period. The future worth F yielded 
at an interest rate i after n periods may be determined from the 
 following formula:

F = P(1 + i)n

Write a program that will calculate the future worth of an  investment 
for each year from 1 through n. The input to the function should 
include the initial investment P, the interest rate i (as a  decimal), 
and the number of years n for which the future worth is to be calcu-
lated. The output should consist of a table with headings and 
 columns for n and F. Run the program for P = $100,000, i = 0.06, 
and n = 5 years.
2.9 Economic formulas are available to compute annual payments 
for loans. Suppose that you borrow an amount of money P and 
agree to repay it in n annual payments at an interest rate of i. The 
formula to compute the annual payment A is

A = P 

i(1 + i)n

(1 + i)n − 1

Write a program to compute A. Test it with P = $55,000 and an 
interest rate of 5.6% (i = 0.056). Compute results for n = 1, 2, 3, 4, 
and 5 and display the results as a table with headings and columns 
for n and A.
2.10 The average daily temperature for an area can be approxi-
mated by the following function,

T = Tmean + (Tpeak − Tmean)  cos (ω(t − tpeak) )

where Tmean = the average annual temperature, Tpeak = the peak 
temperature, ω = the frequency of the annual variation (= 2π/365), 
and tpeak = day of the peak temperature (≅ 205 d). Develop a 
 program that computes the average temperature between two days 
of the year for a particular city. Test it for (a) January–February (t = 
0 to 59) in Miami, Florida (Tmean = 22.1°C; Tpeak = 28.3°C), and (b) 
July–August (t = 180 to 242) in Boston, Massachusetts (Tmean = 
10.7°C; Tpeak = 22.9°C).
2.11 Develop, debug, and test a program in either a high-level 
language or a macro language of your choice to compute the 
velocity of the falling parachutist as outlined in Example 1.2. 
Design the program so that it allows the user to input values for 
the drag coefficient and mass. Test the program by duplicating 
the results from Example 1.2. Repeat the computation but em-
ploy step sizes of 1  and 0.5 s. Compare your results with the 
analytical solution obtained previously in Example 1.1. Does a 
smaller step size make the results better or worse? Explain your 
results.
2.12 The bubble sort is an inefficient, but easy-to-program, 
sorting technique. The idea behind the sort is to move down 
through an array comparing adjacent pairs and swapping the 

Step 10: Print out course number, name, and average grade.
Step 11: Terminate computation.
(a) Write well-structured pseudocode to implement this algorithm.
(b) Write, debug, and document a structured computer program 

based on this algorithm. Test it using the following data to 
calculate a grade without the final exam and a grade with the 
final exam: WQ = 35; WH = 30; WF = 35; quizzes = 98, 85, 
90, 65, 99; homework = 95, 90, 87, 100, 92, 77; and final 
exam = 92.

2.7 The “divide and average” method, an old-time method for 
 approximating the square root of any positive number a, can be 
formulated as

x =
x + a∕x

2

(a) Write well-structured pseudocode to implement this algorithm 
as depicted in Fig. P2.7. Use proper indentation so that the 
structure is clear.

(b) Develop, debug, and document a program to implement this 
equation in either a high-level language or a macro language of 
your choice. Structure your code according to Fig. P2.7.

F

F

T

T

SquareRoot = 0

SquareRoot = x

y = (x + a/x)/2
e = |(y – x)/y|

x = y

tol = 10–5

x = a/2

a > 0

e < tol

FIGURE P2.7
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 decisional control structures (like IF/THEN, ELSEIF, ELSE, 
ENDIF). Design the function so that it returns the volume for 
all cases where the depth is less than 3R. Return an error mes-
sage (“Overtop”) if you overtop the tank, that is, d > 3R. Test it 
with the following data:

R 1 1 1 1

d 0.5 1.2 3.0 3.1

2R

R

d

FIGURE P2.13

2.14 Two distances are required to specify the location of a point 
relative to an origin in two-dimensional space (Fig. P2.14):

∙ The horizontal and vertical distances (x, y) in Cartesian 
 coordinates

∙ The radius and angle (r, θ) in radial coordinates.

values if they are out of order. For this method to sort the array 
completely, it may need to pass through it many times. As the 
passes proceed for an ascending-order sort, the smaller elements 
in the array appear to rise toward the top like bubbles. Eventu-
ally, there will be a pass through the array where no swaps are 
required. Then, the array is sorted. After the first pass, the larg-
est value in the array drops directly to the bottom. Consequently, 
the second pass only has to proceed to the second-to-last value, 
and so on. Develop a program to set up an array of 20 random 
numbers and sort them in ascending order with the bubble sort 
(Fig. P2.12).

TT

T

F

F

F

m = n – 1

switch = false

switch = truem = m – 1

i = 1

i = i + 1
i > m

swap
ai ai+1

start

end

ai > ai+1
Not

switch

FIGURE P2.12

2.13 Figure P2.13 shows a cylindrical tank with a conical base. 
If the liquid level is quite low in the conical part, the volume is 
simply the conical volume of liquid. If the liquid level is mid-
range in the cylindrical part, the total volume of liquid includes 
the filled conical part and the partially filled cylindrical part. 
Write a well-structured function procedure to compute the 
 liquid’s volume as a function of given values of R and d. Use FIGURE P2.14

III

III IV

θ

r

x

y
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Letter Criteria

  A 90 ≤ numeric grade ≤ 100
  B 80 ≤ numeric grade < 90
  C 70 ≤ numeric grade < 80
  D 60 ≤ numeric grade < 70
  F numeric grade < 60

2.16 Develop well-structured function procedures to determine 
(a) the factorial; (b) the minimum value in a vector; and (c) the 
average of the values in a vector.
2.17 Develop well-structured programs to (a) determine the square 
root of the sum of the squares of the elements of a two-dimensional 
array (i.e., a matrix) and (b) normalize a matrix by dividing each 
row by the maximum absolute value in the row so that the maxi-
mum element in each row is 1.
2.18 Piecewise functions are sometimes useful when the relation-
ship between a dependent and an independent variable cannot be 
adequately represented by a single equation. For example, the 
 velocity of a rocket might be described by

υ(t) =  

  11t2 − 5t    0 ≤ t ≤ 10
1100 − 5t 10 ≤ t ≤ 20

50t + 2(t − 20)2 20 ≤ t ≤ 30
1520e−0.2(t−30) t > 30

0 otherwise

Develop a well-structured function to compute v as a function of t. 
Then use this function to generate a table of v versus t for t = −5 to 
50 at increments of 0.5.
2.19 Develop a well-structured function to determine the elapsed 
days in a year. The function should be passed three values: mo = the 
month (1–12), da = the day (1–31), and leap = (0 for non–leap 
year and 1 for leap year). Test it for January 1, 1999; February 29, 
2000; March 1, 2001; June 21, 2002; and December 31, 2004. 
Hint: A nice way to do this combines the for and the switch 
structures.
2.20 Develop a well-structured function to determine the elapsed 
days in a year. The first line of the function should be set up as

function nd = days(mo, da, year)

where mo = the month (1–12), da = the day (1–31), and year = the 
year. Test it for January 1, 1999; February 29, 2000; March 1, 2001; 
June 21, 2002; and December 31, 2004.
2.21 Manning’s equation can be used to compute the velocity of 
water in a rectangular open channel,

U =
√S

n
 (

BH

B + 2H)
2∕3

⏟

It is relatively straightforward to compute Cartesian coordinates 
(x, y) on the basis of polar coordinates (r, θ). The reverse  process 
is not so simple. The radius can be computed by the following 
formula:

r = √x2 + y2

If the coordinates lie within the first and fourth coordinates (i.e., 
x > 0), then a simple formula can be used to compute θ

θ =  tan−1 (
y

x)

The difficulty arises for the other cases. The following table sum-
marizes the possibilities:

x y θ

<0 >0 tan−1(y/x) + π
<0 <0 tan−1(y/x) − π
<0 =0 π
=0 >0 π/2
=0 <0 −π/2
=0 =0 0

(a) Write a well-structured flowchart for a subroutine procedure to 
calculate r and θ as a function of x and y. Express the final 
 results for θ in degrees.

(b) Write a well-structured function procedure based on your 
flowchart. Test your program by using it to fill out the follow-
ing table:

 x y r θ

 1 0
 1 1
 0 1
 −1 1
 −1 0
 −1 −1
 0 −1
 1 −1
 0 0

2.15 Develop a well-structured function procedure that is passed a 
numeric grade from 0 to 100 and returns a letter grade according to 
the following scheme:
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2.23 The volume V of liquid in a hollow horizontal cylinder  
of radius r and length L is related to the depth of the liquid h by

V = [r 

2
 cos 

−1
(

r − h

r ) − (r − h) √2rh − h2
]L

Develop a well-structured function to create a plot of volume  versus 
depth. Test the program for r = 2.5 m and L = 6 m.
2.24 Develop a well-structured program to compute the ve-
locity of a parachutist as a function of time using Euler’s 
method. Test your program for the case where m = 85 kg and 
c = 11 kg/s. Perform the calculation from t = 0 to 20 s with a 
step size of 2 s. Use an initial condition that the parachutist 
has an  upward velocity of 25 m/s at t = 0. At t = 10 s, assume 
that the parachute is instantaneously deployed so that the drag 
coefficient jumps to 55 kg/s.
2.25 The pseudocode in Fig. P2.25 computes the factorial. Express 
this algorithm as a well-structured function in the language of your 
choice. Test it by computing 0! and 6!. In addition, test the error 
trap by trying to evaluate −2!.

FUNCTION fac(n)
IF n ≥ 0 THEN
  x = 1
  DOFOR i = 1, n
    x = x · i
  END DO
  fac = x
ELSE
  display error message
  terminate
ENDIF
END fac

FIGURE P2.25

2.26 The height of a small rocket y can be calculated as a function 
of time after blastoff with the following piecewise function:

y = 38.1454t + 0.13743t3  0 ≤ t < 15

y = 1036 + 130.909(t − 15) + 6.18425(t − 15)2  
    − 0.428(t − 15)3  15 ≤ t < 33

y = 2900 − 62.468(t − 33) − 16.9274(t − 33)2 
    + 0.41796(t −33)3  t ≥ 33

where U = velocity (m/s), S = channel slope, n = roughness coef-
ficient, B = width (m), and H = depth (m). The following data are 
available for five channels:

  n S B H

0.036 0.0001 10 2
0.020 0.0002 8 1
0.014 0.0012 19 1.7
0.030 0.0007 24 3
0.021 0.0004 15 2.6

Write a well-structured program that computes the velocity for 
each of these channels. Have the program display the input data 
along with the computed velocity in tabular form where velocity 
is the fifth column. Include headings on the table to label the 
columns.
2.22 A simply supported beam is loaded as shown in Fig. P2.22. 
Using singularity functions, the displacement along the beam can 
be expressed by the equation

uy(x) =
−5
6

 [⟨x − 0⟩4 − ⟨x − 5⟩4] +
15
6

 ⟨x − 8⟩3

   + 75 ⟨x − 7⟩2 +
57
6

x3 − 238.25x

By definition, the singularity function can be expressed as 
 follows:

⟨x − a⟩n = {
(x − a)n when x > a

0 when x ≤ a}

Develop a program that creates a plot of displacement versus 
distance along the beam x. Note that x = 0 at the left end of the 
beam.

20 kips/ft

150 kip-ft
15 kips

5´ 2´ 1´ 2´

FIGURE P2.22
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Develop a well-structured pseudocode function to compute y as a 
function of t. Note that if the user enters a negative value of t or if 
the rocket has hit the ground (y ≤ 0), then a value of zero is re-
turned for y. Also, the function should be invoked in the calling 
program as height(t). Write the algorithm (a) as pseudocode or 
(b) in a high-level language of your choice.
2.27 As depicted in Fig. P2.27, a water tank consists of a 
 cylinder topped by the frustum of a cone. Develop a well-
structured function in a high-level language or macro language 
of your choice to compute the volume given the water level h 
(m) above the tank’s bottom. Design the function so that it re-
turns a value of zero for negative h’s and the value of the max-
imum filled volume for h’s greater than the tank’s maximum 
depth. Given the following parameters, H1 = 11 m, r1 = 3.5 m, 
H2 = 5 m, and r2 = 6 m, test your function by using it to com-
pute the volumes and generate a graph of the volume as a func-
tion of level from h = −1 to 17 m. 

h

H2

H1

r1

r2

FIGURE P2.27

 altitude, latitude/longitude, time of day, and season. To take all 
these variations into account when considering the design and per-
formance of flight vehicles is impractical. Therefore, a standard 
atmosphere is frequently used to provide engineers and scientists 
with a common reference for their research and development. The 
International Standard Atmosphere is one such model of how 
 conditions of the earth’s atmosphere change over a wide range of 
altitudes, or elevations. The following table shows values of tem-
perature and pressure at selected altitudes.

2.28 Write a well-structured function procedure named Fnorm to 
calculate the Frobenius norm of an m × n matrix using nested 
count-controlled (for) loops:

∥ A∥ f = √∑
m

i=1
∑

n

j=1
a2

i,j

Test your function with

A = [
5 7 9
1 8 4
7 6 2]

2.29 The pressure and temperature of the atmosphere are con-
stantly changing depending on a number of factors including 

Layer 
index i

Layer name Base geopotential 
altitude above MSL 

h (km)

Lapse rate (°C/km) Base temperature 
T (°C)

Base pressure p 
(Pa)

1 Troposphere 0 −6.5 15 101325
2 Tropopause 11 0 −56.5 22632
3 Stratosphere 20 1 −56.5 5474.9
4 Stratosphere 32 2.8 −44.5 868.02
5 Stratopause 47 0 −2.5 110.91
6 Mesosphere 51 −2.8 −2.5 66.939
7 Mesosphere 71 −2.0 −58.5 3.9564
8 Mesopause 84.852 — −86.28 0.3734
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2.31 As depicted in Fig. P2.31, the downward deflection, y (m), 
of a cantilever beam with a uniform load, w (kg/m), can be com-
puted as

y =
w

24EI
(x4 − 4Lx3 + 6L2x2)

where x = distance (m), E = the modulus of elasticity = 2 × 1011 Pa, 
I = moment of inertia = 3.25 × 10–4 m4, w = 10,000 N/m, and  
L = length = 4 m. This equation can be differentiated to yield the 
slope of the downward deflection as a function of x,

dy

dx
=

w

24EI
(4x3 − 12Lx2 + 12L2x)

If y = 0 at x = 0, use this equation with Euler’s method (Δx = 0.125 m) 
to compute the deflection from x = 0 to L. Develop a plot of your 
 results along with the analytical solution computed with the first 
 equation.

y

w

x = 0 x = L

0

FIGURE P2.31

The temperature at each altitude can then be computed as

T(h) = Ti + γi (h − hi)   hi < h ≤ hi+1

where T(h) = temperature at altitude h (°C), Ti = the base tempera-
ture for layer i (°C), γi = lapse rate, or the rate at which atmospheric 
temperature decreases linearly with increase in altitude for layer i 
(°C/km), and hi = base geopotential altitude above mean sea level 
(MSL) for layer i. The pressure at each altitude can then be com-
puted as

p(h) = pi +
pi+1 − pi

hi+1 − hi

 (h − hi)

where p(h) = pressure at altitude h (Pa ≡ N/m2), pi = the base pres-
sure for layer i (Pa). The density, ρ (kg/m3), can then be calculated 
according to a molar form of the ideal gas law:

ρ =
pM

RTa

where M = molar mass (≅ 0.0289644 kg/mol), R = the universal 
gas constant (8.3144621 J/(mol K), and Ta = absolute temperature 
(K) = T + 273.15.

Develop a function, StdAtmDens, to determine values of the 
density for a given altitude. If the user requests a value outside the 
range of altitudes, have the function display an error message and 
terminate the application. Test your function for altitudes of −200, 
0, 11, 40, 84.852, and 100 km.
2.30 Develop a function to convert a vector of temperatures from 
Celsius to Fahrenheit and vice versa. Test it with the following data 
for the average monthly temperatures at Death Valley, CA, and at 
the South Pole.

Day 15 45 75 105 135 165 195 225 255 285 315 345
Death Valley °F 54 60 69 77 87 96 102 101 92 78 63 52
South Pole °C −27 −40 −53 −56 −57 −57 −59 −59 −59 −50 −38 −27
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C H A P T E R

3
Approximations and  
Round-Off Errors

Because so many of the methods in this book are straightforward in description and 
application, it would be very tempting at this point for us to proceed directly to the main 
body of the text and teach you how to use these techniques. However, understanding the 
concept of error is so important to the effective use of numerical methods that we have 
chosen to devote the next two chapters to this topic.
 The importance of error was introduced in our discussion of the falling parachutist 
in Chap. 1. Recall that we determined the velocity of a falling parachutist by both ana-
lytical and numerical methods. Although the numerical technique yielded estimates that 
were close to the exact analytical solution, there was a discrepancy, or error, because the 
numerical method involved an approximation. Actually, we were fortunate in that case 
because the availability of an analytical solution allowed us to compute the error exactly. 
For many applied engineering problems, we cannot obtain analytical solutions. Therefore, 
we cannot compute exactly the errors associated with our numerical methods. In these 
cases, we must settle for approximations or estimates of the errors.
 Such errors are characteristic of most of the techniques described in this book. This 
statement might at first seem contrary to what one normally conceives of as sound 
engineering. Students and practicing engineers constantly strive to limit errors in their 
work. When taking examinations or doing homework problems, you are penalized, not 
rewarded, for your errors. In professional practice, errors can be costly and sometimes 
catastrophic. If a structure or device fails, lives can be lost.
 Although perfection is a laudable goal, it is rarely, if ever, attained. For example, 
despite the fact that the model developed from Newton’s second law is an excellent ap-
proximation, it would never in practice exactly predict the parachutist’s fall. A variety of 
factors such as winds and slight variations in air resistance would result in deviations 
from the prediction. If these deviations are systematically high or low, then we might 
need to develop a new model. However, if they are randomly distributed and tightly 
grouped around the prediction, then the deviations might be considered negligible and 
the model deemed adequate. Numerical approximations also introduce similar discrepan-
cies into the analysis. Again, the question is: How much error is present in our calcula-
tions and is it tolerable?
 This chapter and Chap. 4 cover basic topics related to the identification, 
 quantification, and minimization of these errors. In this chapter, general information 
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concerned with the quantification of error is reviewed in the first sections. This is 
followed by a section on one of the two major forms of numerical error: round-off 
error. Round-off error is due to the fact that computers can represent only quantities 
with a finite number of digits. Then Chap. 4 deals with the other major form: trun-
cation error. Truncation error is the discrepancy introduced by the fact that numeri-
cal methods may employ approximations to represent exact mathematical operations 
and quantities. Finally, we briefly discuss errors not directly connected with the 
numerical methods themselves. These include blunders, formulation or model errors, 
and data uncertainty.

 3.1 SIGNIFICANT FIGURES
This book deals extensively with approximations connected with the manipulation of 
numbers. Consequently, before discussing the errors associated with numerical methods, 
it is useful to review basic concepts related to approximate representation of the numbers 
themselves.
 Whenever we employ a number in a computation, we must have assurance that it 
can be used with confidence. For example, Fig. 3.1 depicts a speedometer and odom-
eter from an automobile. Visual inspection of the speedometer indicates that the car is 
traveling between 48 and 49 km/h. Because the indicator is higher than the midpoint 
between the markers on the gauge, we can say with assurance that the car is traveling 
at approximately 49 km/h. We have confidence in this result because two or more rea-
sonable individuals reading this gauge would arrive at the same conclusion. However, 
let us say that we insist that the speed be estimated to one decimal place. For this case, 

40
6

8 7 3 2 4
4
5

0 120

20

40
60

80

100

FIGURE 3.1
An automobile speedometer and odometer illustrating the concept of a significant figure.
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one person might say 48.8, whereas another might say 48.9 km/h. Therefore, because of 
the limits of this instrument, only the first two digits can be used with confidence. Estimates 
of the third digit (or higher) must be viewed as approximations. It would be ludicrous to 
claim, on the basis of this speedometer, that the automobile is traveling at 48.8642138 km/h. 
In contrast, the odometer provides up to six certain digits. From Fig. 3.1, we can conclude 
that the car has traveled slightly less than 87,324.5 km during its lifetime. In this case, the 
seventh digit (and higher) is uncertain.
 The concept of a significant figure, or digit, has been developed to formally desig-
nate the reliability of a numerical value. The significant digits of a number are those that 
can be used with confidence. They correspond to the number of certain digits plus one 
estimated digit. For example, the speedometer and the odometer in Fig. 3.1 yield readings 
of three and seven significant figures, respectively. For the speedometer, the two certain 
digits are 48. It is conventional to set the estimated digit at one-half of the smallest scale 
division on the measurement device. Thus the speedometer reading would consist of the 
three significant figures: 48.5. In a similar fashion, the odometer would yield a seven-
significant-figure reading of 87,324.45.
 Although it is usually a straightforward procedure to ascertain the significant figures 
of a number, some cases can lead to confusion. For example, zeros are not always sig-
nificant figures because they may be necessary just to locate a decimal point. The num-
bers 0.00001845, 0.0001845, and 0.001845 all have four significant figures. Similarly, 
when trailing zeros are used in large numbers, it is not clear how many, if any, of the 
zeros are significant. For example, at face value the number 45,300 may have three, four, 
or five significant digits, depending on whether the zeros are known with confidence. Such 
uncertainty can be resolved by using scientific notation, where 4.53 × 104, 4.530 × 104, 
4.5300 × 104 designate that the number is known to three, four, and five significant figures, 
respectively.
 The concept of significant figures has two important implications for our study of 
numerical methods:

1. As introduced in the falling parachutist problem, numerical methods yield approxi-
mate results. We must, therefore, develop criteria to specify how confident we are in 
our approximate result. One way to do this is in terms of significant figures. For 
example, we might decide that our approximation is acceptable if it is correct to four 
significant figures.

2. Although quantities such as π, e, or √7 represent specific quantities, they cannot be 
expressed exactly by a limited number of digits. For example,

π = 3.141592653589793238462643 …

  ad infinitum. Because computers retain only a finite number of significant figures, 
such numbers can never be represented exactly. The omission of the remaining 
significant figures is called round-off error.

 Both round-off error and the use of significant figures to express our confidence in 
a numerical result will be explored in detail in subsequent sections. In addition, the 
concept of significant figures will have relevance to our definition of accuracy and pre-
cision in the next section.
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 3.2 ACCURACY AND PRECISION
The errors associated with both calculations and measurements can be characterized with 
regard to their accuracy and precision. Accuracy refers to how closely a computed or 
measured value agrees with the true value. Precision refers to how closely individual 
computed or measured values agree with each other.
 These concepts can be illustrated graphically using an analogy from target practice. 
The bullet holes on each target in Fig. 3.2 can be thought of as the predictions of a nu-
merical technique, whereas the bull’s-eye represents the truth. Inaccuracy (also called bias) 
is defined as systematic deviation from the truth. Thus, although the shots in Fig. 3.2c are 
more tightly grouped than those in Fig. 3.2a, the two cases are equally biased because 
they are both centered on the upper left quadrant of the target. Imprecision (also called 
uncertainty), on the other hand, refers to the magnitude of the scatter. Therefore, although 
Fig. 3.2b and d are equally accurate (that is, centered on the bull’s-eye), the latter is more 
precise because the shots are tightly grouped.
 Numerical methods should be sufficiently accurate or unbiased to meet the require-
ments of a particular engineering problem. They also should be precise enough for  adequate 
engineering design. In this book, we will use the collective term error to represent both 
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FIGURE 3.2
An example from marksmanship illustrating the concepts of accuracy and precision. (a) 
 Inaccurate and imprecise; (b) accurate and imprecise; (c) inaccurate and precise; (d) accurate 
and precise.
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the inaccuracy and the imprecision of our predictions. With these concepts as background, 
we can now discuss the factors that contribute to the error of numerical computations.

 3.3 ERROR DEFINITIONS
Numerical errors arise from the use of approximations to represent exact mathematical 
operations and quantities. These include truncation errors, which result when approxima-
tions are used to represent exact mathematical procedures, and round-off errors, which 
result when numbers having limited significant figures are used to represent exact num-
bers. For both types, the relationship between the exact, or true, result and the approxi-
mation can be formulated as

True value = approximation + error (3.1)

By rearranging Eq. (3.1), we find that the numerical error is equal to the discrepancy 
between the true value and the approximation, as in

Et = true value − approximation (3.2)

where Et is used to designate the exact value of the error. The subscript t is included to 
designate that this is the “true” error. This is in contrast to other cases, as described 
shortly, where an “approximate” estimate of the error must be employed.
 A shortcoming of this definition is that it takes no account of the order of magnitude 
of the value under examination. For example, an error of a centimeter is much more sig-
nificant if we are measuring a rivet rather than a bridge. One way to account for the mag-
nitudes of the quantities being evaluated is to normalize the error to the true value, as in

True fractional relative error =
true error
true value

where, as specified by Eq. (3.2), error = true value − approximation. The relative error 
can also be multiplied by 100 percent to express it as

εt =
true error
true value

 100% (3.3)

where εt designates the true percent relative error.

 EXAMPLE 3.1 Calculation of Errors
Problem Statement. Suppose that you have the task of measuring the lengths of a 
bridge and a rivet and come up with 9999 and 9 cm, respectively. If the true values are 
10,000 and 10 cm, respectively, compute (a) the true error and (b) the true percent 
relative error for each case.

Solution.

(a) The error for measuring the bridge is [Eq. (3.2)]

Et = 10,000 − 9999 = 1 cm
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 and for the rivet it is

Et = 10 − 9 = 1 cm

(b) The percent relative error for the bridge is [Eq. (3.3)]

εt =
1

10,000
100% = 0.01%

 and for the rivet it is

εt =
1
10

100% = 10%

Thus, although both measurements have an error of 1 cm, the relative error for the rivet 
is much greater. We would conclude that we have done an adequate job of measuring 
the bridge, whereas our estimate for the rivet leaves something to be desired.

 Notice that for Eqs. (3.2) and (3.3), E and ε are subscripted with a t to signify that 
the error is normalized to the true value. In Example 3.1, we were provided with this 
value. However, in actual situations such information is rarely available. For numerical 
methods, the true value will be known only when we deal with functions that can be 
solved analytically. Such will typically be the case when we investigate the theoretical 
behavior of a particular technique for simple systems. However, in real-world applications, 
we will obviously not know the true answer a priori. For these situations, an alternative 
is to normalize the error using the best available estimate of the true value, that is, to the 
approximation itself, as in

εa =
approximate error

approximation
100% (3.4)

where the subscript a signifies that the error is normalized to an approximate value. Note 
also that for real-world applications, Eq. (3.2) cannot be used to calculate the error term 
for Eq. (3.4). One of the challenges of numerical methods is to determine error estimates 
in the absence of knowledge regarding the true value. For example, certain numerical 
methods use an iterative approach to compute answers. In such an approach, a present 
approximation is made on the basis of a previous approximation. This process is performed 
repeatedly, or iteratively, to successively compute (we hope) better and better approxima-
tions. For such cases, the error is often estimated as the difference between previous and 
current approximations. Thus, percent relative error is determined according to

εa =
current approximation − previous approximation

current approximation
100% (3.5)

This and other approaches for expressing errors will be elaborated on in subsequent chapters.
 The signs of the error values from Eqs. (3.2) through (3.5) may be either positive 
or negative. If the approximation is greater than the true value (or the previous ap-
proximation is greater than the current approximation), the error is negative; if the 
approximation is less than the true value, the error is positive. Also, for Eqs. (3.3) to 
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(3.5), the denominator may be less than zero, which can also lead to a negative error. 
Often, when performing computations, we may not be concerned with the sign of the 
error, but we are interested in whether the percent absolute value is lower than a pre-
specified percent tolerance εs. Therefore, it is often useful to employ the absolute value 
of Eqs. (3.2) through (3.5). For such cases, the computation is repeated until

∣εa∣ < εs (3.6)

If this relationship holds, our result is assumed to be within the prespecified acceptable 
level εs. Note that for the remainder of this text, we will almost exclusively employ 
absolute values when we use relative errors.
 It is also convenient to relate these errors to the number of significant figures in the 
approximation. It can be shown (Scarborough 1966) that if the following criterion is met, 
we can be assured that the result is correct to at least n significant figures.

εs = (0.5 × 102−n)% (3.7)

 EXAMPLE 3.2 Error Estimates for Iterative Methods
Problem Statement. In mathematics, functions can often be represented by infinite 
series. For example, the exponential function can be computed using

ex = 1 + x +
x 

2

2
+

x 

3

3!
+ … +

x  

n

n!
 (E3.2.1)

Thus, as more terms are added in sequence, the approximation becomes a better and better 
estimate of the true value of ex. Equation (E3.2.1) is called a Maclaurin series expansion.
 Starting with the simplest version, ex = 1, add terms one at a time to estimate e0.5. 
After each new term is added, compute the true and approximate percent relative errors 
with Eqs. (3.3) and (3.5), respectively. Note that the true value is e0.5 = 1.648721 . . . . 
Add terms until the absolute value of the approximate error estimate εa falls below a 
prespecified error criterion εs conforming to three significant figures.

Solution. First, Eq. (3.7) can be employed to determine the error criterion that ensures 
a result is correct to at least three significant figures:

εs = (0.5 × 102−3)% = 0.05%

Thus, we will add terms to the series until εa falls below this level.
 The first estimate is simply equal to Eq. (E3.2.1) with a single term. Thus, the first es-
timate is equal to 1. The second estimate is then generated by adding the second term, as in

ex = 1 + x

or for x = 0.5,

e0.5 = 1 + 0.5 = 1.5

This represents a true percent relative error of [Eq. (3.3)]

εt =
1.648721 − 1.5

1.648721
100% = 9.02%
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Equation (3.5) can be used to determine an approximate estimate of the error, as in

εa =
1.5 − 1

1.5
100% = 33.3%

Because εa is not less than the required value of εs, we would continue the computation 
by adding another term, x2∕2!, and repeating the error calculation. The process is con-
tinued until εa < εs. The entire computation can be summarized as

Terms Result εt (%) εa (%)

 1 1 39.3
2 1.5 9.02 33.3
3 1.625 1.44 7.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

Thus, after six terms are included, the approximate error falls below εs = 0.05% and the 
computation is terminated. However, notice that, rather than three significant figures, the 
result is accurate to five! This is because, for this case, both Eqs. (3.5) and (3.7) are con-
servative. That is, they ensure that the result is at least as good as they specify. Although, 
as discussed in Chap. 6, this is not always the case for Eq. (3.5), it is true most of the time.

3.3.1 Computer Algorithm for Iterative Calculations
Many of the numerical methods described in the remainder of this text involve iterative cal-
culations of the sort illustrated in Example 3.2. These all entail solving a mathematical 
problem by computing successive approximations to the solution starting from an initial guess.
 The computer implementation of such iterative solutions involves loops. As we saw 
in Sec. 2.1.1, these come in two basic flavors: count-controlled and decision loops. Most 
iterative solutions use decision loops. Thus, rather than employing a prespecified number 
of iterations, the process typically is repeated until an approximate error estimate falls 
below a stopping criterion, as in Example 3.2.
 A pseudocode for a generic iterative calculation is presented in Fig. 3.3. The function 
is passed a value (val) along with a stopping error criterion (es) and a maximum al-
lowable number of iterations (maxit). The value is typically either (1) an initial value 
or (2) the value for which the iterative calculation is to be made.
 The function first initializes three variables. These include (1) a variable iter that 
keeps track of the number of iterations, (2) a variable sol that holds the current estimate 
of the solution, and (3) a variable ea that holds the approximate percent relative error. 
Note that ea is initially set to a value of 100 to ensure that the loop executes at least once.
 These initializations are followed by the decision loop that actually implements the 
iterative calculation. Prior to generating a new solution, sol is first assigned to solold. 
Then a new value of sol is computed and the iteration counter is incremented. If the 
new value of sol is nonzero, the percent relative error ea is determined. The stopping 
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criteria are then tested. If both are false, the loop repeats. If either is true, the loop 
 terminates and the final solution is sent back to the function call. The following example 
illustrates how the generic algorithm can be applied to a specific iterative calculation.

 EXAMPLE 3.3 Computer Implementation of an Iterative Calculation
Problem Statement. Develop a computer program based on the pseudocode from  
Fig. 3.3 to implement the calculation from Example 3.2.

Solution. A function to implement the Maclaurin series expansion for ex can be based on 
the general scheme in Fig. 3.3. To do this, we first formulate the series expansion as a formula:

ex ≅∑
n

i=0

xn

n!

Figure 3.4 shows functions to implement this series written in VBA and MATLAB software. 
Similar codes could be developed in other languages such as C++ or Fortran 95. Notice 
that whereas MATLAB has a built-in factorial function, it is necessary to compute the 
factorial as part of the VBA implementation with a simple product accumulator fac.
 When the programs are run, they generate an estimate for the exponential function. 
For the MATLAB version, the answer is returned along with the approximate error and 
the number of iterations. For example, e1 can be evaluated as

>> format long
>> [val, ea, iter] = IterMeth(1,1e−6,100)

val =
   2.718281826198493
ea =
    9.216155641522974e−007
iter =
    12

FUNCTION IterMeth(val, es, maxit)
iter = 1
sol = val
ea = 100
DO
 solold = sol
 sol = ...
 iter = iter + 1
 IF sol ≠ 0 ea=abs((sol − solold)/sol)*100
 IF ea ≤ es OR iter ≥ maxit EXIT
END DO
IterMeth = sol
END IterMeth

FIGURE 3.3
Pseudocode for a generic iterative calculation.
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 We can see that after 12 iterations, we obtain a result of 2.7182818 with an approxi-
mate error estimate of = 9.2162 × 10−7%. The result can be verified by using the built-in 
exp function to directly calculate the exact value and the true percent relative error,

>> trueval=exp(1)

trueval =
    2.718281828459046

>> et=abs((trueval−val)/trueval)*100
et =
      8.316108397236229e−008

As was the case with Example 3.2, we obtain the desirable outcome that the true error 
is less than the approximate error.

 With the preceding definitions as background, we can now proceed to the two types 
of error connected directly with numerical methods: round-off errors and truncation 
errors.

(b) MATLAB
function [v,ea,iter] = IterMeth(x,es,maxit)
% initialization
iter = 1;
sol = 1;
ea = 100;

% iterative calculation
while (1)
  solold = sol;

  sol = sol + x ^ iter ∕ factorial(iter);
  iter = iter + 1;
  if sol~=0
    ea=abs((sol − solold)∕sol)*100;
  end
  if ea<=es ‖ iter>=maxit,break,end
end
v = sol;
end

(a) Excel/VBA
Function IterMeth(x, es, maxit)
' initialization
iter = 1
sol = 1
ea = 100
fac = 1
' iterative calculation
Do
  solold = sol
  fac = fac * iter
  sol = sol + x ^ iter ∕ fac
  iter = iter + 1
  If sol <> 0 Then
    ea = Abs((sol − solold) ∕ sol) * 100
  End If
  If ea <= es Or iter >= maxit Then Exit Do
Loop
IterMeth = sol
End Function

FIGURE 3.4
(a) Excel/VBA and (b) MATLAB functions based on the pseudocode from Fig. 3.3.
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 3.4 ROUND-OFF ERRORS
As mentioned previously, round-off errors originate from the fact that computers retain 
only a fixed number of significant figures during a calculation. Numbers such as π, e, 
or √7  cannot be expressed by a fixed number of significant figures. Therefore, they 
cannot be represented exactly by the computer. In addition, because computers use a 
base-2 representation, they cannot precisely represent certain exact base-10 numbers. The 
discrepancy introduced by this omission of significant figures is called round-off error.

3.4.1 Computer Representation of Numbers
Numerical round-off errors are directly related to the manner in which numbers are stored 
in a computer. The fundamental unit whereby information is represented is called a word. 
This is an entity that consists of a string of binary digits, or bits. Numbers are typically 
stored in one or more words. To understand how this is accomplished, we must first 
review some material related to number systems.

Number Systems. A number system is merely a convention for representing quantities. 
Because we have 10 fingers and 10 toes, the number system that we are most familiar 
with is the decimal, or base-10, number system. A base is the number used as the refer-
ence for constructing the system. The base-10 system uses the 10 digits—0, 1, 2, 3, 4, 
5, 6, 7, 8, 9—to represent numbers. By themselves, these digits are satisfactory for 
counting from 0 to 9.
 For larger quantities, combinations of these basic digits are used, with the position 
or place value specifying the magnitude. The right-most digit in a whole number repre-
sents a number from 0 to 9. The second digit from the right represents a multiple of 10. 
The third digit from the right represents a multiple of 100 and so on. For example, if 
we have the number 86,409, then we have eight groups of 10,000, six groups of 1000, 
four groups of 100, zero groups of 10, and nine more units, or

(8 × 104) + (6 × 103) + (4 × 102) + (0 × 101) + (9 × 100) = 86,409

 Figure 3.5a provides a visual representation of how a number is formulated in the 
base-10 system. This type of representation is called positional notation.
 Because the decimal system is so familiar, it is not commonly realized that there are 
alternatives. For example, if human beings happened to have had eight fingers and eight 
toes, we would undoubtedly have developed an octal, or base-8, representation. In the 
same sense, our friend the computer is like a two-fingered animal who is limited to two 
states—either 0 or 1. This relates to the fact that the primary logic units of digital com-
puters are on/off electronic components. Hence, numbers on the computer are represented 
with a binary, or base-2, system. Just as with the decimal system, quantities can be 
represented using positional notation. For example, the binary number 11 is equivalent 
to (1 × 21) + (1 × 20) = 2 + 1 = 3 in the decimal system. Figure 3.5b illustrates a more 
complicated example.

Integer Representation. Now that we have reviewed how base-10 numbers can be 
represented in binary form, it is simple to conceive of how integers are represented on 
a computer. The most straightforward approach, called the signed magnitude method, 
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employs the first bit of a word to indicate the sign, with a 0 for positive and a 1 for 
negative. The remaining bits are used to store the number. For example, the integer value 
of −173 would be stored on a 16-bit computer as in Fig. 3.6.

 EXAMPLE 3.4 Range of Integers
Problem Statement. Determine the range of integers in base-10 that can be repre-
sented on a 16-bit computer.

FIGURE 3.5
How the (a) decimal (base-10) and the (b) binary (base-2) systems work. In (b), the binary num-
ber 10101101 is equivalent to the decimal number 173.

1 × 1 =
0 × 2 =
1 × 4 =
1 × 8 =
0 × 16 =
1 × 32 =
0 × 64 =
1 × 128 =

1
0
4
8
0

32
0

128
173

27

1

26

0

25

1

24

0

23

1

22

1

21

0

20

1

9 × 1 =
0 × 10 =
4 × 100 =
6 × 1,000 =
8 ×10,000 =

9
0

400
6,000

80,000
86,409

104

8

103

6

102

4

101

0

100

9

(a)

(b)

FIGURE 3.6
The representation of the decimal integer −173 on a 16-bit computer using the signed 
 magnitude method.

Sign
Number

1 0 0 0 0 0 0 0 1 1 1 1 10 0 0

cha32077_ch03_057-082.indd   68 6/21/19   4:23 PM



 3.4 ROUND-OFF ERRORS 69

Solution. Of the 16 bits, the first bit holds the sign. The remaining 15 bits can hold 
binary numbers from 0 to 111111111111111. The upper limit can be converted to a 
decimal integer, as in

(1 × 214) + (1 × 213) + … + (1 × 21) + (1 × 20)
which equals 32,767 (note that this expression can be simply evaluated as 215 − 1). Thus, 
a 16-bit computer word can store decimal integers ranging from −32,767 to 32,767. In 
addition, because zero is already defined as 0000000000000000, it is redundant to use 
the number 1000000000000000 to define a “minus zero.” Therefore, it is usually em-
ployed to represent an additional negative number: −32,768, and the range is from 
−32,768 to 32,767.

 Note that the signed magnitude method described above is not used to represent 
integers on conventional computers. A preferred approach called the 2’s complement 
technique directly incorporates the sign into the number’s magnitude rather than provid-
ing a separate bit to represent plus or minus. However, Example 3.4 still serves to 
 illustrate how all digital computers are limited in their capability to represent integers. 
That is, numbers above or below the range cannot be represented. A more serious 
 limitation is encountered in the storage and manipulation of fractional quantities as 
described next.

Floating-Point Representation. Fractional quantities are typically represented in com-
puters using floating-point form. In this approach, the number is expressed as a fractional 
part, called a mantissa or significand, and an integer part, called an exponent or charac-
teristic, as in

m · be

where m = the mantissa, b = the base of the number system being used, and e = the 
exponent. For instance, the number 156.78 could be represented as 0.15678 × 103 in a 
floating-point base-10 system.
 Figure 3.7 shows one way that a floating-point number could be stored in a word. 
The first bit is reserved for the sign, the next series of bits for the signed exponent, and 
the last bits for the mantissa.

FIGURE 3.7
The manner in which a floating-point number is stored in a word.

Sign

Signed
exponent

Mantissa
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 Note that the mantissa is usually normalized if it has leading zero digits. For ex-
ample, suppose the quantity 1∕34 = 0.029411765 . . . was stored in a floating-point 
base-10 system that allowed only four decimal places to be stored. Thus, 1∕34 would 
be stored as

0.0294 × 100

However, in the process of doing this, the inclusion of the useless zero to the right of 
the decimal forces us to drop the digit 1 in the fifth decimal place. The number can be 
normalized to remove the leading zero by multiplying the mantissa by 10 and lowering 
the exponent by 1 to give

0.2941 × 10−1

Thus, we retain an additional significant figure when the number is stored.
 The consequence of normalization is that the absolute value of m is limited. That is,

1
b

≤ m < 1 (3.8)

where b = the base. For example, for a base-10 system, m would range between 0.1 and 1, 
and for a base-2 system, between 0.5 and 1.
 Floating-point representation allows both fractions and very large numbers to 
be expressed on the computer. However, it has some disadvantages. For example, 
floating-point numbers take up more room and take longer to process than integer 
numbers. More significantly, however, their use introduces a source of error because 
the mantissa holds only a finite number of significant figures. Thus, a round-off 
error is introduced.

 EXAMPLE 3.5 Hypothetical Set of Floating-Point Numbers
Problem Statement. Create a hypothetical floating-point number set for a machine 
that stores information using 7-bit words. Employ the first bit for the sign of the number, 
the next three for the sign and the magnitude of the exponent, and the last three for the 
magnitude of the mantissa (Fig. 3.8).

FIGURE 3.8
The smallest possible positive floating-point number from Example 3.5.

Sign of
number

Sign of
exponent

Magnitude
 of exponent

Magnitude
of mantissa

21 20 2–1 2–2 2–3

1 1 1 10 0 0
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Solution. The smallest possible positive number is depicted in Fig. 3.8. The initial 0 
indicates that the quantity is positive. The 1 in the second place designates that the 
exponent has a negative sign. The 1’s in the third and fourth places give a maximum 
value to the exponent of

1 × 21 + 1 × 20 = 3

Therefore, the exponent will be −3. Finally, the mantissa is specified by the 100 in the 
last three places, which conforms to

1 × 2−1 + 0 × 2−2 + 0 × 2−3 = 0.5

Although a smaller mantissa is possible (e.g., 000, 001, 010, 011), the value of 100 is used 
because of the limit imposed by normalization [Eq. (3.8)]. Thus, the smallest possible 
positive number for this system is +0.5 × 2−3, which is equal to 0.0625 in the base-10 
system. The next highest numbers are developed by increasing the mantissa, as in

0111101 = (1 × 2−1 + 0 × 2−2 + 1 × 2−3) × 2−3 = (0.078125)10
0111110 = (1 × 2−1 + 1 × 2−2 + 0 × 2−3) × 2−3 = (0.093750)10
0111111 = (1 × 2−1 + 1 × 2−2 + 1 × 2−3) × 2−3 = (0.109375)10

Notice that the base-10 equivalents are spaced evenly with an interval of 0.015625.
 At this point, to continue increasing, we must decrease the exponent to 10, which 
gives a value of

1 × 21 + 0 × 20 = 2

The mantissa is decreased back to its smallest value of 100. Therefore, the next number is

0110100 = (1 × 2−1 + 0 × 2−2 + 0 × 2−3) × 2−2 = (0.125000)10

This still represents a gap of 0.125000 − 0.109375 = 0.015625. However, now when 
higher numbers are generated by increasing the mantissa, the gap is lengthened to 
0.03125,

0110101 = (1 × 2−1 + 0 × 2−2 + 1 × 2−3) × 2−2 = (0.156250)10
0110110 = (1 × 2−1 + 1 × 2−2 + 0 × 2−3) × 2−2 = (0.187500)10
0110111 = (1 × 2−1 + 1 × 2−2 + 1 × 2−3) × 2−2 = (0.218750)10

This pattern is repeated as each larger quantity is formulated until a maximum number 
is reached,

0011111 = (1 × 2−1 + 1 × 2−2 + 1 × 2−3) × 23 = (7)10

The final number set is depicted graphically in Fig. 3.9.

 Figure 3.9 manifests several aspects of floating-point representation that have 
significance regarding computer round-off errors:

1. There Is a Limited Range of Quantities That May Be Represented. Just as for the 
integer case, there are large positive and negative numbers that cannot be represented. 
Attempts to employ numbers outside the acceptable range will result in what is called 
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an overflow error. However, in addition to large quantities, the floating-point repre-
sentation has the added limitation that very small numbers cannot be represented. 
This is illustrated by the underflow “hole” between zero and the first positive number 
in Fig. 3.9. It should be noted that this hole is enlarged because of the normalization 
constraint of Eq. (3.8).

2. There Are Only a Finite Number of Quantities That Can Be Represented within the 
Range. Thus, the degree of precision is limited. Obviously, irrational numbers cannot 
be represented exactly. Furthermore, rational numbers that do not exactly match one 
of the values in the set also cannot be represented precisely. The errors introduced by 
approximating both these cases are referred to as quantizing errors. The actual 
approximation is accomplished in either of two ways: chopping or rounding. For 
example, suppose that the value of π = 3.14159265358 . . . is to be stored on a base-10 
number system carrying seven significant figures. One method of approximation would 
be to merely omit, or “chop off,” the eighth and higher terms, as in π = 3.141592, 
with the introduction of an associated error of [Eq. (3.2)]

Et = 0.00000065 …

  This technique of retaining only the significant terms was originally dubbed 
“truncation” in computer jargon. We prefer to call it chopping to distinguish it from 
the truncation errors discussed in Chap. 4. Note that for the base-2 number system 
in Fig. 3.9, chopping means that any quantity falling within an interval of length Δx 

Δx
x – Δx

Δx/2 Δx/2
x – Δx x + Δx

Chopping Rounding

0

0

7
Overflow

Underflow “hole”
at zero

FIGURE 3.9
The hypothetical number system developed in Example 3.5. Each value is indicated by a tick 
mark. Only the positive numbers are shown. An identical set would also extend in the nega-
tive direction.
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will be stored as the quantity at the lower end of the interval. Thus, the upper error 
bound for chopping is Δx. Additionally, a bias is introduced because all errors are 
positive. The shortcomings of chopping are attributable to the fact that the higher terms 
in the complete decimal representation have no impact on the shortened version. For 
instance, in our example of π, the first discarded digit is 6. Thus, the last retained digit 
should be rounded up to yield 3.141593. Such rounding reduces the error to

Et = −0.00000035 …

  Consequently, rounding yields a lower absolute error than chopping. Note that for the 
base-2 number system in Fig. 3.9, rounding means that any quantity falling within an 
interval of length Δx will be represented as the nearest allowable number. Thus, the 
upper error bound for rounding is Δx∕2. Additionally, no bias is introduced because some 
errors are positive and some are negative. Some computers employ rounding. However, 
this adds to the computational overhead, and, consequently, many machines use simple 
chopping. This approach is justified under the supposition that the number of significant 
figures is large enough that resulting round-off error is usually negligible.

3. The Interval between Numbers, Δx, Increases as the Numbers Grow in Magnitude. It 
is this characteristic, of course, that allows floating-point representation to preserve 
significant digits. However, it also means that quantizing errors will be proportional to 
the magnitude of the number being represented. For normalized floating-point numbers, 
this proportionality can be expressed, for cases where chopping is employed, as

∣Δx ∣
∣ x ∣

≤ ℰ (3.9)

  and, for cases where rounding is employed, as

∣Δx ∣
∣ x ∣

≤
ℰ

2
 (3.10)

  where ℰ is referred to as the machine epsilon, which can be computed as

ℰ = b1− t (3.11)

  where b is the number base and t is the number of significant digits in the mantissa. 
Notice that the inequalities in Eqs. (3.9) and (3.10) signify that these are error bounds. 
That is, they specify the worst cases.

 EXAMPLE 3.6 Machine Epsilon
Problem Statement. Determine the machine epsilon and verify its effectiveness in char-
acterizing the errors of the number system from Example 3.5. Assume that chopping is used.

Solution. The hypothetical floating-point system from Example 3.5 employed values 
of the base b = 2 and the number of mantissa bits t = 3. Therefore, the machine epsilon 
would be [Eq. (3.11)]

ℰ = 21−3 = 0.25
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Consequently, the relative quantizing error should be bounded by 0.25 for chopping. The 
largest relative errors should occur for those quantities that fall just below the upper 
bound of the first interval between successive equispaced numbers (Fig. 3.10). Those 
numbers falling in the succeeding higher intervals would have the same value of Δx but 
a greater value of x and, hence, would have a lower relative error. An example of a 
maximum error would be a value falling just below the upper bound of the interval 
between (0.125000)10 and (0.156250)10. For this case, the error would be less than

0.03125
0.125000

5 0.25

Thus, the error is as predicted by Eq. (3.9).

Largest relative
error

FIGURE 3.10
The largest quantizing error will occur for those values falling just below the upper bound of 
the first of a series of equispaced intervals.

 The magnitude dependence of quantizing errors has a number of practical applica-
tions in numerical methods. Most of these relate to the commonly employed operation 
of testing whether two numbers are equal. This occurs when testing convergence of 
quantities as well as in the stopping mechanism for iterative processes (recall Example 
3.2). For these cases, it should be clear that, rather than test whether the two quantities 
are equal, it is advisable to test whether their difference is less than an acceptably small 
tolerance. Further, it should also be evident that normalized rather than absolute differ-
ence should be compared, particularly when dealing with numbers of large magnitude. 
In addition, the machine epsilon can be employed in formulating stopping or convergence 
criteria. This ensures that programs are portable—that is, they are not dependent on the 
computer on which they are implemented. Figure 3.11 lists pseudocode to automatically 
determine the machine epsilon of a binary computer.

Extended Precision. It should be noted at this point that, although round-off errors 
can be important in contexts such as testing convergence, the number of significant 
digits carried on most computers allows most engineering computations to be performed 
with more than acceptable precision. For example, the hypothetical number system in 
Fig. 3.9 is a gross exaggeration that was employed for illustrative purposes. Commercial 
computers use much larger words and, consequently, allow numbers to be expressed with 
more than adequate precision. For example, computers that use IEEE format allow 
24 bits to be used for the mantissa, which translates into about seven significant base-10 
digits of precision1 with a range of about 10−38 to 1039.

FIGURE 3.11
Pseudocode to determine 
 machine epsilon for a binary 
computer.

epsilon = 1
DO
  IF (epsilon + 1 ≤ 1)EXIT
  epsilon = epsilon/2
END DO
epsilon = 2 × epsilon

1Note that only 23 bits are actually used to store the mantissa. However, because of normalization, the first bit 
of the mantissa is always 1 and is, therefore, not stored. Thus, this first bit together with the 23 stored bits 
gives the 24 total bits of precision for the mantissa.
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 With this acknowledged, there are still cases where round-off error becomes critical. 
For this reason most computers allow the specification of extended precision. The most 
common of these is double precision, in which the number of words used to store 
 floating-point numbers is doubled. It provides about 15 to 16 decimal digits of precision 
and a range of approximately 10−308 to 10308.
 In many cases, the use of double-precision quantities can greatly mitigate the effect 
of round-off errors. However, a price is paid for such remedies in that they also require 
more memory and execution time. The difference in execution time for a small calcula-
tion might seem insignificant. However, as your programs become larger and more com-
plicated, the added execution time could become considerable and have a negative impact 
on your effectiveness as a problem solver. Therefore, extended precision should not be 
used frivolously. Rather, it should be selectively employed where it will yield the maxi-
mum benefit at the least cost in terms of execution time. In the following sections, we 
will look closer at how round-off errors affect computations, and in so doing provide a 
foundation of understanding to guide your use of the double-precision capability.
 Before proceeding, it should be noted that some of the commonly used software pack-
ages (for example, Excel, Mathcad) routinely use double precision to represent numerical 
quantities. Thus, the developers of these packages decided that mitigating round-off errors 
would take precedence over any loss of speed incurred by using extended precision. Other 
packages, like MATLAB software, allow you to use extended precision, if you desire.

3.4.2 Arithmetic Manipulations of Computer Numbers
Aside from the limitations of a computer’s number system, the actual arithmetic manipula-
tions involving these numbers can also result in round-off error. In the following section, we 
will first illustrate how common arithmetic operations affect round-off errors. Then we will 
investigate a number of particular manipulations that are especially prone to round-off errors.
Common Arithmetic Operations. Because of their familiarity, normalized base-10 
numbers will be employed to illustrate the effect of round-off errors on simple addition, 
subtraction, multiplication, and division. Other number bases would behave in a similar 
fashion. To simplify the discussion, we will employ a hypothetical decimal computer 
with a 4-digit mantissa and a 1-digit exponent. In addition, chopping is used. Rounding 
would lead to similar though less dramatic errors.
 When two floating-point numbers are added, the mantissa of the number with the 
smaller exponent is modified so that the exponents are the same. This has the effect of align-
ing the decimal points. For example, suppose we want to add 0.1557 · 101 + 0.4381 · 10−1. 
The decimal of the mantissa of the second number is shifted to the left a number of 
places equal to the difference of the exponents [1 − (−1) = 2], as in

0.4381 · 10−1 →  0.004381 · 101

Now the numbers can be added,

0.1557     · 101

0.004381 · 101

0.160081 · 101

and the result chopped to 0.1600 · 101. Notice how the last two digits of the second 
number that were shifted to the right have essentially been lost from the computation.
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 Subtraction is performed identically to addition except that the sign of the subtrahend 
is reversed. For example, suppose that we are subtracting 26.86 from 36.41. That is,

0.3641 · 102

−0.2686 · 102

0.0955 · 102

 For this case the result is not normalized, and so we must shift the decimal one place 
to the right to give 0.9550 · 101 = 9.550. Notice that the zero added to the end of the man-
tissa is not significant but is merely appended to fill the empty space created by the shift. 
Even more dramatic results would be obtained when the numbers are very close, as in

0.7642 · 103

−0.7641 · 103

0.0001 · 103

which would be converted to 0.1000 · 100 = 0.1000. Thus, for this case, three nonsig-
nificant zeros are appended. This introduces a substantial computational error because 
subsequent manipulations would act as if these zeros were significant. As we will see in 
a later section, the loss of significance during the subtraction of nearly equal numbers 
is among the greatest source of round-off error in numerical methods.
 Multiplication and division are somewhat more straightforward than addition or sub-
traction. The exponents are added and the mantissas multiplied. Because multiplication 
of two n-digit mantissas will yield a 2n-digit result, most computers hold intermediate 
results in a double-length register. For example,

0.1363 · 103 × 0.6423 · 10−1 = 0.08754549 · 102

If, as in this case, a leading zero is introduced, the result is normalized,

0.08754549 · 102 →  0.8754549 · 101

and chopped to give

0.8754 · 101

 Division is performed in a similar manner, but the mantissas are divided and the 
exponents are subtracted. Then the results are normalized and chopped.

Large Computations. Certain methods require extremely large numbers of arithmetic 
manipulations to arrive at their final results. In addition, these computations are often 
interdependent. That is, the later calculations are dependent on the results of earlier ones. 
Consequently, even though an individual round-off error could be small, the cumulative 
effect over the course of a large computation can be significant.

 EXAMPLE 3.7 Large Numbers of Interdependent Computations
Problem Statement. Investigate the effect of round-off error on large numbers of in-
terdependent computations. Develop a program to sum a number 100,000 times. Sum 
the number 1 in single precision, and 0.00001 in single and double precision.
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Solution. Figure 3.12 shows a Fortran 90 program that performs the summation. 
Whereas the single-precision summation of 1 yields the expected result, the single- 
precision summation of 0.00001 yields a large discrepancy. This error is reduced signifi-
cantly when 0.00001 is summed in double precision.
 Quantizing errors are the source of the discrepancies. Because the integer 1 can be 
represented exactly within the computer, it can be summed exactly. In contrast, 0.00001 
cannot be represented exactly and is quantized by a value that is slightly different from 
its true value. Whereas this very slight discrepancy would be negligible for a small com-
putation, it accumulates after repeated summations. The problem still occurs in double 
precision but is greatly mitigated because the quantizing error is much smaller.

PROGRAM fig0312
IMPLICIT none
INTEGER::i
REAL::sum1, sum2, x1, x2
DOUBLE PRECISION::sum3, x3
sum1=0.
sum2=0.
sum3=0.
x1=1.
x2=1.e−5
x3=1.d−5
DO i=1,100000
  sum1=sum1+x1
  sum2=sum2+x2
  sum3=sum3+x3
END DO
PRINT *, sum1
PRINT *, sum2
PRINT *, sum3
END
output:    
100000.000000
       1.000990
  9.999999999980838E-001

FIGURE 3.12
Fortran 90 program to  
sum a number 105 times. 
The case sums the number 
1 in single precision and 
the number 10−5 in single 
and double  precision.

 Note that the type of error illustrated by the previous example is somewhat atypical 
in that all the errors in the repeated operation are of the same sign. In most cases the 
errors of a long computation alternate sign in a random fashion and, thus, often cancel 
out. However, there are also instances where such errors do not cancel but, in fact, lead 
to a spurious final result. The following sections are intended to provide insight into 
ways in which this may occur.

Adding a Large and a Small Number. Suppose we add a small number, 0.0010, to 
a large number, 4000, using a hypothetical computer with the 4-digit mantissa and the 
1-digit exponent. We modify the smaller number so that its exponent matches the larger,

0.4000  · 104

0.0000001 · 104

0.4000001 · 104
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which is chopped to 0.4000 · 104. Thus, we might as well have not performed the ad-
dition!
 This type of error can occur in the computation of an infinite series. The initial terms 
in such series are often relatively large in comparison with the later terms. Thus, after a few 
terms have been added, we are in the situation of adding a small quantity to a large quantity.
 One way to mitigate this type of error is to sum the series in reverse order—that is, 
in ascending rather than descending order. In this way, each new term will be of com-
parable magnitude to the accumulated sum (see Prob. 3.6).

Subtractive Cancellation. This term refers to the round-off induced when subtracting 
two nearly equal floating-point numbers.
 One common instance where this can occur involves finding the roots of a quadratic 
equation or parabola with the quadratic formula,

x1

x2
= −b±√b2−4ac

2a
 (3.12)

For cases where b2 ≫ 4ac, the difference in the numerator can be very small. In such 
cases, double precision can mitigate the problem. In addition, an alternative formulation 
can be used to minimize subtractive cancellation,

x1

x2
=

−2c

b ± √b2 − 4ac
 (3.13)

An illustration of the problem and the use of this alternative formula are provided in the 
following example.

 EXAMPLE 3.8 Subtractive Cancellation
Problem Statement. Compute the values of the roots of a quadratic equation with a = 1, 
b = 3000.001, and c = 3. Check the computed values versus the true roots of x1 = −0.001 
and x2 = −3000.

Solution. Figure 3.13 shows an Excel/VBA program that computes the roots x1 and 
x2 on the basis of the quadratic formula [(Eq. (3.12)]. Note that both single- and 
double-precision versions are given. Whereas the results for x2 are adequate, the 
percent relative error for x1 is significant for the single-precision version, εt = 2.4%. 
This level could be inadequate for many applied engineering problems. This result 
is particularly surprising because we are employing an analytical formula to obtain 
our solution!
 The loss of significance occurs in the line of both programs where two relatively 
large numbers are subtracted. Similar problems do not occur when the same numbers 
are added.
 On the basis of the above, we can draw the general conclusion that the quadratic 
formula will be susceptible to subtractive cancellation whenever b2 ≫ 4ac. One way to 
circumvent this problem is to use double precision. Another is to recast the quadratic 
formula in the format of Eq. (3.13). As in the program output, both options give a much 
smaller error because the subtractive cancellation is minimized or avoided.
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Option Explicit

Sub fig0313()
Dim a As Single, b As Single
Dim c As Single, d As Single
Dim x1 As Single, x2 As Single
Dim x1r As Single
Dim aa As Double, bb As Double
Dim cc As Double, dd As Double
Dim x11 As Double, x22 As Double

  'Single precision:
a = 1: b = 3000.001: c = 3
d = Sqr(b * b − 4 * a * c)
x1 = (−b + d) ∕ (2 * a)
x2 = (−b − d) ∕ (2 * a)

  'Double precision:
aa = 1: bb = 3000.001: cc = 3
dd = Sqr(bb * bb − 4 * aa * cc)
x11 = (−bb + dd) ∕ (2 * aa)
x22 = (−bb − dd) ∕ (2 * aa)

 'Modified formula for first root
 'single precision:
x1r = −2 * c ∕ (b + d)

FIGURE 3.13
Excel/VBA program to determine the roots of a quadratic.

 'Display results
Sheets("sheet1").Select
Range("b2").Select
ActiveCell.Value = x1
ActiveCell.Offset(1, 0).Select
ActiveCell.Value = x2
ActiveCell.Offset(2, 0).Select
ActiveCell.Value = x11
ActiveCell.Offset(1, 0).Select
ActiveCell.Value = x22
ActiveCell.Offset(2, 0).Select
ActiveCell.Value = x1r
End Sub

OUTPUT:

 Note that, as in the foregoing example, there are times when subtractive cancellation 
can be circumvented by using a transformation. However, the only general remedy is to 
employ extended precision.

Smearing. Smearing occurs whenever the individual terms in a summation are larger 
than the summation itself. As in the following example, one case where this occurs is 
in series of mixed signs.

 EXAMPLE 3.9 Evaluation of ex Using Infinite Series
Problem Statement. The exponential function y = ex is given by the infinite series

y = 1 + x +
x2

2
+

x3

3!
+ …

Evaluate this function for x = 10 and x = −10, and be attentive to the problems of 
round-off error.

Solution. Figure 3.14a gives an Excel/VBA program that uses the infinite series to 
evaluate ex. The variable i is the number of terms in the series, term is the value of the 
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80 APPROXIMATIONS AND ROUND-OFF ERRORS

current term added to the series, and sum is the accumulative value of the series. The 
variable test is the preceding accumulative value of the series prior to adding term. The 
series is terminated when the computer cannot detect the difference between test and sum.
 Figure 3.14b shows the results of running the program for x = 10. Note that this 
case is completely satisfactory. The final result is achieved in 31 terms with the series 
identical to the library function value within seven significant figures.
 Figure 3.14c shows similar results for x = −10. However, for this case, the results of 
the series calculation are not even the same sign as the true result. As a matter of fact, the 
negative results are open to serious question because ex can never be less than zero. The 
problem here is caused by round-off error. Note that many of the terms that make up the 
sum are much larger than the final result of the sum. Furthermore, unlike the previous 

(a) Program

Option Explicit

Sub fig0314()
Dim term As Single, test As Single  
Dim sum As Single, x As Single
Dim i As Integer
i = 0: term = 1#: sum = 1#: test = 0#
Sheets("sheet1").Select
Range("b1").Select
x = ActiveCell.Value
Range("a3:c1003").ClearContents
Range("a3").Select
Do
  If sum = test Then Exit Do
  ActiveCell.Value = i
  ActiveCell.Offset(0, 1).Select
  ActiveCell.Value = term
  ActiveCell.Offset(0, 1).Select
  ActiveCell.Value = sum
  ActiveCell.Offset(1, −2).Select
  i = i + 1
  test = sum
  term = x ^ i / _
    Application.WorksheetFunction.Fact(i)
  sum = sum + term
Loop
ActiveCell.Offset(0, 1).Select
ActiveCell.Value = "Exact value = "
ActiveCell.Offset(0, 1).Select
ActiveCell.Value = Exp(x)
End Sub

(b) Evaluation of e10

(c) Evaluation of e−10

FIGURE 3.14
(a) An Excel/VBA program to evaluate ex using an infinite series. (b) Evaluation of ex. 
(c) Evaluation of e−x.
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case, the individual terms vary in sign. Thus, in effect we are adding and subtracting large 
numbers (each with some small error) and placing great significance on the differences—
that is, subtractive cancellation. Thus, we can see that the culprit behind this example of 
smearing is, in fact, subtractive cancellation. For such cases it is appropriate to seek some 
other computational strategy. For example, one might try to compute y = e−10 as y = (e−1)10. 
Other than such a reformulation, the only general recourse is extended precision.

Inner Products. As should be clear from the last sections, some infinite series are 
particularly prone to round-off error. Fortunately, the calculation of series is not one of 
the more common operations in numerical methods. A far more ubiquitous manipulation 
is the calculation of inner products, as in

∑
n

i=1
xi yi = x1 y1 + x2 y2 + … + xn yn

This operation is very common, particularly in the solution of simultaneous linear alge-
braic equations. Such summations are prone to round-off error. Consequently, it is often 
desirable to compute such summations in extended precision.
 Although the foregoing sections should provide rules of thumb to mitigate round-off 
error, they do not provide a direct means beyond trial and error to actually determine 
the effect of such errors on a computation. In Chap. 4, we will introduce the Taylor 
series, which will provide a mathematical approach for estimating these effects.

PROBLEMS

3.1 Convert the following base-2 numbers to base-10: (a) 1011001, 
(b) 110.0101, and (c) 0.01011.
3.2 Convert the following base-8 numbers to base-10: 61,565 and 
2.71.
3.3 (a) Convert the following base-6 number to base-10:  
1203.504.
(b) Hexadecimal, or base-16, numbers are based on the digits: 0 1 
2 3 4 5 6 7 8 9 A B C D E F. Convert the following base-16 number 
to base-10: 2C.0B7.
3.4 Compose your own program based on Fig. 3.11 and use it to 
determine your computer’s machine epsilon.
3.5 In a fashion similar to that in Fig. 3.11, write a short program 
to determine the smallest number, xmin, used on the computer you 
will be employing along with this book. Note that your computer 
will be unable to reliably distinguish between zero and a quantity 
that is smaller than this number.
3.6 The infinite series

f (n) =∑
n

i=1

1
i4

converges on a value of f (n) = π4∕90 as n approaches infinity. Write 
a program in single precision to calculate f (n) for n = 10,000 by 
computing the sum from i = 1 to 10,000. Then repeat the calcula-
tion but in reverse order—that is, from i = 10,000 to 1 using incre-
ments of −1. In each case, compute the true percent relative error. 
Explain the results.
3.7 Evaluate e−5 using two approaches,

e−x = 1 − x +
x2

2
−

x3

3!
+ …

and

e−x =
1
ex =

1

1 + x +
x2

2
+

x3

3!
+ …

and compare with the true value of 6.737947 × 10−3. Use 20 terms 
to evaluate each series and compute true and approximate relative 
errors as terms are added.
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3.8 The derivative of f (x) = 1∕(1 − 3x2) is given by

6x

(1 − 3x2)2

Do you expect to have difficulties evaluating this function at  
x = 0.577? Try it using 3- and 4-digit arithmetic with chopping.
3.9 (a) Evaluate the polynomial

y = x3 − 7x2 + 8x + 0.35

at x = 1.37. Use 3-digit arithmetic with chopping. Evaluate the 
percent relative error.
(b) Repeat (a) but express y as

y = ( (x − 7)x + 8)x + 0.35

Evaluate the error and compare with part (a).
3.10 Calculate the random access memory (RAM) in megabytes 
necessary to store a multidimensional array that is 20 × 40 × 120. 
This array is double precision, and each value requires a 64-bit 
word. Recall that a 64-bit word = 8 bytes and 1 kilobyte = 210 bytes. 
Assume that the index starts at 1.

3.11 Determine the number of terms necessary to approximate sin x 
to 8 significant figures using the Maclaurin series approximation,

 sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− …

Calculate the approximation using a value of x = 0.3π. Write a 
program to determine your result.
3.12 Use 5-digit arithmetic with chopping to determine the roots 
of the following equation with Eqs. (3.12) and (3.13):

x2 − 5000.002x + 10

Compute percent relative errors for your results.
3.13 How can the machine epsilon be employed to formulate a 
stopping criterion εs for your programs? Provide an example.
3.14 The “divide and average” method, an old-time method for 
approximating the square root of any positive number a, can be 
formulated as

x =
x + a∕x

2
Write a well-structured function to implement this algorithm based 
on the algorithm outlined in Fig. 3.3. Test it for a = 25.
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C H A P T E R

4
Truncation Errors and  
the Taylor Series

Truncation errors are those that result from using an approximation in place of an 
exact mathematical procedure. For example, in Chap. 1 we approximated the deriva-
tive of velocity of a falling parachutist by a finite-divided-difference equation of the 
form [Eq. (1.11)]

dυ

dt
 ≅ 

Δυ

Δt
=

υ(ti+1) − υ(ti)
ti+1 − ti

 (4.1)

A truncation error was introduced into the numerical solution because the difference 
equation only approximates the true value of the derivative (recall Fig. 1.4). In order to 
gain insight into the properties of such errors, we now turn to a mathematical formulation 
that is used widely in numerical methods to express functions in an approximate  fashion—
the Taylor series.

 4.1 THE TAYLOR SERIES
Taylor’s theorem (Box 4.1) and its associated formula, the Taylor series, are of great 
value in the study of numerical methods. In essence, the Taylor series provides a means 
to predict a function value at one point in terms of the function value and its deriva-
tives at another point. In particular, the theorem states that any smooth function can 
be approximated as a polynomial.
 A useful way to gain insight into the Taylor series is to build it term by term. For 
example, the first term in the series is

f(xi+1) ≅  f(xi) (4.2)

This relationship, called the zero-order approximation, indicates that the value of f at the 
new point is the same as its value at the old point. This result makes intuitive sense 
because if xi and xi+1 are close to each other, it is likely that the new value is probably 
similar to the old value.
 Equation (4.2) provides a perfect estimate if the function being approximated is, in 
fact, a constant. However, if the function changes at all over the interval, additional terms 
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84 TRUNCATION ERRORS AND THE TAYLOR SERIES

 Box 4.1 Taylor’s Theorem

Taylor’s Theorem
If the function f and its first n + 1 derivatives are continuous on 
an interval containing a and x, then the value of the function at 
x is given by

f(x) = f(a) + f ′(a) (x − a) +
f ″(a)

2!
(x − a)2

   +
f (3)(a)

3!
(x − a)3 + …

   +
f (n)(a)

n!
(x − a)n + Rn (B4.1.1)

where the remainder Rn is defined as

Rn = ∫ x

a

 
(x − t)n

n!
 f (n+1)(t)dt (B4.1.2)

where t = a dummy variable. Equation (B4.1.1) is called the 
Taylor series or Taylor’s formula. If the remainder is omitted, 
the right side of Eq. (B4.1.1) is the Taylor polynomial approxi-
mation to f(x). In essence, the theorem states that any smooth 
function can be approximated as a polynomial.
 Equation (B4.1.2) is but one way, called the integral form, by 
which the remainder can be expressed. An alternative formulation 
can be derived on the basis of the integral mean-value theorem.

First Theorem of Mean for Integrals
If the function g is continuous and integrable on an interval con-
taining a and x, then there exists a point ξ between a and x such that

∫ x

a

g(t) dt = g(ξ) (x − a) (B4.1.3)

In other words, this theorem states that the integral can be rep-
resented by an average value for the function g(ξ) times the in-
terval length x − a. Because the average must occur between the 
minimum and maximum values for the interval, there is a point 
x = ξ at which the function takes on the average value.
 The first theorem is in fact a special case of a second mean-
value theorem for integrals.

Second Theorem of Mean for Integrals
If the functions g and h are continuous and integrable on an in-
terval containing a and x, and h does not change sign in the in-
terval, then there exists a point ξ between a and x such that

∫ x

a

g(t)h(t)dt = g(ξ) ∫ x

a

h(t) dt (B4.1.4)

Thus, Eq. (B4.1.3) is equivalent to Eq. (B4.1.4) with h(t) = 1.
 The second theorem can be applied to Eq. (B4.1.2) with

g(t) = f (n+1)(t)  h(t) =
(x − t)n

n!

As t varies from a to x, h(t) is continuous and does not change 
sign. Therefore, if f (n+1)(t) is continuous, then the integral mean-
value theorem holds and

Rn =
f (n+1)(ξ)
(n + 1)!

(x − a)n+1

This equation is referred to as the derivative, or Lagrange, form 
of the remainder.

of the Taylor series are required to provide a better estimate. For example, the first-order 
approximation is developed by adding another term to yield

f(xi+1)  ≅  f(xi) + f ′(xi) (xi+1 − xi) (4.3)

The additional first-order term consists of a slope f ′(xi) multiplied by the difference between 
xi+1 and xi. Thus, the expression is now in the form of a straight line and is capable of 
predicting an increase or decrease of the function between xi and xi+1.
 Although Eq. (4.3) can predict a change, it is exact only for a straight-line, or linear, 
trend. Therefore, a second-order term is added to the series to capture some of the cur-
vature that the function might exhibit:

f(xi+1) ≅  f(xi) + f ′(xi) (xi+1 − xi) +
f ″(xi)

2!
 (xi+1 − xi)2 (4.4)
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In a similar manner, additional terms can be included to develop the complete Taylor 
series expansion:

f(xi+1) = f(xi) + f ′(xi) (xi+1 − xi) +
f ″(xi)

2!
(xi+1 − xi)2

     +
f (3)(xi)

3!
 (xi+1 − xi)3 + … +

f (n)(xi)
n!

 (xi+1 − xi)n + Rn (4.5)

Note that because Eq. (4.5) is an infinite series, an equal sign replaces the approximate 
sign that was used in Eqs. (4.2) through (4.4). A remainder term is included to account 
for all terms from n + 1 to infinity:

Rn =
f (n+1)(ξ)
(n + 1)!

 (xi+1 − xi)n+1 (4.6)

where the subscript n connotes that this is the remainder for the nth-order approximation 
and ξ is a value of x that lies somewhere between xi and xi+1. The introduction of the ξ 
is so important that we will devote an entire section (Sec. 4.1.1) to its derivation. For 
the time being, it is sufficient to recognize that there is such a value that provides an 
exact determination of the error.
 It is often convenient to simplify the Taylor series by defining a step size h = xi+1 − xi 
and expressing Eq. (4.5) as

f(xi+1) = f(xi) + f ′(xi)h +
f ″(xi)

2!
 h2 +

f (3)(xi)
3!

 h3 + … +
f n(xi)

n!
 hn + Rn (4.7)

where the remainder term is now

Rn =
f (n+1)(ξ)
(n + 1)!

 hn+1 (4.8)

 EXAMPLE 4.1 Taylor Series Approximation of a Polynomial
Problem Statement. Use zero- through fourth-order Taylor series expansions to approx-
imate the function

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

from xi = 0 with h = 1. That is, predict the function’s value at xi+1 = 1.

Solution. Because we are dealing with a known function, we can compute values for 
f(x) between 0 and 1. The results (Fig. 4.1) indicate that the function starts at f (0) = 1.2 
and then curves downward to f (1) = 0.2. Thus, the true value that we are trying to pre-
dict is 0.2.
 The Taylor series approximation with n = 0 is [Eq. (4.2)]

f(xi+1) ≅ 1.2
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Thus, as in Fig. 4.1, the zero-order approximation is a constant. Using this formulation 
results in a truncation error [recall Eq. (3.2)] of

Et = 0.2 − 1.2 = −1.0

at x = 1.
 For n = 1, the first derivative must be determined and evaluated at x = 0:

f ′(0) = −0.4(0.0)3 − 0.45(0.0)2 − 1.0(0.0) − 0.25 = −0.25

Therefore, the first-order approximation is [Eq. (4.3)]

f(xi+1) ≅ 1.2 − 0.25h

which can be used to compute f(1) = 0.95. Consequently, the approximation begins to 
capture the downward trajectory of the function in the form of a sloping straight line 
(Fig. 4.1). This results in a reduction of the truncation error to

Et = 0.2 − 0.95 = −0.75

 For n = 2, the second derivative is evaluated at x = 0:

f ″(0) = −1.2(0.0)2 − 0.9(0.0) − 1.0 = −1.0

 Therefore, according to Eq. (4.4),

f(xi+1) ≅ 1.2 − 0.25h − 0.5h2

and substituting h = 1, f (1) = 0.45. The inclusion of the second derivative now adds 
some downward curvature resulting in an improved estimate, as seen in Fig. 4.1. The 
truncation error is reduced further to 0.2 − 0.45 = −0.25.

FIGURE 4.1
The approximation of f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2 at x = 1 by zero- order, 
 first-order, and second-order Taylor series expansions.

Second order 

First order 

True 

f (x)

1.0

0.5

0
xi = 0 xi + 1 = 1 x

f (xi + 1)

f (xi + 1) ≅ f (xi) + f ′(xi)h + h2

h

f ″(xi)
2!

f (xi + 1) ≅ f (xi) + f ′(xi)h

f (xi + 1) ≅ f (xi)
f (xi) Zero order
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 Additional terms would improve the approximation even more. In fact, the inclusion 
of the third and the fourth derivatives results in exactly the same equation we started with:

f(x) = 1.2 − 0.25h − 0.5h2 − 0.15h3 − 0.1h4

where the remainder term is

R4 =
f (5)(ξ)

5!
 h5 = 0

because the fifth derivative of a fourth-order polynomial is zero. Consequently, the Taylor 
series expansion to the fourth derivative yields an exact estimate at xi+1 = 1:

f(1) = 1.2 − 0.25(1) − 0.5(1)2 − 0.15(1)3 − 0.1(1)4 = 0.2

 In general, the nth-order Taylor series expansion will be exact for an nth-order 
polynomial. For other differentiable and continuous functions, such as exponentials and 
sinusoids, a finite number of terms will not yield an exact estimate. Each additional term 
will contribute some improvement, however slight, to the approximation. This behavior 
will be demonstrated in Example 4.2. Only if an infinite number of terms are added will 
the series yield an exact result.
 Although the above is true, the practical value of Taylor series expansions is that, 
in most cases, the inclusion of only a few terms will result in an approximation that is 
close enough to the true value for practical purposes. The assessment of how many terms 
are required to get “close enough” is based on the remainder term of the expansion. 
Recall that the remainder term is of the general form of Eq. (4.8). This relationship has 
two major drawbacks. First, ξ is not known exactly but merely lies somewhere between 
xi and xi+1. Second, to evaluate Eq. (4.8), we need to determine the (n + 1)th derivative 
of f(x). To do this, we need to know f(x). However, if we knew f(x), there would be no 
need to perform the Taylor series expansion in the present context!
 Despite this dilemma, Eq. (4.8) is still useful for gaining insight into truncation errors. 
This is because we do have control over the term h in the equation. In other words, we 
can choose how far away from x we want to evaluate f(x), and we can control the number 
of terms we include in the expansion. Consequently, Eq. (4.8) is usually expressed as

Rn = O(hn+1)
where the nomenclature O(hn+1) means that the truncation error is of the order of hn+1. That 
is, the error is proportional to the step size h raised to the (n + l)th power. Although this 
approximation implies nothing regarding the magnitude of the derivatives that multiply hn+1, 
it is extremely useful in judging the comparative error of numerical methods based on Taylor 
series expansions. For example, if the error is O(h), halving the step size will halve the error. 
On the other hand, if the error is O(h2), halving the step size will quarter the error.
 In general, we can usually assume that the truncation error is decreased by the addition 
of terms to the Taylor series. In many cases, if h is sufficiently small, the first- and other 
lower-order terms usually account for a disproportionately high percent of the error. Thus, 
only a few terms are required to obtain an adequate estimate. This property is illustrated 
by the following example.
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 EXAMPLE 4.2  Use of Taylor Series Expansion to Approximate a Function with 
an Infinite Number of Derivatives
Problem Statement. Use Taylor series expansions with n = 0 to 6 to approximate  
f(x) = cos x at xi+1 = π∕3 on the basis of the value of f(x) and its derivatives at xi = 
π∕4. Note that this means that h = π∕3 − π∕4 = π∕12.

Solution. As with Example 4.1, our knowledge of the true function means that we can 
determine the correct value, f(π∕3) = 0.5.
 The zero-order approximation is [Eq. (4.3)]

f (
π

3) ≅ cos (
π

4) = 0.707106781

which represents a percent relative error of

εt =
0.5 − 0.707106781

0.5
100% = −41.4%

For the first-order approximation, we add the first derivative term where f ′(x) = −sin x:

f (
π

3) ≅ cos (
π

4) − sin (
π

4) (
π

12) = 0.521986659

which has εt = −4.40%.
 For the second-order approximation, we add the second derivative term where  
f ″(x) = −cos x:

f (
π

3) ≅ cos (
π

4) − sin (
π

4) (
π

12) −
cos(π∕4)

2
 (

π

12)
2

= 0.497754491

with εt = 0.449%. Thus, the inclusion of additional terms results in an improved estimate.
 The process can be continued and the results listed, as in Table 4.1. Notice that the 
derivatives never go to zero, as was the case with the polynomial in Example 4.1. There-
fore, each additional term results in some improvement in the estimate. However, also 
notice how most of the improvement comes with the initial terms. For this case, by the 
time we have added the third-order term, the error is reduced to 2.62 × 10−2 percent, 

TABLE 4.1  Taylor series approximation of f (x) = cos x at xi+1 = π∕3 using a base point 
of π∕4. Values are shown for various orders (n) of approximation.

Order n f (n)(x) f (π/3) εt

 0 cos x 0.707106781 −41.4
 1 −sin x 0.521986659 −4.4
 2 −cos x 0.497754491 0.449
 3 sin x 0.499869147 2.62 × 10−2

 4 cos x 0.500007551 −1.51  × 10−3

 5 −sin x 0.500000304 −6.08 × 10−5

 6 −cos x 0.499999988 2.44 × 10−6
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4.1.1 The Remainder for the Taylor Series Expansion
Before demonstrating how the Taylor series is actually used to estimate numerical errors, 
we must explain why we included the argument ξ in Eq. (4.8). A mathematical derivation 
is presented in Box 4.1. We will now develop an alternative exposition based on a some-
what more visual interpretation. Then we can extend this specific case to the more 
general formulation.
 Suppose that we truncated the Taylor series expansion [Eq. (4.7)] after the zero-
order term to yield

f(xi+1) ≅  f(xi)

A visual depiction of this zero-order prediction is shown in Fig. 4.2. The remainder, or 
error, of this prediction, which is also shown in the illustration, consists of the infinite 
series of terms that were truncated:

R0 = f ′(xi)h +
f ″(xi)

2!
 h2 +

f (3)(xi)
3!

 h3 + …

 It is obviously inconvenient to deal with the remainder in this infinite series format. 
One simplification might be to truncate the remainder itself, as in

R0 ≅  f ′(xi)h (4.9)

FIGURE 4.2
Graphical depiction of a zero-order Taylor series prediction and remainder.

Zero-order prediction 

Exact prediction 

f (x)

xi xi + 1 x

h

f (xi)

R0

which means that we have attained 99.9738% of the true value. Consequently, although 
the addition of more terms will reduce the error further, the improvement becomes 
negligible.
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Although, as stated in the previous section, lower-order derivatives usually account for 
a greater share of the remainder than the higher-order terms, this result is still inexact 
because of the neglected second- and higher-order terms. This “inexactness” is implied 
by the approximate equality symbol (≅) employed in Eq. (4.9).
 An alternative simplification that transforms the approximation into an equivalence 
is based on a graphical insight. As in Fig. 4.3, the derivative mean-value theorem states 
that if a function f(x) and its first derivative are continuous over an interval from xi to 
xi+1, then there exists at least one point on the function that has a slope, designated by 
f′(ξ), that is parallel to the line joining f(xi) and f(xi+1). The parameter ξ marks the x 
value where this slope occurs (Fig. 4.3). A physical illustration of this theorem is that, 
if you travel between two points with an average velocity, there will be at least one mo-
ment during the course of the trip when you will be moving at that average velocity.
 By invoking this theorem, it is simple to realize that, as illustrated in Fig. 4.3, the 
slope f′(ξ) is equal to the rise R0 divided by the run h, or

f ′(ξ) =
R0

h

which can be rearranged to give

R0 = f ′(ξ)h (4.10)

Thus, we have derived the zero-order version of Eq. (4.8). The higher-order versions are merely 
a logical extension of the reasoning used to derive Eq. (4.10). The first-order version is

R1 =
f ″(ξ)

2!
h2 (4.11)

FIGURE 4.3
Graphical depiction of the derivative mean-value theorem.

f (x)

xi xi + 1ξ x

h

R0

Slope =  f ′(ξ)

Slope =
R0
h
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For this case, the value of ξ conforms to the x value corresponding to the second derivative 
that makes Eq. (4.11) exact. Similar higher-order versions can be developed from Eq. (4.8).

4.1.2 Using the Taylor Series to Estimate Truncation Errors
Although the Taylor series will be extremely useful in estimating truncation errors 
throughout this book, it may not be clear to you how the expansion can actually be 
applied to numerical methods. In fact, we have already done so in our example of the 
falling parachutist. Recall that the objective of both Examples 1.1 and 1.2 was to pre-
dict velocity as a function of time. That is, we were interested in determining υ(t). As 
specified by Eq. (4.5), υ(t) can be expanded in a Taylor series:

υ(ti+1) = υ(ti) + υ′(ti) (ti+1 − ti) +
υ″(ti)

2!
 (ti+1 − ti)2 + … + Rn (4.12)

Now let us truncate the series after the first derivative term:

υ(ti+1) = υ(ti) + υ′(ti) (ti+1 − ti) + R1 (4.13)

 Equation (4.13) can be solved for

υ′(ti) =
υ(ti+1) − υ(ti)

ti+1 − ti

−
R1

ti+1 − ti

 (4.14)

 First-order Truncation 
 approximation error

The first part of Eq. (4.14) is exactly the same relationship that was used to approximate 
the derivative in Example 1.2 [Eq. (1.11)]. However, because of the Taylor series ap-
proach, we have now obtained an estimate of the truncation error associated with this 
approximation of the derivative. Using Eqs. (4.6) and (4.14) yields

R1

ti+1 − ti

=
υ″(ξ)

2!
(ti+1 − ti) (4.15)

or

R1

ti+1 − ti

= O(ti+1 − ti) (4.16)

Thus, the estimate of the derivative [Eq. (1.11) or the first part of Eq. (4.14)] has a trun-
cation error of order ti+1 − ti. In other words, the error of our derivative approximation 
should be proportional to the step size. Consequently, if we halve the step size, we would 
expect to halve the error of the derivative.

 EXAMPLE 4.3  The Effect of Nonlinearity and Step Size on the Taylor Series 
Approximation
Problem Statement. Figure 4.4 is a plot of the function

f(x) = xm (E4.3.1)

for m = 1, 2, 3, and 4 over the range from x = 1 to 2. Notice that for m = 1 the function 
is linear, and as m increases, more curvature or nonlinearity is introduced into the function. 
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FIGURE 4.4
Plot of the function f (x) = xm for m = 1, 2, 3, and 4. Notice that the function becomes more 
nonlinear as m increases.

1
0

5

10

15

2 x

f (x)

m = 2 

m
 = 

3 

m
 = 

4 

m = 1 

Employ the first-order Taylor series to approximate this function for various values of the 
exponent m and the step size h.

Solution. Equation (E4.3.1) can be approximated by a first-order Taylor series expansion, 
as in

f(xi+1) = f(xi) + mx 

m−1
i h (E4.3.2)

which has a remainder

R1 =
f ″(xi)

2!
 h2 +

f  
(3)(xi)
3!

 h3 +
f  

(4)(xi)
4!

 h4 + …

First, we can examine how the approximation performs as m increases—that is, as the func-
tion becomes more nonlinear. For m = 1, the actual value of the function at x = 2 is 2.  
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The Taylor series yields

f(2) = 1 + 1(1) = 2

and

R1 = 0

The remainder is zero because the second and higher derivatives of a linear function 
are zero. Thus, as expected, the first-order Taylor series expansion is perfect when the 
underlying function is linear.
 For m = 2, the actual value is f (2) = 22 = 4. The first-order Taylor series ap-
proximation is

f(2) = 1 + 2(1) = 3

and

R1 = 2
2(1)2 + 0 + 0 + … = 1

Thus, because the function is a parabola, the straight-line approximation results in a 
discrepancy. Note that the remainder is determined exactly.
 For m = 3, the actual value is f(2) = 23 = 8. The Taylor series approximation is

f(2) = 1 + 3(1)2(1) = 4

and

R1 = 6
2(1)2 + 6

6(1)3 + 0 + 0 + … = 4

Again, there is a discrepancy that can be determined exactly from the Taylor series.
 For m = 4, the actual value is f(2) = 24 = 16. The Taylor series approximation is

f(2) = 1 + 4(1)3(1) = 5

and

R1 = 12
2 (1)2 + 24

6 (1)3 + 24
24(1)4 + 0 + 0 + … = 11

 On the basis of these four cases, we observe that R1 increases as the function be-
comes more nonlinear. Furthermore, R1 accounts exactly for the discrepancy. This is 
because Eq. (E4.3.1) is a simple monomial with a finite number of derivatives. This 
permits a complete determination of the Taylor series remainder.
 Next, we will examine Eq. (E4.3.2) for the case m = 4 and observe how R1 changes 
as the step size h is varied. For m = 4, Eq. (E4.3.2) is

f(x + h) = f(x) + 4x 

3
i h

If x = 1, f(1) = 1 and this equation can be expressed as

f(1 + h) = 1 + 4h

with a remainder of

R1 = 6h2 + 4h3 + h4
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This leads to the conclusion that the discrepancy will decrease as h is reduced. Also, at 
sufficiently small values of h, the error should become proportional to h2. That is, as h is 
halved, the error will be quartered. This behavior is confirmed by Table 4.2 and Fig. 4.5.
 Thus, we conclude that the error of the first-order Taylor series approximation 
 decreases as m approaches 1 and as h decreases. Intuitively, this means that the Taylor 

FIGURE 4.5
Log-log plot of the remainder R1 of the first-order Taylor series approximation of the function  
f (x) = x4 versus step size h. A line with a slope of 2 is also shown to indicate that as h decreases, 
the  error becomes proportional to h2.

∣Slope∣ = 2

0.11
0.001

0.01

0.1

1

10

0.01 h

R1

TABLE 4.2  Comparison of the exact value of the function f (x) = x4 with the first-order 
Taylor series approximation. Both the function and the approximation are 
evaluated at x + h, where x = 1.

  First-Order 
h Exact Value Approximation R1

1 16 5 11
0.5 5.0625 3 2.0625
0.25 2.441406 2 0.441406
0.125 1.601807 1.5 0.101807
0.0625 1.274429 1.25 0.024429
0.03125 1.130982 1.125 0.005982
0.015625 1.063980 1.0625 0.001480
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series becomes more accurate when the function we are approximating becomes more like 
a straight line over the interval of interest. This can be accomplished either by reducing 
the size of the interval or by “straightening” the function by reducing m. Obviously, the 
latter option is usually not available in the real world because the functions we analyze 
are typically dictated by the physical problem context. Consequently, we do not have 
control of their lack of linearity, and our only recourse is reducing the step size or includ-
ing additional terms in the Taylor series expansion.

4.1.3 Numerical Differentiation
Equation (4.14) is given a formal label in numerical methods—it is called a finite divided 
difference. It can be represented generally as

f ′(xi) =
f(xi+1) − f(xi)

xi+1 − xi
+ O(xi+1 − xi) (4.17)

or

f ′(xi) =
Δfi

h
+ O(h) (4.18)

where Δfi is referred to as the first forward difference and h is called the step size, that is, 
the length of the interval over which the approximation is made. It is termed a “forward” 
difference because it utilizes data at i and i + 1 to estimate the derivative (Fig. 4.6a). The 
entire term Δf∕h is referred to as a first finite divided difference.
 This forward divided difference is but one of many that can be developed from the 
Taylor series to approximate derivatives numerically. For example, backward and centered 
difference approximations of the first derivative can be developed in a fashion similar to 
the derivation of Eq. (4.14). The former utilizes values at xi−1 and xi (Fig. 4.6b), whereas 
the latter uses values that are equally spaced around the point at which the derivative is 
estimated (Fig. 4.6c). More accurate approximations of the first derivative can be devel-
oped by including higher-order terms of the Taylor series. Finally, all the above versions 
can also be developed for second, third, and higher derivatives. The following sections 
provide brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can 
be expanded backward to calculate a previous value on the basis of a present value, as in

f(xi−1) = f(xi) − f ′(xi)h +
f ″(xi)

2!
 h2 − … (4.19)

Truncating this equation after the first derivative and rearranging yields

f ′(xi) ≅  
f(xi) − f(xi−1)

h
=

∇ fi

h
 (4.20)

where the error is O(h), and ∇ fi is referred to as the first backward difference. See Fig. 4.6b 
for a graphical representation.
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FIGURE 4.6
Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-difference 
 approximations of the first derivative.
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Centered Difference Approximation of the First Derivative. A third way to approx-
imate the first derivative is to subtract Eq. (4.19) from the forward Taylor series expansion:

f (xi+1) = f (xi) + f ′(xi)h +
f ″(xi)

2!
 h2 + … (4.21)

to yield

f (xi+1) = f (xi−1) + 2f ′(xi)h +
2f  

(3)(xi)
3!

 h3 + …

which can be solved for

f ′(xi) =
f (xi+1) − f (xi−1)

2h
−

f  
(3)(xi)

6
 h2 − …

or

f ′(xi) =
f (xi+1) − f (xi−1)

2h
− O(h2) (4.22)

Equation (4.22) is a centered difference representation of the first derivative. Notice that 
the truncation error is of the order of h2 in contrast to the forward and backward 
 approximations that were of the order of h. Consequently, the Taylor series analysis yields 
the practical information that the centered difference is a more accurate representation 
of the derivative (Fig. 4.6c). For example, if we halve the step size using a forward or 
backward difference, we would approximately halve the truncation error, whereas for the 
central difference, the error would be quartered.

 EXAMPLE 4.4 Finite-Divided-Difference Approximations of Derivatives
Problem Statement. Use forward and backward difference approximations of O(h) and 
a centered difference approximation of O(h2) to estimate the first derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.25

at x = 0.5 using a step size of h = 0.5. Repeat the computation using h = 0.25. Note 
that the derivative can be calculated directly as

f ′(x) = −0.4x3 − 0.45x2 − 1.0x − 0.25

and can be used to compute the true value as f′(0.5) = −0.9125.

Solution. For h = 0.5, the function can be employed to determine

xi−1 = 0  f (xi−1) = 1.2
xi      = 0.5  f (xi)    = 0.925
xi+1 = 1.0  f (xi+1) = 0.2

These values can be used to compute the forward divided difference [Eq. (4.17)],

f  ′(0.5) ≅ 
0.2 − 0.925

0.5
= −1.45  ∣εt∣ = 58.9%
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the backward divided difference [Eq. (4.20)],

f ′(0.5) ≅ 
0.925 − 1.2

0.5
= −0.55  ∣εt∣ = 39.7%

and the centered divided difference [Eq. (4.22)],

f ′(0.5) ≅ 
0.2 − 1.2

1.0
= −1.0  ∣εt∣ = 9.6%

For h = 0.25,

xi−1 = 0.25  f (xi−1) = 1.10351563
xi      = 0.5  f (xi)    = 0.925
xi+1 = 0.75  f (xi+1) = 0.63632813

which can be used to compute the forward divided difference,

f ′(0.5) ≅ 
0.63632813 − 0.925

0.25
= −1.155  ∣εt∣ = 26.5%

the backward divided difference,

f ′(0.5) ≅ 
0.925 − 1.10351563

0.25
= −0.714  ∣εt∣ = 21.7%

and the centered divided difference,

f ′(0.5) ≅ 
0.63632813 − 1.10351563

0.5
= −0.934  ∣εt∣ = 2.4%

 For both step sizes, the centered difference approximation is more accurate than 
forward or backward differences. Also, as predicted by the Taylor series analysis, halving 
the step size approximately halves the error of the backward and forward differences and 
quarters the error of the centered difference.

Finite Difference Approximations of Higher Derivatives. Besides first derivatives, 
the Taylor series expansion can be used to derive numerical estimates of higher deriva-
tives. To do this, we write a forward Taylor series expansion for f(xi+2) in terms of f(xi):

f (xi+2) = f (xi) + f ′(xi) (2h) +
f ″(xi)

2!
(2h)2 + … (4.23)

Equation (4.21) can be multiplied by 2 and subtracted from Eq. (4.23) to give

f (xi+2) − 2f (xi+1) = −f (xi) + f ″(xi)h2 + …

which can be solved for

f ″(xi) =
f (xi+2) − 2f (xi+1) + f (xi)

h2 + O(h) (4.24)
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This relationship is called the second forward finite divided difference. Similar manipu-
lations can be employed to derive a backward version,

f ″(xi) =
f (xi) − 2f (xi−1) + f (xi−2)

h2 + O(h)

and a centered version,

f ″(xi) =
f (xi+1) − 2f (xi) + f (xi−1)

h2 + O(h2)

As was the case with the first-derivative approximations, the centered difference is more 
accurate. Notice also that the centered version can be alternatively expressed as

f ″(xi) ≅ 

f (xi+1) − f (xi)
h

−
f (xi) − f (xi−1)

h

h

Thus, just as the second derivative is a derivative of a derivative, the second divided 
difference approximation is a difference of two first divided differences.
 We will return to the topic of numerical differentiation in Chap. 23. We have intro-
duced you to the topic at this point because it is a very good example of why the Taylor 
series is important in numerical methods. In addition, several of the formulas introduced 
in this section will be employed prior to Chap. 23.

 4.2 ERROR PROPAGATION
The purpose of this section is to study how errors in numbers can propagate through 
mathematical functions. For example, if we multiply two numbers that have errors, we 
would like to estimate the error in the product.

4.2.1 Functions of a Single Variable
Suppose that we have a function f(x) that is dependent on a single independent variable x. 
Assume that x∼ is an approximation of x. We, therefore, would like to assess the effect 
of the discrepancy between x and x∼ on the value of the function. That is, we would like 
to estimate

Δ f ( x∼) = ∣  f (x) − f ( x∼)∣

The problem with evaluating Δ f( x∼) is that f(x) is unknown because x is unknown. We 
can overcome this difficulty if x∼ is close to x and f( x∼) is continuous and differentiable. 
If these conditions hold, a Taylor series can be employed to compute f(x) near f( x∼), as in

f(x) = f( x∼) + f ′( x∼)(x − x∼) +
f ″( x∼)

2
(x − x∼)2 + …

Dropping the second- and higher-order terms and rearranging yields

f (x) − f ( x∼) ≅  f ′( x∼)(x − x∼)
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or

Δ f ( x∼) = ∣ f ′( x∼)∣Δx∼ (4.25)

where Δ f ( x∼) = ∣ f (x) − f ( x∼)∣ represents an estimate of the error of the function and 
Δx∼ = ∣x − x∼∣ represents an estimate of the error of x. Equation (4.25) provides the capabil-
ity to approximate the error in f(x) given the derivative of a function and an  estimate of the 
error in the independent variable. Figure 4.7 is a graphical illustration of the operation.

 EXAMPLE 4.5 Error Propagation in a Function of a Single Variable
Problem Statement. Given a value of x∼ = 2.5 with an error of Δ x∼ = 0.01, estimate 
the resulting error in the function f(x) = x3.

Solution. Using Eq. (4.25),

Δ f( x∼) ≅ 3(2.5)2(0.01) = 0.1875

Because f(2.5) = 15.625, we predict that

f (2.5) = 15.625 ± 0.1875

or that the true value lies between 15.4375 and 15.8125. In fact, if x were actually 2.49, 
the function could be evaluated as 15.4382, and if x were 2.51, it would be 15.8132. For 
this case, the first-order error analysis provides a fairly close estimate of the true error.

True error
∣ f ′(x)∣Δx

Estimated error

x x x

f (x)

Δx
FIGURE 4.7
Graphical depiction of first- 
order error propagation.
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4.2.2 Functions of More Than One Variable
The foregoing approach can be generalized to functions that are dependent on more 
than one independent variable. This is accomplished with a multivariable version of the 
Taylor series. For example, if we have a function of two independent variables u and 
υ, the Taylor series can be written as

f(ui+1, υi+1) = f(ui, υi) +
∂f

∂u
 (ui+1 − ui) +

∂f

∂υ
(υi+1 − υi)

+
1
2![

∂2 f

∂u2 (ui+1 − ui)2 + 2 

∂2 f

∂u∂υ
(ui+1 − ui) (υi+1 − υi)

+
∂2 f

∂υ2 (υi+1 − υi)2
] + … (4.26)

where all partial derivatives are evaluated at the base point i. If all second-order and 
higher terms are dropped, Eq. (4.26) can be solved for

Δ f ( u∼, υ∼) = ∣ ∂f

∂u ∣ Δu∼ + ∣ ∂f

∂υ ∣ Δυ∼

where Δu∼ and Δυ∼ = estimates of the errors in u and υ, respectively.
 For n independent variables x∼1, x∼2, … , x∼n having errors Δx∼1, Δx∼2, … , Δx∼n, the 
 following general relationship holds:

Δf ( x∼1, x∼2, … , x∼n) ≅ ∣ ∂f

∂x1
∣ Δx∼1 + ∣ ∂f

∂x2
∣ Δx∼2 + … + ∣ ∂f

∂xn
∣ Δx∼n (4.27)

 EXAMPLE 4.6 Error Propagation in a Multivariable Function
Problem Statement. The deflection y of the top of a sailboat mast is

y =
FL4

8EI

where F = a uniform side loading (N/m), L = height (m), E = the modulus of elasticity  
(N/m2), and I = the moment of inertia (m4). Estimate the error in y given the following data:

F
∼ = 750 N/m  ΔF

∼ = 30 N/m
L
∼ = 9 m  ΔL

∼ = 0.03 m
E
∼ = 7.5 × 109 N/m2  ΔE

∼ = 5 × 107 N/m2

 I∼ = 0.0005 m4  Δ I
∼ = 0.000005 m4

Solution. Employing Eq. (4.27) gives

Δy( F
∼, L∼, E∼, I

∼) = ∣ ∂y

∂F ∣ ΔF
∼ + ∣ ∂y

∂L ∣ ΔL
∼ + ∣ ∂y

∂E ∣ ΔE
∼ + ∣ ∂y

∂I ∣ Δ I
∼

or

Δy(F
∼, L∼, E∼, I

∼) ≅ 
L
∼4

8 E
∼

I
∼ ΔF

∼ +
F
∼

L
∼3

2E
∼

I
∼ ΔL

∼ +
F
∼

L
∼4

8E
∼2

 I
∼ ΔE

∼ +
F
∼

L
∼4

8 E
∼

I
∼2 ΔI

∼
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102 TRUNCATION ERRORS AND THE TAYLOR SERIES

Substituting the appropriate values gives

Δy = 0.006561 + 0.002187 + 0.001094 + 0.00164 = 0.011482

Therefore, y = 0.164025 ± 0.011482. In other words, y is between 0.152543 and  
0.175507 m. The validity of these estimates can be verified by substituting the extreme 
values for the variables into the equation to generate an exact minimum of

ymin =
720(8.97)4

8(7.55 × 109)0.000505
= 0.152818

and an exact maximum of

ymax =
780(9.03)4

8(7.45 × 109)0.000495
= 0.175790

Thus, the first-order estimates are reasonably close to the exact values.

 Equation (4.27) can be employed to define error propagation relationships for 
common mathematical operations. The results are summarized in Table 4.3. We will 
leave the derivation of these formulas as a homework exercise.
 In addition, note that the first-order error analysis provides an upper bound on the 
impact of parameter uncertainties on computations. That is, it generates an estimate of 
the range (i.e., maximum minus minimum) of possible results. In the Introduction to Part 
Five, we will describe more advanced Monte Carlo methods that yield superior uncer-
tainty estimates. Nevertheless, the first-order error analysis described here does provide 
a nice illustration of how the Taylor Series can be employed to quantify the sensitivity 
of computations to uncertainties.

4.2.3 Stability and Condition
The condition of a mathematical problem relates to its sensitivity to changes in its input 
values. We say that a computation is numerically unstable if the uncertainty of the input 
values is grossly magnified by the numerical method.
 These ideas can be studied using a first-order Taylor series:

f (x) = f ( x∼) + f ′( x∼)(x − x∼)

This relationship can be employed to estimate the relative error of f(x) as in

f (x) − f ( x∼)
f (x)

 ≅ 
f ′( x∼)(x − x∼)

f ( x∼)

The relative error of x is given by

x − x∼

x∼
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 4.2 ERROR PROPAGATION 103

A condition number can be defined as the ratio of these relative errors

Condition number =
x ∼f ′( x∼)
f ( x∼)

 (4.28)

The condition number provides a measure of the extent to which an uncertainty in x is 
magnified by f(x). A value of 1 tells us that the function’s relative error is identical to the 
relative error in x. A value greater than 1 tells us that the relative error is amplified, whereas 
a value less than 1 tells us that it is attenuated. Functions with very large values are said to 
be ill-conditioned. Any combination of factors in Eq. (4.28) that increases the numerical 
value of the condition number will tend to magnify uncertainties in the computation of f(x).

 EXAMPLE 4.7 Condition Number
Problem Statement. Compute and interpret the condition number for

 f(x) = tan x  for x∼ =
π

2
+ 0.1 (

π

2)

 f(x) = tan x  for x∼ =
π

2
+ 0.01 (

π

2)

Solution. The condition number is computed as

Condition number =
x∼(1∕cos2 x)

tan x∼

For x∼ = π∕2 + 0.1(π∕2),

Condition number =
1.7279(40.86)

−6.314
= −11.2

Thus, the function is ill-conditioned. For x∼ = π∕2 + 0.01(π∕2), the situation is even 
worse:

Condition number =
1.5865(4053)

−63.66
= −101

For this case, the major cause of ill conditioning appears to be the derivative. This makes sense 
because in the vicinity of π∕2, the tangent approaches both positive and negative infinity.

TABLE 4.3  Estimated error bounds associated with common 
mathematical operations using inexact numbers u∼ and v∼.

Operation  Estimated Error

Addition Δ(u∼ + v∼)  Δ u∼ + Δ v∼
Subtraction Δ( u∼ − v∼)  Δ u∼ + Δ v∼
Multiplication Δ( u∼ × v∼)  ∣u∼∣Δ v∼ + ∣ v∼∣Δ u∼

Division Δ (
u∼

v∼) 
∣u∼∣Δ v∼ + ∣ v∼∣Δ u∼

∣ v∼∣2
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104 TRUNCATION ERRORS AND THE TAYLOR SERIES

 4.3 TOTAL NUMERICAL ERROR
The total numerical error is the summation of the truncation and round-off errors. In 
general, the only way to minimize round-off errors is to increase the number of significant 
figures of the computer. Further, we have noted that round-off error will increase due to 
subtractive cancellation or due to an increase in the number of computations in an analy-
sis. In contrast, Example 4.4 demonstrated that the truncation error can be reduced by 
decreasing the step size. Because a decrease in step size can lead to subtractive cancella-
tion or to an increase in computations, the truncation errors are decreased as the round-off 
errors are increased. Therefore, we are faced by the following dilemma: The strategy for 
decreasing one component of the total error leads to an increase of the other component. 
In a computation, we could conceivably decrease the step size to minimize truncation 
error only to discover that in doing so, the round-off error begins to dominate the solution 
and the total error grows! Thus, our remedy becomes our problem (Fig. 4.8). One chal-
lenge that we face is to determine an appropriate step size for a particular computation. 
We would like to choose a large step size in order to decrease the amount of calculations 
and round-off errors without incurring the penalty of a large truncation error. If the total 
error is as shown in Fig. 4.8, the challenge is to identify the point of diminishing returns 
where round-off error begins to negate the benefits of step-size reduction.
 In actual cases, however, such situations are relatively uncommon because most 
computers carry enough significant figures that round-off errors do not predominate. 
Nevertheless, they sometimes do occur and suggest a sort of “numerical uncertainty 
principle” that places an absolute limit on the accuracy that may be obtained using 
certain computerized numerical methods. We explore such a case in the following 
section.

FIGURE 4.8
A graphical depiction of the trade-off between round-off and truncation error that sometimes 
comes into play in the course of a numerical method. The point of diminishing returns is 
shown, where round-off error begins to negate the benefits of step-size reduction.
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 4.3 TOTAL NUMERICAL ERROR 105

4.3.1 Error Analysis of Numerical Differentiation
As described in the Sec. 4.1.3, a centered difference approximation of the first derivative 
can be written as (Eq. 4.22):

f ′(xi) =
f(xi+1) − f(xi−1)

2h
−

f 
(3)(ξ)

6
 h2 (4.29)

True Finite-difference Truncation
value approximation error

Thus, if the two function values in the numerator of the finite-difference approximation 
have no round-off error, the only error is due to truncation.
 However, because we are using digital computers, the function values do include 
round-off error as in

f(xi−1) = f
∼(xi−1) + ei−1

f(xi+1) = f
∼(xi+1) + ei+1

where the f
∼’s  are the rounded function values and the e’s are the associated round-off 

errors. Substituting these values into Eq. (4.29) gives

f ′(xi) =
f
∼(xi+1) − f

∼(xi−1)
2h

+
ei+1 − ei−1

2h
−

f (3)(ξ)
6

 h2

True Finite-difference Round-off Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a round-
off error that increases with step size and a truncation error that decreases with step 
size.
 Assuming that the absolute value of each component of the round-off error has an 
upper bound of ε, the maximum possible value of the difference ei+1 − ei will be 2ε. 
Further, assume that the third derivative has a maximum absolute value of M. An upper 
bound on the absolute value of the total error can therefore be represented as

Total error = ∣ f ′(xi) −
f
∼

 (xi+1) − f
∼

 (xi−1)
2h ∣ ≤

ε

h
+

h2M

6
 (4.30)

An optimal step size can be determined by differentiating Eq. (4.30), setting the result 
equal to zero, and solving for

hopt = √
3 3ε

M
 (4.31)

 EXAMPLE 4.8 Round-off and Truncation Errors in Numerical Differentiation
Problem Statement. In Example 4.4, we used a centered difference approximation of 
O(h2) to estimate the first derivative of the following function at x = 0.5:

f(x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2
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106 TRUNCATION ERRORS AND THE TAYLOR SERIES

Perform the same computation starting with h = 1. Then progressively divide the step size 
by a factor of 10 to demonstrate how round-off becomes dominant as the step size is reduced. 
Relate your results to Eq. (4.31). Recall that the true value of the derivative is −0.9125.

Solution. We can develop a program to perform the computations and plot the results. 
For the present example, we have done this with a MATLAB software M-file. Notice 
that we pass both the function and its analytical derivative as arguments. In addition, the 
function generates a plot of the results.

function diffex(func,dfunc,x,n)
format long
dftrue=dfunc(x);
h=1;
H(1)=h;
D(1)=(func(x+h)−func(x−h))∕(2*h);
E(1) =abs(dftrue−D(1));
for i=2:n
  h=h∕10;
  H(i) =h;
  D(i) = (func(x+h)−func(x−h))∕(2*h);
  E(i) =abs(dftrue−D(i));
end
L=[H' D' E']';
fprintf(' step size finite difference  true error\n');
fprintf('%14.10f %16.14f %16.13f\n',L);
loglog(H,E),xlabel('Step Size'),ylabel('Error')
title('Plot of Error Versus Step Size')
format short

The M-file can then be run using the following commands:
>> ff=@(x) −0.1*x^4−0.15*x^3−0.5*x^2−0.25*x+1.2;
>> df=@(x) −0.4*x^3−0.45*x^2−x−0.25;
>> diffex(ff,df,0.5,11)

When the function is run, the following numeric output is generated along with the plot 
(Fig. 4.9):
   step size     finite difference     true error
   1.0000000000  − 1.26250000000000 0.3500000000000
  0.1000000000   −0.91600000000000  0.0035000000000
  0.0100000000   −0.91253500000000  0.0000350000000
  0.0010000000   −0.91250035000001  0.0000003500000
  0.0001000000   −0.91250000349985  0.0000000034998
  0.0000100000   −0.91250000003318  0.0000000000332
  0.0000010000   −0.91250000000542  0.0000000000054
  0.0000001000   −0.91249999945031  0.0000000005497
  0.0000000100   −0.91250000333609  0.0000000033361
  0.0000000010   −0.91250001998944  0.0000000199894
  0.0000000001   −0.91250007550059  0.0000000755006

The results are as expected. At first, round-off is minimal and the estimate is dominated 
by truncation error. Hence, as in Eq. (4.30), the total error drops by a factor of 100 each 
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time we divide the step by 10. However, starting at h = 0.0001, we see round-off error 
begin to creep in and erode the rate at which the error diminishes. A minimum error is 
reached at h = 10−6. Beyond this point, the error increases as round-off dominates.
 Because we are dealing with an easily differentiable function, we can also investigate 
whether these results are consistent with Eq. (4.31). First, we can estimate M by evalu-
ating the function’s third derivative as

M = ∣ f  
3(0.5)∣ = ∣ −2.4(0.5) − 0.9∣ = 2.1

Because MATLAB has a precision of about 15 to 16 base-10 digits, a rough estimate of 
the upper bound on round-off would be about ε = 0.5 × 10−16. Substituting these values 
into Eq. (4.31) gives

hopt = √
3 3(0.5 × 10−16)

2.1
= 4.3 × 10−6

which is on the same order as the result of 1 × 10−6 obtained with our computer program.

4.3.2 Control of Numerical Errors
For most practical cases, we do not know the exact error associated with numerical meth-
ods. The exception, of course, is when we have obtained the exact solution that makes 
our numerical approximations unnecessary. Therefore, for most engineering applications 
we must settle for some estimate of the error in our calculations.
 There are no systematic and general approaches to evaluating numerical errors for 
all problems. In many cases, error estimates are based on the experience and judgment 
of the engineer.

FIGURE 4.9
Plot of error versus step size.
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108 TRUNCATION ERRORS AND THE TAYLOR SERIES

 Although error analysis is to a certain extent an art, there are several practical program-
ming guidelines we can suggest. First and foremost, avoid subtracting two nearly equal 
numbers. Loss of significance almost always occurs when this is done. Sometimes you can 
rearrange or reformulate the problem to avoid subtractive cancellation. If this is not pos-
sible, you may want to use extended-precision arithmetic. Furthermore, when adding and 
subtracting numbers, it is best to sort the numbers and work with the smallest numbers 
first. This avoids loss of significance.
 Beyond these computational hints, one can attempt to predict total numerical errors 
using theoretical formulations. The Taylor series is our primary tool for analysis of both 
truncation and round-off errors. Several examples have been presented in this chapter. 
Prediction of total numerical error is very complicated for even moderately sized problems 
and tends to be pessimistic. Therefore, it is usually attempted for only small-scale tasks.
 The tendency is to push forward with the numerical computations and try to estimate 
the accuracy of your results. This can sometimes be done by seeing if the results satisfy 
some condition or equation as a check. Or it may be possible to substitute the results 
back into the original equation to check that it is actually satisfied.
 Finally you should be prepared to perform numerical experiments to increase your 
awareness of computational errors and possible ill-conditioned problems. Such experi-
ments may involve repeating the computations with a different step size or method and 
comparing the results. We may employ sensitivity analysis to see how our solution changes 
when we change model parameters or input values. We may want to try different nu-
merical algorithms that have different theoretical foundations, are based on different com-
putational strategies, or have different convergence properties and stability characteristics.
 When the results of numerical computations are extremely critical and may involve 
loss of human life or have severe economic ramifications, it is appropriate to take special 
precautions. This may involve the use of two or more independent groups to solve the 
same problem so that their results can be compared.
 The roles of errors will be a topic of concern and analysis in all sections of this 
book. We will leave these investigations to specific sections.

 4.4 BLUNDERS, FORMULATION ERRORS,  
AND DATA UNCERTAINTY
Although the following sources of error are not directly connected with most of the 
numerical methods in this book, they can sometimes have great impact on the success 
of a modeling effort. Thus, they must always be kept in mind when applying numerical 
techniques in the context of real-world problems.

4.4.1 Blunders
We are all familiar with gross errors, or blunders. In the early years of computers, er-
roneous numerical results could sometimes be attributed to malfunctions of the computer 
itself. Today, this source of error is highly unlikely, and most blunders must be attributed 
to human imperfection.
 Blunders can occur at any stage of the mathematical modeling process and can 
contribute to all the other components of error. They can be avoided only by sound 
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knowledge of fundamental principles and by the care with which you approach and 
design your solution to a problem.
 Blunders are usually disregarded in discussions of numerical methods. This is no 
doubt due to the fact that, try as we may, mistakes are to a certain extent unavoidable. 
However, we believe that there are a number of ways in which their occurrence can be 
minimized. In particular, the good programming habits that were outlined in Chap. 2 are 
extremely useful for mitigating programming blunders. In addition, there are usually 
simple ways to check whether a particular numerical method is working properly. 
Throughout this book, we discuss ways to check the results of numerical calculations.

4.4.2 Formulation Errors
Formulation, or model, errors relate to bias that can be ascribed to incomplete mathe-
matical models. An example of a negligible formulation error is the fact that Newton’s 
second law does not account for relativistic effects. This does not detract from the ad-
equacy of the solution in Example 1.1 because these errors are minimal on the time and 
space scales associated with the falling parachutist problem.
 However, suppose that air resistance is not linearly proportional to fall velocity, as 
in Eq. (1.7), but is a function of the square of velocity. If this were the case, both the 
analytical and numerical solutions obtained in the Chap. 1 would be erroneous because 
of formulation error. Further consideration of formulation error is included in some of 
the engineering applications in the remainder of the book. You should be cognizant of 
these problems and realize that, if you are working with a poorly conceived model, no 
numerical method will provide adequate results.

4.4.3 Data Uncertainty
Errors sometimes enter into an analysis because of uncertainty in the physical data upon 
which a model is based. For instance, suppose we wanted to test the falling parachutist 
model by having an individual make repeated jumps and then measuring his or her 
velocity after a specified time interval. Uncertainty would undoubtedly be associated 
with these measurements, since the parachutist would fall faster during some jumps than 
during others. These errors can exhibit both inaccuracy and imprecision. If our instru-
ments consistently underestimate or overestimate the velocity, we are dealing with an 
inaccurate, or biased, device. On the other hand, if the measurements are randomly high 
and low, we are dealing with a question of precision.
 Measurement errors can be quantified by summarizing the data with one or more 
well-chosen statistics that convey as much information as possible regarding specific 
characteristics of the data. These descriptive statistics are most often selected to represent 
(1) the location of the center of the distribution of the data and (2) the degree of spread 
of the data. As such, they provide a measure of the bias and imprecision, respectively. 
We will return to the topic of characterizing data uncertainty in Part Five.
 Although you must be cognizant of blunders, formulation errors, and uncertain data, 
the numerical methods used for building models can be studied, for the most part, inde-
pendently of these errors. Therefore, for most of this book, we will assume that we have 
not made gross errors, we have a sound model, and we are dealing with error-free measure-
ments. Under these conditions, we can study numerical errors without complicating factors.
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PROBLEMS

4.1 The following infinite series can be used to approximate ex:

e 

x = 1 + x +
x 

2

2
+

x 

3

3!
+ … +

x 

n

n!

(a) Prove that this Maclaurin series expansion is a special case of 
the Taylor series expansion [(Eq. (4.7)] with xi = 0 and h = x.

(b) Use the Taylor series to estimate f(x) = e−x at xi+1 = 1 for  
xi = 0.2. Employ the zero-, first-, second-, and third-order 
versions and compute ∣εt∣  for each case.

4.2 The Maclaurin series expansion for cos x is

cos x = 1 −
x 

2

2
+

x4

4!
−

x6

6!
+

x8

8!
− …

Starting with the simplest version, cos x = 1, add terms one at a 
time to estimate cos(π∕6). After each new term is added, compute 
the true and approximate percent relative errors. Use your pocket 
calculator to determine the true value. Add terms until the absolute 
value of the approximate error estimate falls below an error crite-
rion conforming to two significant figures.
4.3 Perform the same computation as in Prob. 4.2, but use the 
Maclaurin series expansion for sin x to estimate sin(π∕6).

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ …

4.4 The Maclaurin series expansion for the arctangent of x is de-
fined for ∣x∣ ≤ 1 as

arctan x = ∑
∞

n=0
 

(−1)n

2n + 1
 x 

2n+1

(a) Write out the first four terms (n = 0, . . . , 3).
(b) Starting with the simplest version, arctan x = x, add terms one 

at a time to estimate arctan(π∕4). After each new term is added, 
compute the true and approximate percent relative errors. Use 
your calculator to determine the true value. Add terms until the 
absolute value of the approximate error estimate falls below an 
error criterion conforming to two significant figures.

4.5 Use zero- through third-order Taylor series expansions to 
predict f (2.5) for

f (x) = 25x3 − 6x2 + 7x − 88

using a base point at x = 1. Compute the true percent relative error 
εt for each approximation.
4.6 Use zero- through fourth-order Taylor series expansions to pre-
dict f(2.5) for f(x) = ln x using a base point at x = 1. Compute the 

true percent relative error εt for each approximation. Discuss the 
meaning of the results.
4.7 Use forward and backward difference approximations of O(h) 
and a centered difference approximation of O(h2) to estimate the 
first derivative of the function examined in Prob. 4.5. Evaluate the 
derivative at x = 2 using a step size of h = 0.2. Compare your results 
with the true value of the derivative. Interpret your results on the 
basis of the remainder term of the Taylor series expansion.
4.8 Use a centered difference approximation of O(h2) to estimate 
the second derivative of the function examined in Prob. 4.5. Per-
form the evaluation at x = 2 using step sizes of h = 0.25 and 0.125. 
Compare your estimates with the true value of the second deriva-
tive. Interpret your results on the basis of the remainder term of the 
Taylor series expansion.
4.9 The Stefan-Boltzmann law can be employed to estimate the 
rate of radiation of energy H from a surface, as in

H = AeσT  

4

where H is in watts, A = the surface area (m2), e = the emissivity 
that characterizes the emitting properties of the surface (dimen-
sionless), σ = a universal constant called the Stefan-Boltzmann 
constant (= 5.67 × 10−8 W m−2 K−4), and T = absolute temperature 
(K). Determine the error of H for a steel plate with A = 0.15 m2,  
e = 0.90, and T = 650 ± 25. Compare your results with the exact 
error. Repeat the computation but with T = 650 ± 45. Interpret your 
results.
4.10 Repeat Prob. 4.9 but for a copper sphere with  
radius = 0.15 ± 0.02 m, e = 0.90 ± 0.04, and T = 550 ± 17.5.
4.11 Recall that the velocity of the falling parachutist can be com-
puted by [Eq. (1.10)],

υ(t) =
gm

c
 (1 − e−(c∕m)t)

Use a first-order error analysis to estimate the error of v at t = 6 if 
g = 9.81 and m = 50 but c = 12.5 ± 1.5.
4.12 Repeat Prob. 4.11 with g = 9.81, t = 6, c = 12.5 ± 1.5, and  
m = 50 ± 2.5.
4.13 Evaluate and interpret the condition numbers for
(a) f (x) = √∣x − 1∣ + 1 for x = 1.00001
(b) f(x) = e−x for x = 10
(c) f (x) = √x2 + 1 − x for x = 300

(d) f (x) =
e−x − 1

x
 for x = 0.001

(e) f (x) =
sin x

1 + cos x
 for x = 1.0001π
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4.14 Employing ideas from Sec. 4.2, derive the relationships from 
Table 4.3.
4.15 Prove that Eq. (4.4) is exact for all values of x if f(x) =  
ax2 + bx + c.
4.16 Manning’s formula for a rectangular channel can be written 
as

Q =
1
n

 
(BH)5∕3

(B + 2H)2∕3 √S

where Q = flow (m3/s), n = a roughness coefficient, B = width (m),  
H = depth (m), and S = slope. You are applying this formula to a 
stream where you know that the width = 20 m and the depth = 0.3 m. 
Unfortunately, you know the roughness and the slope to only a ±10% 
precision. That is, you know that the roughness is about 0.03 with a 
range from 0.027 to 0.033 and the slope is 0.0003 with a range from 
0.00027 to 0.00033. Use a first-order error analysis to determine the 
sensitivity of the flow prediction to each of these two factors. Which 
one should you attempt to measure with more precision?
4.17 If ∣ x ∣ < 1, it is known that

1
1 − x

= 1 + x + x2 + x3 + …

Repeat Prob. 4.1 for this series for x = 0.1.
4.18 A missile leaves the ground with an initial velocity υ0 forming 
an angle ϕ0 with the vertical as shown in Fig. P4.18. The maximum 
desired altitude is αR, where R is the radius of the earth. The laws 
of mechanics can be used to show that

sin ϕ0 = (1 + α)√1 −
α

1 + α
 (

υe

υ0)
2

4.19 To calculate a planet’s space coordinates, we have to solve the 
function

f (x) = x − 1 − 0.5 sin x

Let the base point be a = xi = π∕2 on the interval [0, π]. Determine 
the highest-order Taylor series expansion resulting in a maximum 
error of 0.015 on the specified interval. The error is equal to the 
absolute value of the difference between the given function and the 
specific Taylor series expansion. (Hint: Solve graphically.)
4.20 Consider the function f(x) = x3 − 2x + 4 on the interval [−2, 2] 
with h = 0.25. Use the forward, backward, and centered finite dif-
ference approximations for the first and second derivatives so as 
to graphically illustrate which approximation is most accurate. 
Graph all three first derivative finite difference approximations 
along with the theoretical, and do the same for the second deriva-
tive as well.
4.21 Derive Eq. (4.31).
4.22 Repeat Example 4.8, but for f(x) = cos(x) at x = π∕6.
4.23 Repeat Example 4.8, but for the forward divided difference 
(Eq. 4.17).
4.24 Develop a well-structured program to compute the Maclaurin 
series expansion for the sine function as described in Prob. 4.3. The 
function should have the following features:

∙ Iterate until the relative error falls below a stopping criterion 
(es) or exceeds a maximum number of iterations (maxit). 
Allow the user to specify values for these parameters.

∙ Include default values of es (= 0.000001) and maxit (= 100) in 
the event that they are not specified by the user.

∙ Return the estimate of sin x, the approximate relative error, the 
number of iterations, and the true relative error (which you can 
calculate based on the built-in sine function).

4.25 Under laminar flow conditions, the steady-state velocity of a 
spherical particle settling in a fluid can be computed with Stokes 
law,

vs =
g

18(
ρs − ρf

μ )d2

where g = gravitational acceleration (= 981 cm s–2), ρs and ρf = 
densities of the particle and the fluid, respectively (g cm–3), µ = 
dynamic viscosity (g cm–1 s–1), and d = the sphere’s diameter (cm). 
Suppose that you have two types of spherical particles: a phyto-
plankton cell (d = 30 µm, ρs = 1.027 g cm–3) and a silt particle (d = 
30 µm, ρs = 2.65 g cm–3) settling in water (µ = 0.013 g cm–1 s–1 and 
ρf = 0.99973 g cm–3). For each of these particles, (a) compute the 
settling velocity and (b) perform a first-order error analysis for the 
settling velocity. For (b) assume that the parameters ρs, ρf, µ, and d 
have uncertainties of ±2% around their mean values. 

FIGURE P4.18

R

v0

ϕ0

where υe = the escape velocity of the missile. It is desired to fire the 
missile and reach the design maximum altitude within an accuracy of 
±2%. Determine the range of values for ϕ0 if υe∕υ0 = 2 and α = 0.25.
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EPILOGUE: PART ONE

 PT1.4 TRADE-OFFS
Numerical methods are scientific in the sense that they represent systematic techniques 
for solving mathematical problems. However, there is a certain degree of art, subjective 
judgment, and compromise associated with their effective use in engineering practice. 
For each problem, you may be confronted with several alternative numerical methods 
and many different types of computers. Thus, the elegance and efficiency of different 
approaches to problems is highly individualistic and correlated with your ability to 
choose wisely among options. Unfortunately, as with any intuitive process, the factors 
influencing this choice are difficult to communicate. Only by experience can these skills 
be fully comprehended and honed. However, because these skills play such a prominent 
role in the effective implementation of the methods, we have included this section as an 
introduction to some of the trade-offs that you must consider when selecting a numerical 
method and the tools for implementing the method. It is hoped that the discussion that 
follows will influence your orientation when approaching subsequent material. Also, it 
is hoped that you will refer back to this material when you are confronted with choices 
and trade-offs in the remainder of the book.

1. Type of Mathematical Problem. As delineated previously in Fig. PT1.2, several types 
of mathematical problems are discussed in this book:
(a) Roots of equations.
(b) Systems of simultaneous linear algebraic equations.
(c) Optimization.
(d) Curve fitting.
(e) Numerical integration.
(f) Ordinary differential equations.
(g) Partial differential equations.

  You will probably be introduced to the applied aspects of numerical methods by 
confronting a problem in one of the above areas. Numerical methods will be required 
because the problem cannot be solved efficiently using analytical techniques. You 
should be cognizant of the fact that your professional activities will eventually involve 
problems in all the above areas. Thus, the study of numerical methods and the selec-
tion of automatic computation equipment should, at the minimum, consider these 
basic types of problems. More advanced problems may require capabilities of han-
dling areas such as functional approximation, integral equations, etc. These areas 
typically demand greater computation power or advanced methods not covered in this 
text. Other references such as Carnahan, Luther, and Wilkes (1969); Hamming (1973); 
Ralston and Rabinowitz (1978); Burden and Faires (2005); and Moler (2004) should 
be consulted for problems beyond the scope of this book. In addition, at the end of 
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each part of this text, we include a brief summary and references for advanced meth-
ods to provide you with avenues for pursuing further studies of numerical methods.

2. Type, Availability, Precision, Cost, and Speed of Computer. You may have the option 
of working with a variety of computation tools. These range from pocket calculators 
to large mainframe computers. Of course, any of the tools can be used to implement 
any numerical method (including simple paper and pencil). It is usually not a question 
of ultimate capability but rather of cost, convenience, speed, dependability, repeatability, 
and precision. Although each of the tools will continue to have utility, the recent rapid 
advances in the performance of personal computers have already had a major impact 
on the engineering profession. We expect this revolution will spread as technological 
improvements continue because personal computers offer an excellent compromise in 
convenience, cost, precision, speed, and storage capacity. Furthermore, they can be 
readily applied to most practical engineering problems.

3. Program Development Cost versus Software Cost versus Run-Time Cost. Once the 
types of mathematical problems to be solved have been identified and the computer 
system has been selected, it is appropriate to consider software and run-time costs. 
Software development may represent a substantial effort in many engineering projects 
and may therefore be a significant cost. In this regard, it is particularly important that 
you be very well acquainted with the theoretical and practical aspects of the relevant 
numerical methods. In addition, you should be familiar with professionally developed 
software. Low-cost software is widely available to implement numerical methods that 
may be readily adapted to a broad variety of problems.

4. Characteristics of the Numerical Method. When computer hardware and software 
costs are high, or if computer availability is limited (for example, on some timeshare 
systems), it pays to choose carefully the numerical method to suit the situation. On 
the other hand, if the problem is still at the exploratory stage and computer access 
and cost are not problems, it may be appropriate for you to select a numerical method 
that always works but may not be the most computationally efficient. The numerical 
methods available to solve any particular type of problem involve the types of trade-
offs just discussed and others:
(a) Number of Initial Guesses or Starting Points. Some of the numerical methods 

for finding roots of equations or solving differential equations require the user to 
specify initial guesses or starting points. Simple methods usually require one 
value, whereas complicated methods may require more than one value. The 
advantages of complicated methods that are computationally efficient may be 
offset by the requirement for multiple starting points. You must use your 
experience and judgment to assess the trade-offs for each particular problem.

(b) Rate of Convergence. Certain numerical methods converge more rapidly than 
others. However, this rapid convergence may require more refined initial guesses 
and more complex programming than a method with slower convergence. Again, 
you must use your judgment in selecting a method. Faster is not always better.

(c) Stability. Some numerical methods for finding roots of equations or solutions for 
systems of linear equations may diverge rather than converge on the correct answer 
for certain problems. Why would you tolerate this possibility when confronted 
with design or planning problems? The answer is that these methods may be 
highly efficient when they work. Thus, trade-offs again emerge. You must decide 

cha32077_ep01_112-116.indd   113 6/21/19   4:26 PM



114 EPILOGUE: PART ONE

if your problem requirements justify the effort needed to apply a method that may 
not always converge.

(d) Accuracy and Precision. Some numerical methods are simply more accurate or 
precise than others. Good examples are the various equations available for 
numerical integration. Usually, the performance of low-accuracy methods can be 
improved by decreasing the step size or increasing the number of applications 
over a given interval. Is it better to use a low-accuracy method with small step 
sizes or a high-accuracy method with large step sizes? This question must be 
addressed on a case-by-case basis taking into consideration the additional factors 
such as cost and ease of programming. In addition, you must also be concerned 
with round-off errors when you are using multiple applications of low-accuracy 
methods and when the number of computations becomes large. Here the number 
of significant figures handled by the computer may be the deciding factor.

(e) Breadth of Application. Some numerical methods can be applied to only a 
limited class of problems or to problems that satisfy certain mathematical 
restrictions. Other methods are not affected by such limitations. You must 
evaluate whether it is worth your effort to develop programs that employ 
techniques that are appropriate for only a limited number of problems. The 
fact that such techniques may be widely used suggests that they have 
advantages that will often outweigh their disadvantages. Obviously, trade-offs 
are occurring.

(f) Special Requirements. Some numerical techniques attempt to increase accuracy 
and rate of convergence using additional or special information. An example 
would be the use of estimated or theoretical values of errors to improve 
accuracy. However, these improvements are generally not achieved without 
some inconvenience in terms of added computing costs or increased program 
complexity.

(g) Programming Effort Required. Efforts to improve rates of convergence, stability, 
and accuracy can be creative and ingenious. When improvements can be made 
without increasing the programming complexity, they may be considered elegant 
and will probably find immediate use in the engineering profession. However, if 
they require more complicated programs, you are again faced with a trade-off 
situation that may or may not favor the new method.

 It is clear that the above discussion concerning a choice of numerical methods 
reduces to one of cost and accuracy. The costs are those involved with computer time 
and program development. Appropriate accuracy is a question of professional judg-
ment and ethics.

5. Mathematical Behavior of the Function, Equation, or Data. In selecting a particular 
numerical method, type of computer, and type of software, you must consider the 
complexity of your functions, equations, or data. Simple equations and smooth data 
may be appropriately handled by simple numerical algorithms and inexpensive 
computers. The opposite is true for complicated equations and data exhibiting 
discontinuities.

6. Ease of Application (User-Friendly?). Some numerical methods are easy to apply; 
others are difficult. This may be a consideration when choosing one method over 
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another. This same idea applies to decisions regarding program development costs 
versus professionally developed software. It may take considerable effort to convert 
a difficult program to one that is user-friendly. Ways to do this were introduced in 
Chap. 2 and are elaborated throughout the book.

7. Maintenance. Programs for solving engineering problems require maintenance because 
during application, difficulties invariably occur. Maintenance may require changing 
the program code or expanding the documentation. Simple programs and numerical 
algorithms are simpler to maintain.

 The chapters that follow involve the development of various types of numerical 
methods for various types of mathematical problems. Several alternative methods will 
be given in each chapter. These various methods (rather than a single method chosen by 
the authors) are presented because there is no single “best” method. There is no best 
method because there are many trade-offs that must be considered when applying the 
methods to practical problems. A table that highlights the trade-offs involved in each 
method will be found at the end of each part of the book. This table should assist you 
in selecting the appropriate numerical procedure for your particular problem context.

 PT1.5 IMPORTANT RELATIONSHIPS AND FORMULAS
Table PT1.2 summarizes important information that was presented in Part One. The table 
can be consulted to quickly access important relationships and formulas. The epilogue 
of each part of the book will contain such a summary.

 PT1.6 ADVANCED METHODS AND ADDITIONAL REFERENCES
The epilogue of each part of the book will also include a section designed to facilitate 
and encourage further studies of numerical methods. This section will reference other 
books on the subject as well as material related to more advanced methods.1
 To extend the background provided in Part One, numerous manuals on computer 
programming are available. It would be difficult to reference all the excellent books and 
manuals pertaining to specific languages and computers. In addition, you probably already 
have material from your previous exposure to programming. However, if this is your first 
experience with computers, your instructor and fellow students should also be able to 
advise you regarding good reference books for the machines and languages available at 
your school.
 As for error analysis, any good introductory calculus book will include supplemen-
tary material related to subjects such as the Taylor series expansion. Texts by Swokowski 
(1979), Thomas and Finney (1979), and Simmons (1985) provide very readable discus-
sions of these subjects. In addition, Taylor (1982) presents a nice introduction to error 
analysis.
 Finally, although we hope that our book serves you well, it is always good to consult 
other sources when trying to master a new subject. Burden and Faires (2005); Ralston 

1Books are referenced only by author here; a complete bibliography will be found at the back of this text.
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TABLE PT1.2 Summary of important information presented in Part One.

Error Definitions
True error Et = true value − approximation

True percent relative error ε t =
true value − approximation

true value
 100%

Approximate percent relative error εa =
present approximation − previous approximation

present approximation
 100%

Stopping criterion Terminate computation when
 εa < εs

 where εs is the desired percent relative error

Taylor Series
Taylor series expansion

 f (xi+ 1) = f (xi) + f′(xi)h +
f″(xi)

2!
 h2

 +
f′′′(xi)

3!
 h3 + … +

f  
(n)(xi)

n!
 hn + Rn

 where

Remainder Rn =
f 

(n+ 1)(ξ)
(n + 1)!

 hn+ 1

 or 

 Rn = O(hn+ 1)

Numerical Differentiation
First forward finite divided difference

 f ′(xi) =
f (xi+ 1) − f (xi)

h
+ O(h)

 (Other divided differences are summarized in Chaps. 4 and 23.)

Error Propagation
For n independent variables x1, x2, . . . , xn having errors Δx∼1, Δx∼2, … ,Δx∼n, the error in the function  
f can be estimated via

 Δf = ∣ ∂f
∂x1

∣ Δx∼1 + ∣ ∂f
∂x2

∣ Δx∼2 + … + ∣ ∂f
∂xn

∣ Δx∼n

and Rabinowitz (1978); Hoffman (1992); and Carnahan, Luther, and Wilkes (1969) pro-
vide comprehensive discussions of most numerical methods. Other enjoyable books on 
the subject are Gerald and Wheatley (2004), and Cheney and Kincaid (2008). In addition, 
Press et al. (2007) include algorithms to implement a variety of methods, and Moler 
(2004) and Chapra (2007) are devoted to numerical methods with MATLAB software.
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PA R T  T WO

ROOTS OF EQUATIONS

 PT2.1 MOTIVATION
Years ago, you learned to use the quadratic formula,

x =
−b ± √b2 − 4ac

2a
 (PT2.1)

to solve

f (x) = ax2 + bx + c = 0 (PT2.2)

The values calculated with Eq. (PT2.1) are called the “roots” of Eq. (PT2.2). They rep-
resent the values of x that make Eq. (PT2.2) equal to zero. Thus, we can define the root 
of an equation as the value of x that makes f (x) = 0. For this reason, roots are sometimes 
called the zeros of the equation.
 Although the quadratic formula is handy for solving Eq. (PT2.2), there are many other 
functions for which the roots cannot be determined so easily. For these cases, the  numerical 
methods described in Chaps. 5, 6, and 7 provide efficient means to obtain the answer.

PT2.1.1 Noncomputer Methods for Determining Roots
Before the advent of digital computers, there were several ways to solve for roots of 
algebraic and transcendental equations. For some cases, the roots could be obtained by 
direct methods, as was done with Eq. (PT2.1). Although there were equations like this 
that could be solved directly, there were many more that could not. For example, even 
an apparently simple function such as f (x) = e−x − x cannot be solved analytically. In 
such instances, the only alternative is an approximate solution technique.
 One method to obtain an approximate solution is to plot the function and determine 
where it crosses the x axis. This point, which represents the x value for which f (x) = 0, 
is the root. Graphical techniques are discussed at the beginning of Chaps. 5 and 6.
 Although graphical methods are useful for obtaining rough estimates of roots, they 
are limited because of their lack of precision. An alternative approach is to use trial 
and error. This “technique” consists of guessing a value of x and evaluating whether 
f (x) is zero. If not (as is almost always the case), another guess is made, and f (x) is 
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118 ROOTS OF EQUATIONS

again evaluated to determine whether the new value provides a better estimate of the 
root. The process is repeated until a guess is obtained that results in an f (x) that is close 
to zero.
 Such haphazard methods are obviously inefficient and inadequate for the require-
ments of engineering practice. The techniques described in Part Two represent alterna-
tives that are also approximate but employ systematic strategies to home in on the true 
root. As elaborated on in the following pages, the combination of these systematic meth-
ods and computers makes the solution of most applied roots-of-equations problems a 
simple and efficient task.

PT2.1.2 Roots of Equations and Engineering Practice
Although they arise in other problem contexts, roots of equations frequently occur in the 
area of engineering design. Table PT2.1 lists several fundamental principles that are 
routinely used in design work. As introduced in Chap. 1, mathematical equations or 
models derived from these principles are employed to predict dependent variables as a 
function of independent variables, forcing functions, and parameters. Note that in each 
case, the dependent variables reflect the state or performance of the system, whereas the 
parameters represent its properties or composition.

TABLE PT2.1 Fundamental principles used in engineering design problems.

Fundamental Dependent Independent Parameters 
Principle Variable Variable

Heat balance Temperature Time and Thermal properties  
   position  of material and  
    geometry of system
Mass balance Concentration or Time and Chemical behavior  
  quantity of mass  position  of material, mass  
    transfer coefficients, 
    and geometry of 
    system
Force balance Magnitude and Time and Strength of material, 
  direction of forces  position  structural properties, 
    and geometry of 
    system
Energy balance Changes in the kinetic- Time and Thermal properties, 
  and potential-energy   position  mass of material, 
  states of the system   and system geometry
Newton’s laws Acceleration, velocity,  Time and Mass of material, 
 of motion  or location  position  system geometry, 
    and dissipative 
    parameters such  
    as friction or drag
Kirchhoff’s laws Currents and voltages Time Electrical properties  
  in electric circuits   of systems such as 
    resistance, capacitance,  
    and inductance
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 An example of such a model is the equation, derived from Newton’s second law, 
used in Chap. 1 for the parachutist’s velocity:

υ =
gm

c
 (1 − e−(c∕m)t) (PT2.3)

where velocity υ = the dependent variable, time t = the independent variable, the grav-
itational constant g = the forcing function, and the drag coefficient c and mass m = 
parameters. If the parameters are known, Eq. (PT2.3) can be used to predict the parachut-
ist’s velocity as a function of time. Such computations can be performed directly because 
υ is expressed explicitly as a function of time. That is, it is isolated on one side of the 
equal sign.
 However, suppose we had to determine the drag coefficient for a parachutist of a 
given mass to attain a prescribed velocity in a set time period. Although Eq. (PT2.3) 
provides a mathematical representation of the interrelationship among the model vari-
ables and parameters, it cannot be solved explicitly for the drag coefficient. Try it. There 
is no way to rearrange the equation so that c is isolated on one side of the equal sign. 
In such cases, c is said to be implicit.
 This represents a real dilemma, because many engineering design problems involve 
specifying the properties or composition of a system (as represented by its parameters) 
to ensure that it performs in a desired manner (as represented by its variables). Thus, 
these problems often require the determination of implicit parameters.
 The solution to the dilemma is provided by numerical methods for roots of equations. 
To solve the problem using numerical methods, it is conventional to reexpress Eq. (PT2.3). 
This is done by subtracting the dependent variable υ from both sides of the equation to give

f (c) =
gm

c
 (1 − e−(c∕m)t) − υ (PT2.4)

The value of c that makes f (c) = 0 is, therefore, the root of the equation. This value also 
represents the drag coefficient that solves the design problem.
 Part Two of this book deals with a variety of numerical and graphical methods for deter-
mining roots of relationships such as Eq. (PT2.4). These techniques can be applied to engi-
neering design problems that are based on the fundamental principles outlined in Table PT2.1 
as well as to many other problems confronted routinely in engineering practice.

 PT2.2 MATHEMATICAL BACKGROUND
For most of the subject areas in this book, there is usually some prerequisite mathematical 
background needed to successfully master the topic. For example, the concepts of error 
estimation and the Taylor series expansion discussed in Chaps. 3 and 4 have direct relevance 
to our discussion of roots of equations. Additionally, prior to this point we have mentioned  
“algebraic” and “transcendental” equations. It might be helpful to formally define these 
terms and discuss how they relate to the scope of this part of the book.
 By definition, a function given by y = f (x) is algebraic if it can be expressed in the 
form

fn y
n + fn−1 

yn−1 + … + f1 
y + f0 = 0 (PT2.5)
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where fi = an ith-order polynomial in x. Polynomials are a simple class of algebraic 
functions that are represented generally by

fn(x) = a0 + a1x + a2x
2 + … + an 

x 

n (PT2.6)

where n = the order of the polynomial and the a’s = constants. Some specific examples 
are

f2(x) = 1 − 2.37x + 7.5x 

2 (PT2.7)

and

f6(x) = 5x2 − x3 + 7x6 (PT2.8)

 A transcendental function is one that is nonalgebraic. These include trigonometric, 
exponential, logarithmic, and other, less familiar, functions. Examples are

f (x) = ln  x 

2 − 1 (PT2.9)

and

f(x) = e−0.2x
 sin (3x − 0.5) (PT2.10)

 Roots of equations may be either real or complex. Although there are cases where 
complex roots of nonpolynomials are of interest, such situations are less common than 
for polynomials. As a consequence, the standard methods for locating roots typically fall 
into two somewhat related but primarily distinct problem areas:

1. The determination of the real roots of algebraic and transcendental equations. These 
techniques are usually designed to determine the value of a single real root on the 
basis of foreknowledge of its approximate location.

2. The determination of all real and complex roots of polynomials. These methods are 
specifically designed for polynomials. They systematically determine all the roots of 
the polynomial rather than determining a single real root given an approximate location.

 In this book we discuss both. Chapters 5 and 6 are devoted to the first category. 
Chapter 7 deals with polynomials.

 PT2.3 ORIENTATION
Some orientation is helpful before proceeding to the numerical methods for determining 
roots of equations. The following is intended to give you an overview of the material in 
Part Two. In addition, some objectives have been included to help you focus your efforts 
when studying the material.

PT2.3.1 Scope and Preview
Figure PT2.1 is a schematic representation of the organization of Part Two. Examine this 
figure carefully, starting at the top and working clockwise.
 After the present introduction, Chap. 5 is devoted to bracketing methods for finding 
roots. These methods start with guesses that bracket, or contain, the root and then sys-
tematically reduce the width of the bracket. Two specific methods are covered: bisection 
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and false position. Graphical methods are used to provide visual insight into the tech-
niques. Error formulations are developed to help you determine how much computational 
effort is required to estimate the root to a prespecified level of precision.
 Chapter 6 covers open methods. These methods also involve systematic trial-and-
error iterations but do not require that the initial guesses bracket the root. We will dis-
cover that these methods are usually more computationally efficient than bracketing 
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Schematic of the organization of the material in Part Two: Roots of Equations.
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methods but that they do not always work. One-point iteration, Newton-Raphson, and 
secant methods are described. Graphical methods are used to provide geometric insight 
into cases where the open methods do not work. Formulas are developed that provide 
an idea of how fast open methods home in on the root. An advanced approach, Brent’s 
method, that combines the reliability of bracketing with the speed of open methods is 
described. In addition, an approach to extend the Newton-Raphson method to systems of 
nonlinear equations is explained.
 Chapter 7 is devoted to finding the roots of polynomials. After background sections 
on polynomials, the use of conventional methods (in particular the open methods from 
Chap. 6) are discussed. Then two special methods for locating polynomial roots are 
described: Müller’s and Bairstow’s methods. The chapter ends with information related 
to finding roots with Excel, MATLAB software, and Mathcad.
 Chapter 8 extends the above concepts to actual engineering problems. Engineering 
case studies are used to illustrate the strengths and weaknesses of each method and to 
provide insight into the application of the techniques in professional practice. The appli-
cations also highlight the trade-offs (as discussed in Part One) associated with the vari-
ous methods.
 An epilogue is included at the end of Part Two. It contains a detailed comparison 
of the methods discussed in Chaps. 5, 6, and 7. This comparison includes a description 
of trade-offs related to the proper use of each technique. This section also provides a 
summary of important formulas, along with references for some numerical methods that 
are beyond the scope of this text.

PT2.3.2 Goals and Objectives
Study Objectives. After completing Part Two, you should have sufficient information 
to successfully approach a wide variety of engineering problems dealing with roots of 
equations. In general, you should have mastered the techniques, have learned to assess 
their reliability, and be capable of choosing the best method (or methods) for any par-
ticular problem. In addition to these general goals, the specific concepts in Table PT2.2 
should be assimilated for a comprehensive understanding of the material in Part Two.

Computer Objectives. The book provides you with software and simple computer 
algorithms to implement the techniques discussed in Part Two. All have utility as learn-
ing tools.
 Pseudocodes for several methods are also supplied directly in the text. This informa-
tion will allow you to expand your software library to include programs that are more 
efficient than the bisection method. For example, you may also want to have your own 
software for the false-position, Newton-Raphson, and secant techniques, which are often 
more efficient than the bisection method.
 Finally, packages such as Excel, MATLAB, and Mathcad have powerful capabilities 
for locating roots. You can use this part of the book to become familiar with these capa-
bilities.
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TABLE PT2.2 Specific study objectives for Part Two.

 1. Understand the graphical interpretation of a root.
 2. Know the graphical interpretation of the false-position method and why it is usually superior to 

the bisection method.
 3. Understand the difference between bracketing and open methods for root location.
 4. Understand the concepts of convergence and divergence; use the two-curve graphical method 

to provide a visual manifestation of the concepts.
 5. Know why bracketing methods always converge, whereas open methods may sometimes diverge.
 6. Realize that convergence of open methods is more likely if the initial guess is close to the true root.
 7. Understand the concepts of linear and quadratic convergence and their implications for the 

efficiencies of the fixed-point-iteration and Newton-Raphson methods.
 8. Know the fundamental difference between the false-position and secant methods and how it 

relates to convergence.
 9. Understand how Brent’s method combines the reliability of bisection with the speed of open 

methods.
 10. Understand the problems posed by multiple roots and the modifications available to mitigate them.
 11. Know how to extend the single-equation Newton-Raphson approach to solve systems of 

nonlinear equations.
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C H A P T E R

5
Bracketing Methods

This chapter on roots of equations deals with methods that exploit the fact that a function 
typically changes sign in the vicinity of a root. These techniques are called bracketing 
methods because two initial guesses for the root are required. As the name implies, these 
guesses must “bracket,” or be on either side of, the root. The particular methods described 
herein employ different strategies to systematically reduce the width of the bracket and, 
hence, home in on the correct answer.
 As a prelude to these techniques, we will briefly discuss graphical methods for 
depicting functions and their roots. Beyond their utility for providing rough guesses, 
graphical techniques are also useful for visualizing the properties of the functions and 
the behavior of the various numerical methods.

 5.1 GRAPHICAL METHODS
A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to 
make a plot of the function and observe where it crosses the x axis. This point, which 
represents the x value for which f(x) = 0, provides a rough approximation of the root.

 EXAMPLE 5.1 The Graphical Approach
Problem Statement. Use the graphical approach to determine the drag coefficient c 
needed for a parachutist of mass m = 68.1 kg to have a velocity of 40 m/s after free-
falling for time t = 10 s. Note: The acceleration due to gravity is 9.81 m/s2.

Solution. This problem can be solved by determining the root of Eq. (PT2.4) using the 
parameters t = 10, g = 9.81, υ = 40, and m = 68.1:

f(c) =
9.81(68.1)

c
 (1 − e−(c∕68.1)10) − 40

or

f(c) =
668.06

c
 (1 − e−0.146843c) − 40 (E5.1.1)

Various values of c can be substituted into this equation to compute the following points:
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 5.1 GRAPHICAL METHODS 125

These points are plotted in Fig. 5.1. The resulting curve crosses the c axis between 12 and 
16. Visual inspection of the plot provides a rough estimate of the root of 14.75. The valid-
ity of the graphical estimate can be checked by substituting it into Eq. (E5.1.1) to yield

f(14.75) =
668.06
14.75

 (1 − e−0.146843(14.75)) − 40 = 0.100

which is close to zero. It can also be checked by substituting it into Eq. (PT2.3) along 
with the parameter values from this example to give

υ =
9.81(68.1)

14.75
 (1 − e−(14.75∕68.1)10) = 40.100

which is very close to the desired fall velocity of 40 m/s.

 c f (c)

 4 34.190
 8 17.712
 12 6.114
 16 −2.230
 20 −8.368

FIGURE 5.1
The graphical approach for determining the roots of an equation.

20

Root

12840

20

40

f (c)

c

–10
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126 BRACKETING METHODS

 Graphical techniques are of limited practical value because they are not precise. However, 
graphical methods can be utilized to obtain rough estimates of roots. These estimates can be 
employed as starting guesses for numerical methods discussed in this and the next chapter.
 Aside from providing rough estimates of the roots, graphical interpretations are 
important tools for understanding the properties of the functions and anticipating the 
pitfalls of the numerical methods. For example, Fig. 5.2 shows a number of ways in 
which roots can occur (or be absent) in an interval prescribed by a lower bound xl and 
an upper bound xu. Figure 5.2b depicts the case where a single root is bracketed by 
negative and positive values of f(x). However, Fig. 5.2d, where f(xl) and f(xu) are also 
on opposite sides of the x axis, shows three roots occurring within the interval. In gen-
eral, if f(xl) and f(xu) have opposite signs, there are an odd number of roots in the inter-
val. As indicated by Fig. 5.2a and c, if f(xl) and f(xu) have the same sign, there are either 
no roots or an even number of roots between the values.
 Although these generalizations are usually true, there are cases where they do not 
hold. For example, functions that are tangential to the x axis (Fig. 5.3a) and discontinu-
ous functions (Fig. 5.3b) can violate these principles. An example of a function that is 
tangential to the axis is the cubic equation f(x) = (x − 2)(x − 2)(x − 4). Notice that  
x = 2 makes two terms in this polynomial equal to zero. Mathematically, x = 2 is called 
a multiple root. At the end of Chap. 6, we will present techniques that are expressly 
designed to locate multiple roots.
 The existence of cases of the type depicted in Fig. 5.3 makes it difficult to develop 
general computer algorithms guaranteed to locate all the roots in an interval. However, 
when used in conjunction with graphical approaches, the methods described in the 

FIGURE 5.2 
Illustration of a number of 
 general ways that a root may 
occur in an interval prescribed 
by a lower bound xl and an 
 upper bound xu. Parts (a) and 
(c) indicate that if both f (xl) and 
f (xu) have the same sign, either 
there will be no roots or there 
will be an even number of 
roots within the interval. Parts 
(b) and (d ) indicate that if the 
function has different signs at 
the end points, there will be an 
odd number of roots in the in-
terval.

f (x)

x

f (x)

x

f (x)

x

f (x)

x

(a)

(b)

(c)

(d)
xl xu

FIGURE 5.3 
Illustration of some exceptions to the general cases depicted 
in Fig. 5.2. (a) Multiple root that occurs when the function is 
tangential to the x axis. For this case, although the end points 
are of opposite signs, there are an even number of axis inter-
sections for the interval. (b) Discontinuous function where end 
points of opposite sign bracket an even number of roots. Spe-
cial strategies are required for determining the roots for these 
cases.

f (x)

x

f (x)

x

(a)

(b)
xl xu
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 following sections are extremely useful for solving many roots-of-equations problems 
confronted routinely by engineers and applied mathematicians.

 EXAMPLE 5.2 Use of Computer Graphics to Locate Roots
Problem Statement. Computer graphics can expedite and improve your efforts to  locate 
roots of equations. The function

f(x) =  sin 10x +  cos 3x

has several roots over the range x = 0 to x = 5. Use computer graphics to gain insight 
into the behavior of this function.

Solution. Packages such as Excel and MATLAB software can be used to generate plots. 
Figure 5.4a is a plot of f(x) from x = 0 to x = 5. This plot suggests the presence of 
several roots, including a possible double root at about x = 4.2 where f(x) appears to be 

FIGURE 5.4 
The progressive enlargement of f (x) = sin 10x + cos 3x by the computer. Such interactive graphics  
permit the analyst to determine that two distinct roots exist between x = 4.2 and x = 4.3.
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128 BRACKETING METHODS

tangent to the x axis. A more detailed picture of the behavior of f(x) is obtained by chang-
ing the plotting range from x = 3 to x = 5, as shown in Fig. 5.4b. Finally, in Fig. 5.4c, the 
vertical scale is narrowed further to f(x) = −0.15 to f(x) = 0.15 and the horizontal scale is 
narrowed to x = 4.2 to x = 4.3. This plot shows clearly that a double root does not exist in 
this region and that in fact there are two distinct roots at about x = 4.23 and x = 4.26.
 Computer graphics will have great utility in your studies of numerical methods. This 
capability will also find many other applications in your other classes and professional 
activities as well.

FIGURE 5.5
Step 1:  Choose lower xl and upper xu guesses for the root such that the function changes sign 

over the interval. This can be checked by ensuring that f (xl)f(xu) < 0.
Step 2:  An estimate of the root xr is determined by

 xr =
xl + xu

2

Step 3:  Make the following evaluations to determine in which subinterval the root lies:
 (a)  If f (xl)f (xr) < 0, the root lies in the lower subinterval. Therefore, set xu = xr and return 

to step 2.
 (b)  If f (xl)f (xr) > 0, the root lies in the upper subinterval. Therefore, set xl = xr and return 

to step 2.
 (c) If f (xl)f (xr) = 0, the root equals xr; terminate the computation.

 5.2 THE BISECTION METHOD
When applying the graphical technique in Example 5.1, you have observed (Fig. 5.1) 
that f(x) changed sign on opposite sides of the root. In general, if f(x) is real and con-
tinuous in the interval from xl to xu and f(xl) and f(xu) have opposite signs, that is,

f(xl) f(xu) < 0 (5.1)

then there is at least one real root between xl and xu.
 Incremental search methods capitalize on this observation by locating an interval 
where the function changes sign. Then the location of the sign change (and consequently, 
the root) is identified more precisely by dividing the interval into a number of subinter-
vals. Each of these subintervals is searched to locate the sign change. The process is 
repeated and the root estimate refined by dividing the subintervals into finer increments. 
We will return to the general topic of incremental searches in Sec. 5.4.
 The bisection method, which is alternatively called binary chopping, interval halving, 
or Bolzano’s method, is one type of incremental search method in which the interval is 
always divided in half. If a function changes sign over an interval, the function value at 
the midpoint is evaluated. The location of the root is then determined as lying at the 
midpoint of the subinterval within which the sign change occurs. The process is repeated 
to obtain refined estimates. A simple algorithm for the bisection calculation is listed in 
Fig. 5.5, and a graphical depiction of the method is provided in Fig. 5.6. The following 
example goes through the actual computations involved in the method.
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 5.2 THE BISECTION METHOD 129

 EXAMPLE 5.3 Bisection
Problem Statement. Use bisection to solve the same problem approached graphically 
in Example 5.1.

Solution. The first step in bisection is to guess two values of the unknown (in the 
present problem, c) that give values for f(c) with different signs. From Fig. 5.1, we can 
see that the function changes sign between values of 12 and 16. Therefore, the initial 
estimate of the root xr lies at the midpoint of the interval

xr =
12 + 16

2
= 14

This estimate represents a true percent relative error of εt = 5.3% (note that the true 
value of the root is 14.8011). Next we compute the product of the function value at the 
lower bound and at the midpoint:

f(12)  f(14) = 6.114 (1.611) = 9.850

which is greater than zero, and hence no sign change occurs between the lower bound 
and the midpoint. Consequently, the root must be located between 14 and 16. Therefore, 
we create a new interval by redefining the lower bound as 14 and determining a revised 
root estimate as

xr =
14 + 16

2
= 15

which represents a true percent error of εt = 1.3%. The process can be repeated to  obtain 
refined estimates. For example,

f(14)  f(15) = 1.611(−0.384) = −0.619

1612

14 16

15

14
FIGURE 5.6 
A graphical depiction of the 
bisection method. This plot 
conforms to the first three 
 iterations from Example 5.3.
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130 BRACKETING METHODS

Therefore, the root is between 14 and 15. The upper bound is redefined as 15, and the 
root estimate for the third iteration is calculated as

xr =
14 + 15

2
= 14.5

which represents a percent relative error of εt = 2.0%. The method can be repeated until 
the result is accurate enough to satisfy your needs.

 In the previous example, you may have noticed that the true error does not decrease 
with each iteration. However, the interval within which the root is located is halved with 
each step in the process. As discussed in the next section, the interval width provides an 
exact estimate of the upper bound of the error for the bisection method.

5.2.1 Termination Criteria and Error Estimates
We ended Example 5.3 with the statement that the method could be continued to obtain 
a refined estimate of the root. We must now develop an objective criterion for deciding 
when to terminate the method.
 An initial suggestion might be to end the calculation when the true error falls 
below some prespecified level. For instance, in Example 5.3, the relative error dropped 
to 2.0 percent during the course of the computation. We might decide that we should 
terminate when the error drops below, say, 0.1 percent. This strategy is flawed because 
the error estimates in the example were based on knowledge of the true root of the 
function. This would not be the case in an actual situation because there would be no 
point in using the method if we already knew the root.
 Therefore, we require an error estimate that is not contingent on foreknowledge of 
the root. As developed previously in Sec. 3.3, an approximate percent relative error εa 
can be calculated, as in [recall Eq. (3.5)]

εa = ∣ xnew
r − xold

r

xnew
r

∣ 100% (5.2)

where xnew
r  is the root for the present iteration and xold

r  is the root from the previous it-
eration. The absolute value is used because we are usually concerned with the magnitude 
of εa rather than with its sign. When εa becomes less than a prespecified stopping cri-
terion εs, the computation is terminated.

 EXAMPLE 5.4 Error Estimates for Bisection
Problem Statement. Continue Example 5.3 until the approximate error falls below a 
stopping criterion of εs = 0.5%. Use Eq. (5.2) to compute the errors.

Solution. The results of the first two iterations for Example 5.3 were 14 and 15. Sub-
stituting these values into Eq. (5.2) yields

∣εa∣ = ∣ 15 − 14
15 ∣ 100% = 6.667%
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Recall that the true percent relative error for the root estimate of 15 was 1.3%. Therefore, 
εa is greater than εt. This behavior is manifested for the other iterations:

 Thus, after six iterations εa finally falls below εs = 0.5%, and the computation can 
be terminated.
 These results are summarized in Fig. 5.7. The “ragged” nature of the true error is due 
to the fact that, for bisection, the true root can lie anywhere within the bracketing interval. 
The true and approximate errors are far apart when the interval happens to be centered on 
the true root. They are close when the true root falls at either end of the interval.

Iteration xl xu xr εa (%) εt (%)

 1 12 16 14  5.413
 2 14 16 15 6.667 1.344
 3 14 15 14.5 3.448 2.035
 4 14.5 15 14.75 1.695 0.345
 5 14.75 15 14.875 0.840 0.499
 6 14.75 14.875 14.8125 0.422 0.077

FIGURE 5.7 
Errors for the bisection 
method. True and estimated 
errors are plotted versus the 
number of  iterations.

62 4
Iterations

Pe
rc

en
t r

el
at

iv
e 

er
ro

r

0

0.1

1.0

True

Approximate

10

 Although the approximate error does not provide an exact estimate of the true error, 
Fig. 5.7 suggests that εa captures the general downward trend of εt. In addition, the plot 
exhibits the extremely attractive characteristic that εa is always greater than εt. Thus, 
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132 BRACKETING METHODS

when εa falls below εs, the computation could be terminated with confidence that the 
root is known to be at least as accurate as the prespecified acceptable level.
 Although it is always dangerous to draw general conclusions from a single example, 
it can be demonstrated that εa will always be greater than εt for the bisection method. This 
is because each time an approximate root is located using bisection as xr = (xl + xu)∕2, we 
know that the true root lies somewhere within an interval of (xu − xl)∕2 = Δx∕2. There-
fore, the root must lie within ±Δx∕2 of our estimate (Fig. 5.8). For instance, when 
Example 5.3 was terminated, we could have made the definitive statement that

xr = 14.5 ± 0.5

 Because Δx∕2 = xnew
r − xold

r  (Fig. 5.9), Eq. (5.2) provides an exact upper bound on 
the true error. For this bound to be exceeded, the true root would have to fall outside 
the bracketing interval, which, by definition, could never occur for the bisection method. 
As illustrated in a subsequent example (Example 5.6), other root-locating techniques do 
not always behave as nicely. Although bisection is generally slower than other methods, 

FIGURE 5.8 
Three ways in which the inter-
val may bracket the root. In (a) 
the true value lies at the center 
of the interval, whereas in (b) 
and (c) the true value lies near 
the extreme. Notice that the 
discrepancy between the true 
value and the midpoint of the 
interval never exceeds half the 
interval length, or Δx∕2.

(b)

(a)

(c)

Δx /2

xl xr xu

xl xr xu

xl xr xu

Δx /2

True root

FIGURE 5.9 
Graphical depiction of why the 
error estimate for bisection 
(Δx∕2) is equivalent to the root 
estimate for the present itera-
tion (xnew

r ) minus the root esti-
mate for the previous iteration 
(xold

r ).

Previous iteration

Δx /2

xold
r

xnew
r

xnew – xold
r r

Present iteration
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the neatness of its error analysis is certainly a positive aspect that could make it attrac-
tive for certain engineering applications.
 Before proceeding to the computer program for bisection, we should note that the 
relationships (Fig. 5.9)

xnew
r − xold

r =
xu − xl

2
and

xnew
r =

xl + xu

2

can be substituted into Eq. (5.2) to develop an alternative formulation for the approximate 
percent relative error

εa = ∣ xu − xl

xu + xl
∣ 100% (5.3)

This equation yields identical results to Eq. (5.2) for bisection. In addition, it allows us to 
calculate an error estimate on the basis of our initial guesses—that is, on our first iteration. 
For instance, on the first iteration of Example 5.2, an approximate error can be computed as

εa = ∣ 16 − 12
16 + 12 ∣ 100% = 14.29%

 Another benefit of the bisection method is that the number of iterations required to 
attain an absolute error can be computed a priori—that is, before starting the iterations. 
This can be seen by recognizing that before starting the technique, the absolute error is

E0
a = x0

u − x0
l = Δx0

where the superscript designates the iteration. Hence, before starting the method, we are 
at the “zero iteration.” After the first iteration, the error becomes

E1
a =

Δx0

2

Because each succeeding iteration halves the error, a general formula relating the error 
and the number of iterations n is

En
a =

Δx0

2n  (5.4)

If Ea,d is the desired error, this equation can be solved for

n =
log(Δx0∕Ea,d)

 log 2
= log2  (

Δx0

Ea,d ) (5.5)

 Let us test the formula. For Example 5.4, the initial interval was Δx0 = 16 − 12 = 4. 
After six iterations, the absolute error was

Ea =
∣14.875 − 14.75∣

2
= 0.0625
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We can substitute these values into Eq. (5.5) to give

n =
log(4∕0.0625)

log 2
= 6

Thus, if we knew beforehand that an error of less than 0.0625 was acceptable, the formula 
tells us that six iterations would yield the desired result.
 Although we have emphasized the use of relative errors for obvious reasons, there will 
be cases where (usually through knowledge of the problem context) you will be able to 
specify an absolute error. For these cases, bisection along with Eq. (5.5) can provide a useful 
root-location algorithm. We will explore such applications in the end-of-chapter problems.

5.2.2 Bisection Algorithm
The algorithm in Fig. 5.5 can now be expanded to include the error check (Fig. 5.10). 
The algorithm employs user-defined functions to make root location and function evalu-
ation more efficient. In addition, an upper limit is placed on the number of iterations. 
Finally, an error check is included to avoid division by zero during the error evaluation. 
Such would be the case when the bracketing interval is centered on zero. For this situ-
ation, Eq. (5.2) becomes infinite. If this occurs, the program skips over the error evalu-
ation for that iteration.
 The algorithm in Fig. 5.10 is not user-friendly; it is designed strictly to come up 
with the answer. In Prob. 5.21 at the end of this chapter, you will have the task of mak-
ing it easier to use and understand.

FUNCTION Bisect(xl, xu, es, imax, xr, iter, ea)
  iter = 0 
  DO 
    xrold = xr 
    xr = (xl + xu) ∕ 2 
    iter = iter + 1 
    IF xr ≠ 0 THEN 
      ea = ABS((xr − xrold) ∕ xr) * 100 
    END IF 
    test = f(xl) * f(xr) 
    IF test < 0 THEN 
      xu = xr 
    ELSE IF test > 0 THEN 
      xl = xr 
    ELSE 
      ea = 0 
    END IF 
    IF ea < es OR iter ≥ imax EXIT 
  END DO 
  Bisect = xr
END Bisect

FIGURE 5.10
Pseudocode for function to 
 implement bisection.
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5.2.3 Minimizing Function Evaluations
The bisection algorithm in Fig. 5.10 is just fine if you are performing a single root 
evaluation for a function that is easy to evaluate. However, there are many instances 
in engineering when this is not the case. For example, suppose that you develop a 
computer program that must locate a root numerous times. In such cases you could 
call the algorithm from Fig. 5.10 thousands and even millions of times in the course 
of a single run.
 Further, in its most general sense, a univariate function is merely an entity that re-
turns a single value in return for a single value you send to it. Perceived in this sense, 
functions are not always simple formulas like the one-line equations solved in the preced-
ing examples in this chapter. For example, a function might consist of many lines of 
code that could take a significant amount of execution time to evaluate. In some cases, 
the function might even represent an independent computer program.
 Because of both these factors, it is imperative that numerical algorithms minimize 
function evaluations. In this light, the algorithm from Fig. 5.10 is deficient. In particular, 
notice that in making two function evaluations per iteration, it recalculates one of the 
functions that was determined on the previous iteration.
 Figure 5.11 provides a modified algorithm that does not have this deficiency. We have 
highlighted the lines that differ from Fig. 5.10. In this case, only the new function value at 

FUNCTION Bisect(xl, xu, es, imax, xr, iter, ea)
  iter = 0
  fl = f(xl)
  DO
    xrold = xr
    xr = (xl + xu) ∕ 2
    fr = f(xr)
    iter = iter + 1
    IF xr ≠ 0 THEN
      ea = ABS((xr − xrold) ∕ xr) * 100
    END IF
    test = fl * fr
    IF test < 0 THEN
      xu = xr
    ELSE IF test > 0 THEN
      xl = xr
      fl = fr
    ELSE
      ea = 0
    END IF
    IF ea < es OR iter ≥ imax EXIT
  END DO
  Bisect = xr
END Bisect

FIGURE 5.11
Pseudocode for bisection sub-
program that minimizes 
 function evaluations.
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136 BRACKETING METHODS

the root estimate is calculated. Previously calculated values are saved and merely reassigned 
as the bracket shrinks. Thus, n + 1 function evaluations are performed, rather than 2n.

 5.3 THE FALSE-POSITION METHOD
Although bisection is a perfectly valid technique for determining roots, its “brute-force” 
approach is relatively inefficient. False position is an alternative based on a graphical insight.
 A shortcoming of the bisection method is that, in dividing the interval from xl to xu 
into equal halves, no account is taken of the magnitudes of f(xl) and f(xu). For example, 
if f(xl) is much closer to zero than f(xu), it is likely that the root is closer to xl than to 
xu (Fig. 5.12). An alternative method that exploits this graphical insight is to join f(xl) 
and f(xu) by a straight line. The intersection of this line with the x axis represents an 
improved estimate of the root. The fact that the replacement of the curve by a straight 
line gives a “false position” of the root is the origin of the name, method of false  position, 
or in Latin, regula falsi. It is also called the linear interpolation method.
 Using similar triangles (Fig. 5.12), the intersection of the straight line with the 
x axis can be estimated as

f(xl)
xr − xl

=
f(xu)

xr − xu
 (5.6)

which can be solved for (see Box 5.1 for details).

xr = xu −
f(xu) (xl − xu)
f(xl) − f(xu)

 (5.7)

FIGURE 5.12 
A graphical depiction of the 
method of false position. Simi-
lar triangles used to derive the 
formula for the method are 
shaded.

x
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This is the false-position formula. The value of xr computed with Eq. (5.7) then replaces 
whichever of the two initial guesses, xl or xu, yields a function value with the same sign 
as f(xr). In this way, the values of xl and xu always bracket the true root. The process is 
repeated until the root is estimated adequately. The algorithm is identical to the one for 
bisection (Fig. 5.5) with the exception that Eq. (5.7) is used for step 2. In addition, the 
same stopping criterion [Eq. (5.2)] is used to terminate the computation.

 EXAMPLE 5.5 False Position
Problem Statement. Use the false-position method to determine the root of the same 
equation investigated in Example 5.1 [Eq. (E5.1.1)].

Solution. As in Example 5.3, initiate the computation with guesses of xl = 12 and  
xu = 16.

First iteration:

xl = 12   f (xl) = 6.1139
xu = 16   f (xu) = −2.2303

xr = 16 −
−2.2303(12 − 16)

6.1139 − (−2.2303)
= 14.309

which has a true relative error of 0.88%.

Second iteration:

f(xl) f(xr) = −1.5376

 Box 5.1 Derivation of the Method of False Position

Cross-multiply Eq. (5.6) to yield

f (xl) (xr − xu) = f (xu) (xr − xl)

Collect terms and rearrange:

xr [ f(xl) − f (xu) ] = xu f (xl) − xl f (xu)

Divide by f(xl) − f(xu):

xr =
xu f (xl) − xl f (xu)

f (xl) − f (xu)
 (B5.1.1)

This is one form of the method of false position. Note that it 
allows the computation of the root xr as a function of the lower 
and upper guesses xl and xu. It can be put in an alternative form 
by expanding it:

xr =
xu f (xl)

f (xl) − f (xu)
−

xl f (xu)
f (xl) − f (xu)

then adding and subtracting xu on the right-hand side:

xr = xu +
xu f (xl)

f (xl) − f (xu)
− xu −

xl f (xu)
f (xl) − f (xu)

Collecting terms yields

xr = xu +
xu f (xu)

f (xl) − f (xu)
−

xl f (xu)
f (xl) − f(xu)

or

xr = xu −
f (xu) (xl − xu)
f (xl) − f (xu)

which is the same as Eq. (5.7). We use this form because it in-
volves one less function evaluation and one less multiplication 
than Eq. (B5.1.1). In addition, it is directly comparable with the 
secant method, which will be discussed in Chap. 6.
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Therefore, the root lies in the first subinterval, and xr becomes the upper limit for the 
next iteration, xu = 14.9113:

xl = 12       f(xl) = 6.1139
xu = 14.9309   f(xu) = −0.2515

xr = 14.9309 −
−0.2515(12 − 14.9309)

6.1139 − (−0.2515)
= 14.8151

which has true and approximate relative errors of 0.09 and 0.78%. Additional iterations 
can be performed to refine the estimate of the roots.

FIGURE 5.13 
Comparison of the relative 
 errors of the bisection and the 
false-position methods.
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 A feeling for the relative efficiency of the bisection and false-position methods can 
be appreciated by referring to Fig. 5.13, where we have plotted the true percent relative 
errors for Examples 5.4 and 5.5. Note how the error for false position decreases much 
faster than for bisection because of the more efficient scheme for root location in the 
false-position method.
 Recall in the bisection method that the interval between xl and xu grew smaller  during 
the course of a computation. The interval, as defined by Δx∕2 = ∣xu − xl ∣ 

∕2 for the first 
iteration, therefore provided a measure of the error for this approach. This is not the case 
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for the method of false position because one of the initial guesses may stay fixed through-
out the computation as the other guess converges on the root. For instance, in Example 5.5 
the lower guess xl remained at 12 while xu converged on the root. For such cases, the 
interval does not shrink but rather approaches a constant value.
 Example 5.5 suggests that Eq. (5.2) represents a very conservative error criterion. 
In fact, Eq. (5.2) actually constitutes an approximation of the discrepancy of the previous 
iteration. This is because for a case such as Example 5.5, where the method is converg-
ing quickly (for example, the error is being reduced nearly an order of magnitude per 
iteration), the root for the present iteration xnew

r  is a much better estimate of the true value 
than the result of the previous iteration xold

r . Thus, the quantity in the numerator of Eq. (5.2) 
actually represents the discrepancy of the previous iteration. Consequently, we are assured 
that satisfaction of Eq. (5.2) ensures that the root will be known with greater accuracy 
than the prescribed tolerance. However, as described in the next section, there are cases 
where false position converges slowly. For these cases, Eq. (5.2) becomes unreliable, and 
an alternative stopping criterion must be developed.

5.3.1 Pitfalls of the False-Position Method
Although the false-position method would seem to always be the bracketing method of 
preference, there are cases where it performs poorly. In fact, as in the following example, 
there are certain cases where bisection yields superior results.

 EXAMPLE 5.6 A Case Where Bisection Is Preferable to False Position
Problem Statement. Use bisection and false position to locate the root of

f(x) = x10 − 1

between x = 0 and 1.3.
Solution. Using bisection, the results can be summarized as follows:

Iteration xl xu xr εa  (%) εt  (%)

 1 0 1.3 0.65 100.0 35
 2 0.65 1.3 0.975 33.3 2.5
 3 0.975 1.3  1.1375 14.3 13.8
 4 0.975 1.1375  1.05625                  7.7  5.6
 5 0.975 1.05625  1.015625                4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2%. For false position, 
a very different outcome is obtained:

Iteration xl xu xr εa (%) εt (%)

 1 0 1.3 0.09430  90.6
 2 0.09430 1.3 0.18176 48.1  81.8
 3 0.18176 1.3 0.26287 30.9  73.7
 4 0.26287 1.3 0.33811 22.3 66.2
 5 0.33811 1.3 0.40788  17.1 59.2
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140 BRACKETING METHODS

 After five iterations, the true error has only been reduced to about 59 percent. In 
addition, note that εa < εt. Thus, the approximate error is misleading. Insight into these 
results can be gained by examining a plot of the function. As in Fig. 5.14, the curve 
violates the premise upon which false position was based—that is, if f(xl) is much closer 
to zero than f(xu), then the root is closer to xl than to xu (recall Fig. 5.12). Because of 
the shape of the present function, the opposite is true.

FIGURE 5.14 
Plot of f (x) = x10 − 1, illustrating slow convergence of the false-position method.
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 The forgoing example illustrates that blanket generalizations regarding root-location 
methods are usually not possible. Although a method such as false position is often supe-
rior to bisection, there are invariably cases that violate this general conclusion. Therefore, 
in addition to using Eq. (5.2), the results should always be checked by substituting the root 
estimate into the original equation and determining whether the result is close to zero. Such 
a check should be incorporated into all computer programs for root location.
 The example also illustrates a major weakness of the false-position method: its one-
sidedness. That is, as iterations are proceeding, one of the bracketing points will tend to 
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stay fixed. This can lead to poor convergence, particularly for functions with significant 
curvature. The following section provides a remedy.

5.3.2 Modified False Position
One way to mitigate the “one-sided” nature of false position is to have the algorithm 
detect when one of the bounds is stuck. If this occurs, the function value at the stagnant 
bound can be divided in half. This is called the modified false-position method.
 The algorithm in Fig. 5.15 implements this strategy. Notice how counters are used 
to determine when one of the bounds stays fixed for two iterations. If this occurs, the 
function value at this stagnant bound is halved.
 The effectiveness of this algorithm can be demonstrated by applying it to  Example 5.6. 
If a stopping criterion of 0.01% is used, the bisection and standard false-position 

FUNCTION ModFalsePos(xl, xu, es, imax, xr, iter, ea)
  iter = 0
   fl = f(xl)
  fu  = f(xu)
  DO
    xrold = xr
    xr = xu − fu * (xl − xu) ∕ (fl − fu)
    fr = f(xr)
    iter = iter + 1
    IF xr < > 0 THEN
      ea = Abs((xr − xrold) ∕ xr) * 100
    END IF
    test = fl * fr
    IF test < 0 THEN
      xu = xr
      fu = f(xu)
      iu = 0
      il = il + 1
      IF il ≥ 2 THEN fl = fl ∕ 2
    ELSE IF test > 0 THEN
      xl = xr
      fl = f(xl)
      il = 0
      iu = iu + 1
      IF iu ≥ 2 THEN fu = fu ∕ 2
    ELSE
      ea = 0
    END IF
    IF ea < es OR iter ≥ imax THEN EXIT
  END DO
  ModFalsePos = xr
END MODFALSEPOS

FIGURE 5.15 
Pseudocode for the modified 
false-position method.
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methods would converge in 14 and 39 iterations, respectively. In contrast, the modified 
false-position method would converge in 12 iterations. Thus, for this example, it is 
somewhat more efficient than bisection and is vastly superior to the unmodified false-
position method.

 5.4 INCREMENTAL SEARCHES AND DETERMINING  
INITIAL GUESSES
Besides checking an individual answer, you must determine whether all possible roots 
have been located. As mentioned previously, a plot of the function is usually very useful 
in guiding you in this task. Another option is to incorporate an incremental search at the 
beginning of the computer program. This consists of starting at one end of the region of 
interest and then making function evaluations at small increments across the region. 
When the function changes sign, it is assumed that a root falls within the increment. The 
x values at the beginning and the end of the increment can then serve as the initial 
guesses for one of the bracketing techniques described in this chapter.
 A potential problem with an incremental search is the choice of the increment length. 
If the length is too small, the search can be very time-consuming. On the other hand, if 
the length is too great, there is a possibility that closely spaced roots might be missed 
(Fig. 5.16). The problem is compounded by the possible existence of multiple roots. A 
partial remedy for such cases is to compute the first derivative of the function f '(x) at 
the beginning and the end of each interval. If the derivative changes sign, it suggests 
that a minimum or maximum may have occurred and that the interval should be examined 
more closely for the existence of a possible root.
 Although such modifications or the employment of a very fine increment can allevi-
ate the problem, it should be clear that brute-force methods such as incremental search 
are not foolproof. You would be wise to supplement such automatic techniques with any 
other information that provides insight into the location of the roots. Such information 
can be found in plotting and in understanding the physical problem from which the equa-
tion originated.

FIGURE 5.16 
Cases where roots could be 
missed because the increment 
length of the search proce-
dure is too large. Note that the 
last root on the right is multiple 
and would be missed regard-
less of increment length.
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PROBLEMS

5.1 Determine the real roots of f (x) = −0.6x2 + 2.4x + 5.5:
(a) Graphically.
(b) Using the quadratic formula.
(c) Using three iterations of the bisection method to determine the 

highest root. Employ initial guesses of xl = 5 and xu = 10. 
Compute the estimated error εa and the true error εt after each 
iteration.

5.2 Determine the real root of f (x) = 4x3 − 6x2 + 7x − 2.3:
(a) Graphically.
(b) Using bisection to locate the root. Employ initial guesses of 

xl = 0 and xu = 1 and iterate until the estimated error εa falls 
below a level of εs = 10%.

5.3 Determine the real root of f (x) = −26 + 85x − 91x2 +
44x3 − 8x4 + x5:
(a) Graphically.
(b) Using bisection to determine the root to εs = 10%. Employ ini-

tial guesses of xl = 0.5 and xu = 1.0.
(c) Perform the same computation as in (b) but use the false-

position method and εs = 0.2%.
5.4 (a) Determine the roots of f (x) = −13 − 20x + 19x2 − 3x3 
graphically. In addition, determine the first root of the function with 
(b) bisection, and (c) false position. For (b) and (c), use initial guesses 
of xl = −1 and xu = 0 and a stopping criterion of 1%.
5.5 Locate the first nontrivial root of sin x = x3 where x is in radi-
ans. Use a graphical technique and bisection with the initial interval 
from 0.5 to 1. Perform the computation until εa is less than εs = 2%. 
Also perform an error check by substituting your final answer into 
the original equation.
5.6 Determine the positive real root of ln (x4) = 0.7 (a) graphi-
cally, (b) using three iterations of the bisection method, with initial 
guesses of xl = 0.5 and xu = 2, and (c) using three iterations of the 
false-position method, with the same initial guesses as in (b).
5.7 Determine the real root of f (x) = (0.8 − 0.3x)∕x:
(a) Analytically.
(b) Graphically.
(c) Using three iterations of the false-position method and initial 

guesses of 1 and 3. Compute the approximate error εa and the true 
error εt after each iteration. Is there a problem with the result?

5.8 Find the positive square root of 18 using the false-position 
method to within εs = 0.5%. Employ initial guesses of xl = 4 and 
xu = 5.
5.9 Find the smallest positive root of the function (x is in radians) 
x2∣cos √x∣ = 5 using the false-position method. To locate the re-
gion in which the root lies, first plot this function for values of x 
between 0 and 5. Perform the computation until εa falls below 
εs = 1%. Check your final answer by substituting it into the orig-
inal function.

5.10 Find the positive real root of f (x) = x4 − 8x3 − 35x2 +  
450x − 1001 using the false-position method. Use initial guesses 
of xl = 4.5 and xu = 6 and perform five iterations. Compute both 
the true and approximate errors based on the fact that the root is 
5.60979. Use a plot to explain your results and perform the compu-
tation to within εs = 1.0%.
5.11 Determine the real root of x3.5 = 80: (a) analytically and  
(b) with the false-position method to within εs = 2.5%. Use initial 
guesses of 2.0 and 5.0.
5.12 Given

f (x) = −2x6 − 1.6x4 + 12x + 1

use bisection to determine the maximum of this function. Employ 
initial guesses of xl = 0 and xu = 1, and perform iterations until the 
approximate relative error falls below 5%.
5.13 The velocity υ of a falling parachutist is given by

υ =
gm

c
 (1 − e−(c∕m)t)

where g = 9.81 m∕s2. For a parachutist with a drag coefficient 
c = 15 kg/s, compute the mass m so that the velocity is υ = 35 m/s 
at t = 9 s. Use the false-position method to determine m to a level 
of εs = 0.1%.
5.14 Use bisection to determine the drag coefficient needed so that 
an 80-kg parachutist has a velocity of 35 m/s after 3.9 s of free fall. 
Note: The acceleration due to gravity is 9.81 m/s2. Start with initial 
guesses of xl = 3 and xu = 5 and iterate until the approximate rela-
tive error falls below 5%. Also perform an error check by substitut-
ing your final answer into the original equation.
5.15 As depicted in Fig. P5.15, the velocity of water, υ (m/s), 
 discharged from a cylindrical tank through a long pipe can be 
computed as

υ = √2gH tanh (
√2gH

2L
t)

H
L

v

FIGURE P5.15
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5.18 The saturation concentration of dissolved oxygen in freshwa-
ter can be calculated with the equation (APHA 1992)

 ln osf = −139.34411 +
1.575701 × 105

Ta

−
6.642308 × 107

T 
2
a

 +
1.243800 × 1010

T 
3
a

−
8.621949 × 1011

T 
4
a

where osf = the saturation concentration of dissolved oxygen in 
freshwater at 1 atm (mg/L) and Ta = absolute temperature (K). Re-
member that Ta = T + 273.15, where T = temperature (°C). Ac-
cording to this equation, saturation decreases with increasing 
temperature. For typical natural waters in temperate climates, the 
equation can be used to determine that oxygen concentration ranges 
from 14.621 mg/L at 0°C to 6.413 mg/L at 40°C. Given a value of 
oxygen concentration, this formula and the bisection method can be 
used to solve for temperature in °C.
(a) If the initial guesses are set as 0 and 40°C, how many bisection 

iterations would be required to determine temperature to an 
absolute error of 0.05°C?

(b) Develop and test a bisection program to determine T as a func-
tion of a given oxygen concentration to a prespecified absolute 
error as in (a). Given initial guesses of 0 and 40°C, test your 
program for an absolute error = 0.05°C and the following 
cases: osf = 8, 10, and 13 mg/L. Check your results.

5.19 According to Archimedes principle, the buoyancy force is 
equal to the weight of fluid displaced by the submerged portion of an 
 object. For the sphere depicted in Fig. P5.19, use bisection to deter-
mine the height h of the portion that is above water. Employ the follow-
ing values for your computation: r = 1.25 m, ρs = density of sphere = 
250 kg/m3, and ρw = density of water = 1000 kg/m3. Note that the 
volume of the above-water portion of the sphere can be computed with

V =
πh2

3
 (3r − h)

h

r

FIGURE P5.19

5.20 Perform the same computation as in Prob. 5.19, but for the 
frustrum of a cone, as depicted in Fig. P5.20. Employ the following 

where g = 9.81 m/s2, H = initial head (m), L = pipe length (m), and 
t = elapsed time (s). Determine the head needed to achieve υ =  
4 m/s in 3 s for a 5-m-long pipe (a) graphically, (b) by  bisection, 
and (c) with false position. Employ initial guesses of xl = 0 and  
xu = 2 m with a stopping criterion of εs = 1%. Check your results.
5.16 Water is flowing in a trapezoidal channel at a rate of Q = 20 m3/s. 
The critical depth y for such a channel must satisfy the equation

0 = 1 −
Q2

gA3
c

 B

where g = 9.81 m/s2, Ac = the cross-sectional area (m2), and B = the 
width of the channel at the surface (m). For this case, the width and 
the cross-sectional area can be related to depth y by 

B = 3 + y  and  Ac = 3y +
y2

2

Solve for the critical depth using (a) the graphical method, (b) bisec-
tion, and (c) false position. For (b) and (c), use initial guesses of 
xl = 0.5 and xu = 3, and iterate until the approximate error falls below 
1% or the number of iterations exceeds 10. Discuss your  results.
5.17 You are designing a spherical tank (Fig. P5.17) to hold water 
for a small village in a developing country. The volume of liquid it 
can hold can be computed as 

V = πh2
 

[3R − h]
3

where V = volume (m3), h = depth of water in tank (m), and R = the 
tank radius (m).

hV

R

FIGURE P5.17

If R = 4 m, to what depth must the tank be filled so that it holds 
40 m3? Use three iterations of the false-position method to determine 
your answer. Determine the approximate relative error after each 
 iteration. Employ initial guesses of 0 and R.
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(c) Add an answer check that substitutes the root estimate into the 
original function to verify whether the final result is close to zero.

(d) Test the subprogram by duplicating the computations from 
 Examples 5.3 and 5.4.

5.22 Develop a subprogram for the bisection method that mini-
mizes function evaluations based on the pseudocode from Fig. 5.11. 
Determine the number of function evaluations (n) per total itera-
tions. Test the program by duplicating Example 5.6.
5.23 Develop a user-friendly program for the false-position 
method. The structure of your program should be similar to the 
 bisection algorithm outlined in Fig. 5.10. Test the program by 
 duplicating Example 5.5.
5.24 Develop a subprogram for the false-position method that min-
imizes function evaluations in a fashion similar to Fig. 5.11. Deter-
mine the number of function evaluations (n) per total iterations. 
Test the program by duplicating Example 5.6.
5.25 Develop a user-friendly subprogram for the modified false-
position method based on Fig. 5.15. Test the program by deter-
mining the root of the function described in Example 5.6. 
Perform a number of runs until the true percent relative error 
falls below 0.01%. Plot the true and approximate percent relative 
errors versus number of iterations on semilog paper. Interpret 
your results.
5.26 Develop a function for bisection in a similar fashion to Fig. 5.10. 
However, rather than using the maximum iterations and Eq. (5.2), 
employ Eq. (5.5) as your stopping criterion. Make sure to round the 
result of Eq. (5.5) up to the next highest integer. Test your function by 
solving Example 5.3 using Ea,d = 0.0001.

values for your computation: r1 = 0.4 m, r2 = 1 m, h = 1 m, ρf = 
frustrum density = 250 kg/m3, and ρw = water density = 1000 kg/m3. 
Note that the volume of a frustrum is given by

V =
πh

3
(r2

1 + r2
2 + r1r2)

h

h1

r2

r1

FIGURE P5.20

5.21 Integrate the algorithm outlined in Fig. 5.10 into a complete, 
user-friendly bisection subprogram. Among other things:
(a) Place documentation statements throughout the subprogram to 

identify what each section is intended to accomplish.
(b) Label the input and output.
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6

FIGURE 6.1
Graphical depiction of the 
 fundamental difference be-
tween the (a) bracketing and 
(b) and (c) open methods for 
root  location. In (a), which is 
the  bisection method, the root 
is constrained within the inter-
val prescribed by xl and xu. In 
 contrast, for the open method 
 depicted in (b) and (c), a 
 formula is used to project from 
xi to xi+1 in an iterative fashion. 
Thus, the method can either 
(b) diverge or (c) converge rap-
idly, depending on the value of 
the initial guess.

f (x)

x

(a)

xl xu

xl xu

f (x)

x

(b)

xi

xi + 1

f (x)

x

(c)

xi

xi + 1

xl xu

xl xu

xl xu

Open Methods

For the bracketing methods in Chap. 5, the root is located within an interval prescribed 
by a lower and an upper bound. Repeated application of these methods always results in 
closer estimates of the true value of the root. Such methods are said to be convergent 
because they move closer to the truth as the computation progresses (Fig. 6.1a).
 In contrast, the open methods described in this chapter are based on formulas 
that require only a single starting value of x or two starting values that do not 
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 necessarily bracket the root. As such, they sometimes diverge or move away from 
the true root as the computation progresses (Fig. 6.1b). However, when the open 
methods converge (Fig. 6.1c), they usually do so much more quickly than the brack-
eting methods. We will begin our discussion of open techniques with a simple version 
that is useful for illustrating their general form and also for demonstrating the con-
cept of convergence.

 6.1 SIMPLE FIXED-POINT ITERATION
As mentioned above, open methods employ a formula to predict the root. Such a formula 
can be developed for simple fixed-point iteration (or, as it is also called, one-point it-
eration or successive substitution) by rearranging the function f(x) = 0 so that x is on 
the left-hand side of the equation:

x = g(x) (6.1)

This transformation can be accomplished either by algebraic manipulation or by simply 
adding x to both sides of the original equation. For example,

x2 − 2x + 3 = 0

can be simply manipulated to yield

x =
x2 + 3

2
whereas sin x = 0 could be put into the form of Eq. (6.1) by adding x to both sides 
to yield

x =  sin  x + x

 The utility of Eq. (6.1) is that it provides a formula to predict a new value of x as 
a function of an old value of x. Thus, given an initial guess at the root xi, Eq. (6.1) can 
be used to compute a new estimate xi+1 as expressed by the iterative formula

xi+1 = g(xi) (6.2)

As with other iterative formulas in this book, the approximate error for this equation can 
be determined using the error estimator [Eq. (3.5)]:

εa = ∣ xi+1 − xi

xi+1
∣ 100%

 EXAMPLE 6.1 Simple Fixed-Point Iteration
Problem Statement. Use simple fixed-point iteration to locate the root of f(x) = e−x − x.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as

xi+1 = e−xi
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Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute

 i xi εa (%) εt (%)

 0 0  100.0
 1 1.000000 100.0 76.3
 2 0.367879 171.8 35.1
 3 0.692201 46.9 22.1
 4 0.500473 38.3 11.8
 5 0.606244 17.4 6.89
 6 0.545396 11.2 3.83
 7 0.579612 5.90 2.20
 8 0.560115 3.48 1.24
 9 0.571143 1.93 0.705
 10 0.564879 1.11 0.399

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

6.1.1 Convergence
Notice that the true percent relative error for each iteration of Example 6.1 is roughly 
proportional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. 
This property, called linear convergence, is characteristic of fixed-point iteration.
 Aside from the “rate” of convergence, we must comment at this point about the 
“possibility” of convergence. The concepts of convergence and divergence can be de-
picted graphically. Recall that in Sec. 5.1, we graphed a function to visualize its structure 
and behavior (Example 5.1). Such an approach is employed in Fig. 6.2a for the function 
f(x) = e−x − x. An alternative graphical approach is to separate the equation into two 
component parts, as in

f1(x) = f2(x)

Then the two equations

y1 = f1(x) (6.3)

and

y2 = f2(x) (6.4)

can be plotted separately (Fig. 6.2b). The x values corresponding to the intersections of 
these functions represent the roots of f(x) = 0.

 EXAMPLE 6.2 The Two-Curve Graphical Method
Problem Statement. Separate the equation e−x − x = 0 into two parts and determine 
its root graphically.
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These points are plotted in Fig. 6.2b. The intersection of the two curves indicates a root 
estimate of approximately x = 0.57, which corresponds to the point where the single 
curve in Fig. 6.2a crosses the x axis.

Solution. Reformulate the equation as y1 = x and y2 = e−x. The following values can 
be computed:

 x y1 y2

 0.0 0.0 1.000
 0.2 0.2 0.819
 0.4 0.4 0.670
 0.6 0.6 0.549
 0.8 0.8 0.449
 1.0 1.0 0.368

FIGURE 6.2
Two alternative graphical 
 methods for determining the 
root of f (x) = e−x − x. (a) Root 
at the point where the graph 
of the function crosses the x 
axis; (b) root at the intersection 
of the component functions.

f (x)

f (x)

x

x

Root

Root

f (x) = e– x – x

f 1(x) = x

f 2(x) = e– x

(a)

(b)
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 The two-curve method can now be used to illustrate the convergence and divergence 
of fixed-point iteration. First, Eq. (6.1) can be re-expressed as a pair of equations: y1 = x 
and y2 = g(x). These two equations can then be plotted separately. As was the case with 
Eqs. (6.3) and (6.4), the roots of f(x) = 0 correspond to the abscissa value at the intersec-
tion of the two curves. The function y1 = x and four different shapes for y2 = g(x) are 
plotted in Fig. 6.3.
 For the first case (Fig. 6.3a), the initial guess of x0 is used to determine the corre-
sponding point on the y2 curve, [x0, g(x0)]. The point (x1, x1) is located by moving left 
horizontally to the y1 curve. These movements are equivalent to the first iteration in the 
fixed-point method:

x1 = g(x0)

FIGURE 6.3
Iteration cobwebs depicting 
convergence (a and b) and 
 divergence (c and d ) of simple 
fixed-point iteration. Graphs (a) 
and (c) are called monotone 
patterns, whereas (b) and (d) 
are called oscillating, or spiral, 
patterns. Note that conver-
gence occurs when |g′(x)| < 1.

xx1

y1 = x

y2 = g(x)

x2 x0

y

(a)
x

y1 = x

y2 = g(x)

x0

y

(b)

x

y1 = x

y2 = g(x)

x0

y

(c)
x

y1 = x

y2 = g(x)

x0

y

(d)
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Thus, in both the equation and in the plot, a starting value of x0 is used to obtain an 
estimate of x1. The next iteration consists of moving to [x1, g(x1)] and then to (x2, x2). 
This iteration is equivalent to the equation

x2 = g(x1)

The solution in Fig. 6.3a is convergent because the estimates of x move closer to the 
root with each iteration. The same is true for Fig. 6.3b. However, this is not the case 
for Fig. 6.3c and d, where the iterations diverge from the root. Notice that convergence 
seems to occur only when the absolute value of the slope of y2 = g(x) is less than 
the slope of y1 = x, that is, when ∣g′(x)∣ < 1. Box 6.1 provides a theoretical derivation 
of this result.

6.1.2 Algorithm for Fixed-Point Iteration
The computer algorithm for fixed-point iteration is extremely simple. It consists of a loop 
to iteratively compute new estimates until the termination criterion has been met. Figure 6.4 

 Box 6.1 Convergence of Fixed-Point Iteration

From studying Fig. 6.3, it should be clear that fixed-point itera-
tion converges if, in the region of interest, ∣g′(x)∣ < 1. In other 
words, convergence occurs if the magnitude of the slope of g(x) 
is less than the slope of the line f(x) = x. This observation can be 
demonstrated theoretically. Recall that the iterative equation is

xi+1 = g(xi)

Suppose that the true solution is

xr = g(xr)

Subtracting these equations yields

xr − xi+1 = g(xr) − g(xi) (B6.1.1)

The derivative mean-value theorem (recall Sec. 4.1.1) states 
that if a function g(x) and its first derivative are continuous over 
an interval a ≤ x ≤ b, then there exists at least one value of x = 
ξ within the interval such that

g′(ξ) =
g(b) − g(a)

b − a
 (B6.1.2)

The right-hand side of this equation is the slope of the line joining 
g(a) and g(b). Thus, the mean-value theorem states that there is at 
least one point between a and b that has a slope, designated by g′(ξ), 
which is parallel to the line joining g(a) and g(b) (recall Fig. 4.3).

 Now, if we let a = xi and b = xr, the right-hand side of Eq. 
(B6.1.1) can be expressed as

g(xr) − g(xi) = (xr − xi)g′(ξ)

where ξ is somewhere between xi and xr. This result can then be 
substituted into Eq. (B6.1.1) to yield

xr − xi+1 = (xr − xi)g′(ξ) (B6.1.3)

If the true error for iteration i is defined as

Et,i = xr − xi

then Eq. (B6.1.3) becomes

Et,i+1 = g′(ξ)Et,i

Consequently, if ∣g′(x)∣ < 1, the errors decrease with each itera-
tion. For ∣g′(x)∣ > 1, the errors grow. Notice also that if the deriva-
tive is positive, the errors will be positive, and hence, the iterative 
solution will be monotonic (Fig. 6.3a and c). If the derivative is 
negative, the errors will oscillate (Fig. 6.3b and d).
 An offshoot of the analysis is that it also demonstrates that 
when the method converges, the error is roughly proportional to 
and less than the error of the previous step. For this reason, 
simple fixed-point iteration is said to be linearly convergent.
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presents pseudocode for the algorithm. Other open methods can be programmed in a simi-
lar way, the major modification being to change the iterative formula that is used to compute 
the new root estimate.

 6.2 THE NEWTON-RAPHSON METHOD
Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equa-
tion (Fig. 6.5). If the initial guess at the root is xi, a tangent can be extended from the 
point [xi, f(xi)]. The point where this tangent crosses the x axis usually represents an 
improved estimate of the root.

FUNCTION Fixpt(x0, es, imax, iter, ea)
 xr = x0
 iter = 0
 DO
   xrold = xr
   xr = g(xrold)
   iter = iter + 1
   IF xr ≠ O THEN

     ea = ∣ xr − xrold
xr ∣ · 100

   END IF
   IF ea < es OR iter ≥ imax EXIT
 END DO
 Fixpt = xr
END Fixpt

FIGURE 6.4
Pseudocode for fixed-point 
 iteration. Note that other open 
methods can be cast in this 
 general format.

f (x)

f (xi)

f (xi) – 0

Slope = f ' (xi)

0
xxi+1 xi

xi – xi+1

FIGURE 6.5
Graphical depiction of the 
Newton-Raphson method.
A tangent to the function of xi 
[that is, f′(xi)] is extrapolated 
down to the x axis to provide 
an estimate of the root at xi+1.
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 The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation (an alternative method based on the Taylor series is described in Box 6.2). As 
in Fig. 6.5, the first derivative at x is equivalent to the slope:

f ′(xi) =
f (xi) − 0
xi − xi+1

 (6.5)

which can be rearranged to yield

xi+1 = xi −
f(xi)
f ′(xi)

 (6.6)

which is called the Newton-Raphson formula.

 EXAMPLE 6.3 Newton-Raphson Method
Problem Statement. Use the Newton-Raphson method to estimate the root of f(x) = 
e−x − x, employing an initial guess of x0 = 0.

Solution. The first derivative of the function can be evaluated as

f ′(x) = −e−x − 1

which can be substituted along with the original function into Eq. (6.6) to give

xi+1 = xi −
e−xi − xi

−e−xi − 1

Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute

i xi εt (%) Et

0 0.000000000 100 0.567143290
1 0.500000000 11.8 0.067143290
2 0.566311003 0.147 0.000832287
3 0.567143165 0.0000221 0.000000125
4 0.567143290 < 10−8 0.000000000

Thus, the approach rapidly converges on the true root. Notice that the true percent  relative 
error at each iteration decreases much faster than it does in simple fixed-point iteration 
(compare with Example 6.1).

6.2.1 Termination Criteria and Error Estimates
As with other root-location methods, Eq. (3.5) can be used as a termination criterion. In 
addition, however, the Taylor series derivation of the method (Box 6.2) provides theo-
retical insight regarding the rate of convergence as expressed by Ei+1 = O(E2

i ). Thus the 
error should be roughly proportional to the square of the previous error. In other words, 
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the number of significant figures of accuracy approximately doubles with each iteration. 
This behavior is examined in the following example.

 EXAMPLE 6.4 Error Analysis of Newton-Raphson Method
Problem Statement. As derived in Box 6.2, the Newton-Raphson method is qua-
dratically convergent. That is, the error is roughly proportional to the square of the 
previous error, as in

Et,i+1 ≅ 
−f ″(xr)
2f ′(xr)

 E2
t,i (E6.4.1)

Examine this formula and see if it applies to the results of Example 6.3.

Solution. The first derivative of f(x) = e−x − x is

f ′(x) = −e−x − 1

 Box 6.2 Derivation and Error Analysis of the Newton-Raphson Method

Aside from the geometric derivation [Eqs. (6.5) and (6.6)], the 
Newton-Raphson method may also be developed from the Taylor 
series expansion. This alternative derivation is useful in that it 
also provides insight into the rate of convergence of the method.
 Recall from Chap. 4 that the Taylor series expansion can be 
represented as

f (xi+1) = f (xi) + f ′(xi) (xi+1 − xi)

     +
f ″(ξ)

2!
 (xi+1 − xi)2 (B6.2.1)

where ξ lies somewhere in the interval from xi to xi+1. An ap-
proximate version is obtainable by truncating the series after the 
first derivative term:

f (xi+1) ≅ f (xi) + f ′(xi) (xi+1 − xi)

At the intersection with the x axis, f(xi+1) would be equal to 
zero, or

0 = f (xi) + f ′(xi) (xi+1 − xi) (B6.2.2)

which can be solved for

xi+1 = xi −
f (xi)
f ′(xi)

which is identical to Eq. (6.6). Thus, we have derived the 
 Newton-Raphson formula using a Taylor series.
 Aside from the derivation, the Taylor series can also be used 
to estimate the error of the formula. This can be done by real-
izing that if the complete Taylor series were employed, an exact 
result would be obtained. For this situation xi+1 = xr, where x 

is the true value of the root. Substituting this value along 
with f(xr) = 0 into Eq. (B6.2.1) yields

0 = f (xi) + f ′(xi) (xr − xi) +
f ″(ξ)

2!
 (xr − xi)2 (B6.2.3)

Equation (B6.2.2) can be subtracted from Eq. (B6.2.3) to give

0 = f ′(xi) (xr − xi+1) +
f ″(ξ)

2!
(xr − xi)2 (B6.2.4)

Now, realize that the error is equal to the discrepancy between 
xi+1 and the true value xr, as in

Et,i+1 = xr − xi+1

and Eq. (B6.2.4) can be expressed as

0 = f ′(xi)Et,i+1 +
f ″(ξ)

2!
 E2

t,i (B6.2.5)

If we assume convergence, both xi and ξ should eventually be 
approximated by the root xr, and Eq. (B6.2.5) can be rearranged 
to yield

Et,i+1 ≅
−f ″(xr)
2 f ′(xr)

 E2
t,i (B6.2.6)

According to Eq. (B6.2.6), the error is roughly proportional to 
the square of the previous error. This means that the number of 
correct decimal places approximately doubles with each itera-
tion. Such behavior is referred to as quadratic convergence. 
 Example 6.4 manifests this property.
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which can be evaluated at xr = 0.56714329 as f ′(0.56714329) = −1.56714329. The 
second derivative is

f ″(x) = e−x

which can be evaluated as f ″(0.56714329) = 0.56714329. These results can be  substituted 
into Eq. (E6.4.1) to yield

Et,i+1 ≅ −
0.56714329

2(−1.56714329)
 E2

t,i = 0.18095E2
t,i

From Example 6.3, the initial error was Et,0 = 0.56714329, which can be substituted into 
the error equation to predict

Et,1 ≅ 0.18095(0.56714329)2 = 0.0582

which is close to the true error of 0.06714329. For the next iteration,

Et,2 ≅ 0.18095(0.06714329)2 = 0.0008158

which also compares favorably with the true error of 0.0008323. For the third iteration,

Et,3 ≅ 0.18095(0.0008323)2 = 0.000000125

which is the error obtained in Example 6.3. The error estimate improves in this manner 
because, as we come closer to the root, x and ξ are better approximated by xr [recall our 
assumption in going from Eq. (B6.2.5) to Eq. (B6.2.6) in Box 6.2]. Finally,

Et,4 ≅ 0.18095(0.000000125)2 = 2.84 × 10−15

Thus, this example illustrates that the error of the Newton-Raphson method for this case 
is, in fact, roughly proportional (by a factor of 0.18095) to the square of the error of the 
previous iteration.

6.2.2 Pitfalls of the Newton-Raphson Method
Although the Newton-Raphson method is often very efficient, there are situations where 
it performs poorly. A special case—multiple roots—will be addressed later in this chapter. 
However, even when dealing with simple roots, difficulties can also arise, as in the fol-
lowing example.

 EXAMPLE 6.5 Example of a Slowly Converging Function with Newton-Raphson
Problem Statement. Determine the positive root of f(x) = x10 − 1 using the Newton-
Raphson method and an initial guess of x = 0.5.

Solution. The Newton-Raphson formula for this case is

xi+1 = xi −
x10

i − 1
10x9

i

which can be used to compute
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 Aside from slow convergence due to the nature of the function, other difficulties 
can arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where 
an inflection point [that is, f ″(x) = 0] occurs in the vicinity of a root. Notice that 
iterations beginning at x0 progressively diverge from the root. Figure 6.6b illustrates 
the tendency of the Newton-Raphson technique to oscillate around a local maximum 
or minimum. Such oscillations may persist, or as in Fig. 6.6b, a near-zero slope is 
reached, whereupon the solution is sent far from the area of interest. Figure 6.6c 
shows how an initial guess that is close to one root can jump to a location several 
roots away. This tendency to move away from the area of interest occurs because 
near-zero slopes are encountered. Obviously, a zero slope [ f ′(x) = 0] is truly a disas-
ter because it results in division by zero in the Newton-Raphson formula [Eq. (6.6)]. 
Graphically (see Fig 6.6d), it means that the solution shoots off horizontally and never 
hits the x axis.
 Thus, there is no general convergence criterion for Newton-Raphson. Its convergence 
depends on the nature of the function and on the accuracy of the initial guess. The only 
remedy is to have an initial guess that is “sufficiently” close to the root. And for some 
functions, no guess will work! Good guesses are usually predicated on knowledge of the 
physical problem setting or on devices such as graphs that provide insight into the be-
havior of the solution. The lack of a general convergence criterion also suggests that 
good computer software should be designed to recognize slow convergence or diver-
gence. The next section addresses some of these issues.

6.2.3 Algorithm for Newton-Raphson
An algorithm for the Newton-Raphson method is readily obtained by substituting Eq. (6.6) 
for the predictive formula [Eq. (6.2)] in Fig. 6.4. Note, however, that the program must 
also be modified to compute the first derivative. This can be simply accomplished by the 
inclusion of a user-defined function.

Iteration x

 0 0.5
 1 51.65
 2 46.485
 3 41.8365
 4 37.65285
 5 33.887565
 .
 .
 .
 ∞ 1.0000000

Thus, after the first poor prediction, the technique is converging on the true root of 1, 
but at a very slow rate.
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 Additionally, in light of the foregoing discussion of potential problems of the Newton-
Raphson method, the program would be improved by incorporating several additional 
features:

f (x)

x

x2x0x1

(a)

f (x)

xx2 x4x0 x1x3

(b)

f (x)

xx0

x1x2

(c)

f (x)

xx0 x1

(d )

FIGURE 6.6
Four cases where the Newton-Raphson method exhibits poor convergence.
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1. A plotting routine should be included in the program.
2. At the end of the computation, the final root estimate should always be substituted 

into the original function to compute whether the result is close to zero. This check 
partially guards against those cases where slow or oscillating convergence may lead 
to a small value of εa while the solution is still far from a root.

3. The program should always include an upper limit on the number of iterations to guard 
against oscillating, slowly convergent, or divergent solutions that could persist interminably.

4. The program should alert the user and take account of the possibility that f ′(x) might 
equal zero at any time during the computation.

 6.3 THE SECANT METHOD
A potential problem in implementing the Newton-Raphson method is the evaluation of 
the derivative. Although this is not inconvenient for polynomials and many other func-
tions, there are certain functions whose derivatives may be extremely difficult or incon-
venient to evaluate. For these cases, the derivative can be approximated by a backward 
finite divided difference, as in (Fig. 6.7)

f ′(xi) ≅ 
f (xi−1) − f (xi)

xi−1 − xi

This approximation can be substituted into Eq. (6.6) to yield the following iterative 
equation:

xi+1 = xi −
f (xi) (xi−1 − xi)
f (xi−1) − f (xi)

 (6.7)

f (x )

f (x i )

f (x i – 1)

xx ix i – 1

FIGURE 6.7
Graphical depiction of the se-
cant method. This technique is 
similar to the Newton-Raphson 
technique (Fig. 6.5) in the 
sense that an estimate of the 
root is predicted by extrapolat-
ing a tangent of the function to 
the x axis. However, the secant 
method uses a difference 
rather than a derivative to esti-
mate the slope.
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Equation (6.7) is the formula for the secant method. Notice that the approach requires 
two initial estimates of x. However, because f(x) is not required to change signs between 
the estimates, it is not classified as a bracketing method.

 EXAMPLE 6.6 The Secant Method
Problem Statement. Use the secant method to estimate the root of f(x) = e−x − x. Start 
with initial estimates of x−1 = 0 and x0 = 1.0. 

Solution. Recall that the true root is 0.56714329. . . .

First iteration:

x−1 = 0  f (x−1) = 1.00000
x0 = 1  f(x0) = −0.63212

x1 = 1 −
−0.63212(0 − 1)
1 − (−0.63212)

= 0.61270  εt = 8.0%

Second iteration:
x0 = 1  f (x0) = −0.63212
x1 = 0.61270  f (x1) = −0.07081

(Note that both estimates are now on the same side of the root.)

x2 = 0.61270 −
−0.07081(1 − 0.61270)
−0.63212 − (−0.07081)

= 0.56384  εt = 0.58%

Third iteration:

x1 = 0.61270  f (x1) = −0.07081
x2 = 0.56384  f (x2) = 0.00518

x3 = 0.56384 −
0.00518(0.61270 − 0.56384)

−0.07081 − (−0.00518)
= 0.56717  εt = 0.0048%

6.3.1 The Difference Between the Secant and False-Position 
Methods
Note the similarity between the secant method and the false-position method. For  example, 
Eqs. (6.7) and (5.7) are identical on a term-by-term basis. Both use two initial estimates to 
compute an approximation of the slope of the function that is used to project to the x  axis 
for a new estimate of the root. However, a critical difference between the methods is how 
one of the initial values is replaced by the new estimate. Recall that in the false-position 
method the latest estimate of the root replaces whichever of the original values yielded a 
function value with the same sign as f(xr). Consequently, the two estimates always bracket 
the root. Therefore, for all practical purposes, the method always converges because the root 
is kept within the bracket. In contrast, the secant method replaces the values in strict sequence, 
with the new value xi+1 replacing xi and xi replacing xi−1. As a result, the two values can 
sometimes lie on the same side of the root. For certain cases, this can lead to divergence.
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 EXAMPLE 6.7  Comparison of Convergence of the Secant and False-Position 
Techniques
Problem Statement. Use the false-position and secant methods to estimate the root of 
f(x) = ln x. Start the computation with values of xl = x−1 = 0.5 and xu = x0 = 5.0.

Solution. For the false-position method, the use of Eq. (5.7) and the bracketing crite-
rion for replacing estimates results in the following iterations:

Iteration xl xu xr

 1 0.5 5.0 1.8546
 2 0.5 1.8546 1.2163
 3 0.5 1.2163 1.0585

As can be seen (Fig. 6.8a and c), the estimates are converging on the true root, which 
is equal to 1.

FIGURE 6.8
Comparison of the false-position and the secant methods. The first iterations (a) and (b) for 
both techniques are identical. However, for the second iterations (c) and (d), the points used 
differ. As a consequence, the secant method can diverge, as indicated in (d).

f (x) f (xu )

f (xl )

xxr

(a)

False position
f (x) f (xi )

f (xi )

f (xi – 1)

xxr

(b)

Secant

f (x)

f (xl )

f (xu )

xxr

(c)

f (x) f (xi – 1)

x

xr

(d )
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 For the secant method, using Eq. (6.7) and the sequential criterion for replacing 
estimates results in

Iteration xi−1 xi xi+1

 1 0.5 5.0 1.8546
 2 5.0 1.8546 −0.10438

As in Fig. 6.8d, the approach is divergent.

 Although the secant method may be divergent, when it converges, it usually does so 
at a quicker rate than the false-position method. For instance, Fig. 6.9 demonstrates the 
superiority of the secant method in this regard. The inferiority of the false-position 
method is due to one end staying fixed to maintain the bracketing of the root. This 
property, which is an advantage in that it prevents divergence, is a shortcoming with 
regard to the rate of convergence; it makes the finite-difference estimate a less accurate 
approximation of the derivative.
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FIGURE 6.9 
Comparison of the true per-
cent relative errors εt for the 
methods to determine the 
roots of f (x) = e−x − x.
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6.3.2 Algorithm for the Secant Method
As with the other open methods, an algorithm for the secant method is obtained simply 
by modifying Fig. 6.4 so that two initial guesses are inputted and by using Eq. (6.7) to 
calculate the root. In addition, the options suggested in Sec. 6.2.3 for the Newton-Raphson 
method can also be applied to good advantage for the secant program.

6.3.3 Modified Secant Method
Rather than using two arbitrary values to estimate the derivative, an alternative approach 
involves a fractional perturbation of the independent variable to estimate f′(x),

f ′(xi) ≅  
f(xi + δxi) − f(xi)

δxi

where δ = a small perturbation fraction. This approximation can be substituted into Eq. (6.6) 
to yield the following iterative equation:

xi+1 = xi −
δxi   

f (xi)
f (xi + δxi) − f (xi)

 (6.8)

 EXAMPLE 6.8 Modified Secant Method
Problem Statement. Use the modified secant method to estimate the root of f(x) = 
e−x − x. Use a value of 0.01 for δ and start with x0 = 1.0. Recall that the true root is 
0.56714329. . . .

Solution.
First iteration:

x0 = 1            f(x0) = −0.63212
x0 + δx0 = 1.01  f(x0 + δx0) = −0.64578

x1 = 1 −
0.01(−0.63212)

−0.64578 − (−0.63212)
= 0.537263  ∣εt∣ = 5.3%

Second iteration:

x0 = 0.537263            f(x0) = 0.047083
x0 + δx0 = 0.542635  f(x0 + δx0) = 0.038579

x1 = 0.537263 −
0.005373(0.047083)
0.038579 − 0.047083

= 0.56701  ∣εt∣ = 0.0236%

Third iteration:

x0 = 0.56701            f(x0) = 0.000209
x0 + δx0 = 0.572680  f(x0 + δx0) = −0.00867

x1 = 0.56701 −
0.00567(0.000209)

−0.00867 − 0.000209
= 0.567143  ∣εt∣ = 2.365 × 10−5%
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 The choice of a proper value for δ is not automatic. If δ is too small, the method 
can be swamped by round-off error caused by subtractive cancellation in the denomina-
tor of Eq. (6.8). If it is too big, the technique can become inefficient and even divergent. 
However, if chosen correctly, it provides a nice alternative for cases where evaluating 
the derivative is difficult and developing two initial guesses is inconvenient.

 6.4 BRENT’S METHOD
Wouldn’t it be nice to have a hybrid approach that combined the reliability of bracketing 
with the speed of the open methods? Brent’s root-location method is a clever algorithm 
that does just that by applying a speedy open method wherever possible, but reverting 
to a reliable bracketing method if necessary. The approach was developed by Richard 
Brent (1973) based on an earlier algorithm of Theodorus Dekker (1969).
 The bracketing technique is the trusty bisection method (Sec. 5.2), and two different 
open methods are employed. The first is the secant method described in Sec. 6.3. As 
 explained next, the second is inverse quadratic interpolation.

6.4.1 Inverse Quadratic Interpolation
Inverse quadratic interpolation is similar in spirit to the secant method. As in Fig. 6.10a, 
the secant method is based on computing a straight line that goes through two guesses. 
The intersection of this straight line with the x axis represents the new root estimate. For 
this reason, the secant method is sometimes referred to as a linear interpolation method.
 Now suppose that we had three points. In that case, we could determine a quadratic 
function of x that goes through the three points (Fig. 6.10b). Just as with the linear secant 
method, the intersection of this parabola with the x axis would represent the new root 
estimate. And as illustrated in Fig. 6.10b, using a curve rather than a straight line often 
yields a better estimate.
 Although this would seem to represent a great improvement, the approach has a 
fundamental flaw: It is possible that the parabola might not intersect the x axis! Such 
would be the case when the resulting parabola has complex roots. This is illustrated by 
the parabola, y = f(x), in Fig. 6.11.

FIGURE 6.10
Comparison of (a) the secant 
method and (b) inverse qua-
dratic interpolation. Note that 
the dark parabola passing 
through the three points in  
(b) is called “inverse” because 
it is written in y rather than in x.

f (x)

x

(a) (b)

f (x)

x
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 The difficulty can be rectified by employing inverse quadratic interpolation. That is, 
rather than using a parabola in x, we can fit the points with a parabola in y. This amounts 
to reversing the axes and creating a “sideways” parabola [the curve x = f(y), in Fig. 6.11].
 If the three points are designated as (xi−2, yi−2), (xi−1, yi−1), and (xi, yi), a quadratic 
function of y that passes through the points can be generated as

 g(y) =
(y − yi−1)(y − yi)

(yi−2 − yi−1)(yi−2 − yi)
 xi−2 +

(y − yi−2)(y − yi)
(yi−1 − yi−2)(yi−1 − yi)

 xi−1

 +
(y − yi−2)(y − yi−1)
(yi − yi−2)(yi − yi−1)

 xi  (6.9)

As we will learn in Sec. 18.2, this form is called a Lagrange polynomial. The root, xi+1, 
corresponds to y = 0, which when substituted into Eq. (6.9) yields

 xi+1 =
yi−1 yi

(yi−2 − yi−1)(yi−2 − yi)
 xi−2 +

yi−2 yi

(yi−1 − yi−2)(yi−1 − yi)
 xi−1

 +
yi−2 yi−1

(yi − yi−2)(yi − yi−1)
 xi (6.10)

As shown in Fig. 6.11, such a “sideways” parabola always intersects the x axis.

 EXAMPLE 6.9 Inverse Quadratic Interpolation
Problem Statement. Develop quadratic equations in both x and y for the data points 
depicted in Fig. 6.11: (1, 2), (2, 1), and (4, 5). For the first, y = f(x), employ the quadratic 
formula to illustrate that the roots are complex. For the latter, x = g(y), use inverse 
quadratic interpolation (Eq. 6.10) to determine the root estimate.

FIGURE 6.11
Two parabolas fit to three 
points. The parabola written as 
a function of x, y = f (x), has 
complex roots and hence 
does not intersect the x axis. In  
contrast, if the variables are  
reversed, and the parabola  
developed as x = f (y), the  
function does intersect the  
x axis.

5

Root

31 20

2

4

6

y

x  =  f (y)

y  =  f (x)

x
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Solution. By reversing the x’s and y’s, Eq. (6.9) can be used to generate a quadratic in x as

f(x) =
(x − 2)(x − 4)
(1 − 2)(1 − 4)

 2 +
(x − 1)(x − 4)
(2 − 1)(2 − 4)

 1 +
(x − 1)(x − 2)
(4 − 1)(4 − 2)

 5

or collecting terms

f(x) = x2 − 4x + 5

This equation was used to generate the parabola, y = f(x), in Fig. 6.11. The quadratic 
formula can be used to determine that the roots for this case are complex,

x =
4 ± √(−4)2 − 4(1)(5)

2
= 2 ± i

Equation (6.9) can be used to generate the quadratic in y as

g(y) =
(y − 1)(y − 5)
(2 − 1)(2 − 5)

 1 +
(y − 2)(y − 5)
(1 − 2)(1 − 5)

 2 +
(y − 2)(y − 1)
(5 − 2)(5 − 1)

 4

or collecting terms

g(y) = 0.5y2 − 2.5y + 4

Finally, Eq. (6.10) can be used to determine the root as

xi+1 =
−1(−5)

(2 − 1)(2 − 5)
 1 +

−2(−5)
(1 − 2)(1 − 5)

 2 +
−2(−1)

(5 − 2)(5 − 1)
 4 = 4

 Before proceeding to Brent’s algorithm, we need to mention one more case where 
inverse quadratic interpolation does not work. If the three y values are not distinct (that 
is, yi−2 = yi−1 or yi−1 = yi), an inverse quadratic function does not exist. So this is where 
the secant method comes into play. If we arrive at a situation where the y values are not 
distinct, we can always revert to the less efficient secant method to generate a root using 
two of the points. If yi−2 = yi−1, we use the secant method with xi−1 and xi. If yi−1 = yi, 
we use xi−2 and xi−1.

6.4.2 Brent’s Method Algorithm
The general idea behind the Brent’s root-finding method is whenever possible to use 
one of the quick open methods. In the event that these generate an unacceptable result 
(i.e., a root estimate that falls outside the bracket), the algorithm reverts to the more 
conservative bisection method. Although bisection may be slower, it generates an 
estimate guaranteed to fall within the bracket. This process is then repeated until the 
root is located to within an acceptable tolerance. As might be expected, bisection 
typically dominates at first but as the root is approached, the technique shifts to the 
faster open methods.
 Figure 6.12 presents pseudocode for the algorithm based on a MATLAB software 
M-file developed by Cleve Moler (2004). It represents a stripped-down version of 
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FUNCTION fzerosimp(xl, xu)
eps = 2.22044604925031E-16
tol = 0.000001
a = xl: b = xu: fa = f(a): fb = f(b)
c = a: fc = fa: d = b − c: e = d
DO
  IF fb = 0 EXIT
  IF Sgn(fa) = Sgn(fb) THEN                  (If necessary, rearrange points)
    a = c: fa = fc: d = b − c: e = d
  ENDIF
  IF |fa| < |fb| THEN
    c = b: b = a: a = c
    fc = fb: fb = fa: fa = fc
  ENDIF
  m = 0.5 * (a − b)      (Termination test and possible exit)
  tol = 2 * eps * max(|b|, 1)
  IF |m| ≤ tol OR fb = 0. THEN
    EXIT
  ENDIF
  (Choose open methods or bisection)
  IF |e| ≥ tol AND |fc| > |fb| THEN
    s = fb / fc
    IF a = c THEN                                (Secant method)
      p = 2 * m * s
      q = 1 − s
    ELSE                   (Inverse quadratic interpolation)
      q = fc / fa: r = fb / fa
      p = s * (2 * m * q * (q − r) − (b − c) * (r − 1))
      q = (q − 1) * (r − 1) * (s − 1)
    ENDIF
    IF p > 0 THEN q = −q ELSE p = −p
    IF 2 * p < 3 * m * q − |tol * q| AND p < |0.5 * e * q| THEN
      e = d: d = p / q
    ELSE
      d = m: e = m
    ENDIF
  ELSE                                          (Bisection)
    d = m: e = m
  ENDIF
  c = b: fc = fb
  IF |d| > tol THEN b = b + d ELSE b = b − Sgn(b − a) * tol
  fb = f(b)
ENDDO
fzerosimp = b
END fzerosimp

FIGURE 6.12
Pseudocode for Brent’s root-  
finding algorithm based on a 
MATLAB M-file developed by 
Cleve Moler (2004).
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the fzero function, which is the professional root-location function employed in MAT-
LAB. For that reason, we call the simplified version: fzerosimp. Note that it requires 
another function, f, that holds the equation for which the root is being evaluated.
 The fzerosimp function is passed two initial guesses that must bracket the root. 
After assigning values for machine epsilon and a tolerance, the three variables defining 
the search interval (a, b, c) are initialized, and f is evaluated at the endpoints.
 A main loop is then implemented. If necessary, the three points are rearranged to 
satisfy the conditions required for the algorithm to work effectively. At this point, if the 
stopping criteria are met, the loop is terminated. Otherwise, a decision structure chooses 
among the three methods and checks whether the outcome is acceptable. A final section 
then evaluates f at the new point and the loop is repeated. Once the stopping criteria 
are met, the loop terminates and the final root estimate is returned.
 Note that Sec. 7.7.2 presents an application of Brent’s method where we illustrate 
how MATLAB’s fzero function works. In addition, it is employed in Case Study 8.4 
to determine the friction factor for airflow through a tube.

 6.5 MULTIPLE ROOTS
A multiple root corresponds to a point where a function is tangent to the x axis. For 
example, a double root results from

f(x) = (x − 3)(x − 1)(x − 1) (6.11)

or, multiplying terms, f(x) = x3 − 5x2 + 7x − 3. The equation has a double root because 
one value of x makes two terms in Eq. (6.11) equal to zero. Graphically, this corresponds 
to the curve touching the x axis tangentially at the double root. Examine Fig. 6.13a at 
x = 1. Notice that the function touches the axis but does not cross it at the root.
 A triple root corresponds to the case where one x value makes three terms in an 
equation equal to zero, as in

f(x) = (x − 3)(x − 1)(x − 1)(x − 1)

or, multiplying terms, f(x) = x4 − 6x3 + 12x2 − 10x + 3. Notice that the graphical 
depiction (Fig. 6.13b) again indicates that the function is tangent to the axis at the root, 
but that for this case the axis is crossed. In general, odd multiple roots cross the axis, 
whereas even ones do not. For example, the quadruple root in Fig. 6.13c does not cross 
the axis.
 Multiple roots pose some difficulties for many of the numerical methods described 
in Part Two:

1. The fact that the function does not change sign at even multiple roots precludes 
the use of the reliable bracketing methods that were discussed in Chap. 5. Thus, 
of the methods covered in this book, you are limited to the open methods that 
may diverge.

2. Another possible problem is related to the fact that not only f(x) but also f′(x) goes 
to zero at the root. This poses problems for both the Newton-Raphson and secant 
methods, which both contain the derivative (or its estimate) in the denominator of 
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their respective formulas. This could result in division by zero when the solution 
converges very close to the root. A simple way to circumvent these problems is based 
on the fact that it can be demonstrated theoretically (Ralston and Rabinowitz 1978) 
that f(x) will always reach zero before f ′(x). Therefore, if a zero check for f(x) is 
incorporated into the computer program, the computation can be terminated before 
f ′(x) reaches zero.

3. It can be demonstrated that the Newton-Raphson and secant methods are linearly, 
rather than quadratically, convergent for multiple roots (Ralston and Rabinowitz 
1978). Modifications have been proposed to alleviate this problem. Ralston and 
Rabinowitz (1978) have indicated that a slight change in the formulation returns it to 
quadratic convergence, as in

xi+1 = xi − m 
f(xi)
f ′(xi)

 (6.12)

where m is the multiplicity of the root (that is, m = 2 for a double root, m = 3 for a 
triple root, etc.). Of course, this may be an unsatisfactory alternative because it hinges 
on foreknowledge of the multiplicity of the root.

 Another alternative, also suggested by Ralston and Rabinowitz (1978), is to define 
a new function u(x) that is the ratio of the function to its derivative, as in

u(x) =
f (x)
f ′(x)

 (6.13)

It can be shown that this function has roots at all the same locations as the original 
function. Therefore, Eq. (6.13) can be substituted into Eq. (6.6) to develop an alternative 
form of the Newton-Raphson formula:

xi+1 = xi −
u(xi)
u′(xi)

 (6.14)

Equation (6.13) can be differentiated to give

u′(x) =
f ′(x) f ′(x) − f(x) f ″(x)

[ f ′(x) ]2  (6.15)

Equations (6.13) and (6.15) can be substituted into Eq. (6.14) and the result simplified 
to yield

xi+1 = xi −
f(xi) f ′(xi)

[ f ′(xi) ]2 − f(xi) f ″(xi)
 (6.16)

 EXAMPLE 6.10 Modified Newton-Raphson Method for Multiple Roots
Problem Statement. Use both the standard and modified Newton-Raphson methods 
to evaluate the multiple root of Eq. (6.11), with an initial guess of x0 = 0.

FIGURE 6.13
Examples of multiple roots 
where functions are tangential 
to the x axis. Notice that the 
function does not cross the 
axis on either side of even 
multiple roots (a) and (c), 
whereas it crosses the axis for 
odd cases (b).
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root
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Solution. The first derivative of Eq. (6.11) is f ′(x) = 3x2 − 10x + 7, and therefore, the 
standard Newton-Raphson formula for this problem is [Eq. (6.6)]

xi+1 = xi −
x3

i − 5x2
i + 7xi − 3

3x2
i − 10xi + 7

which can be solved iteratively for

 i xi εt (%)

 0 0 100
 1 0.4285714 57
 2 0.6857143 31
 3 0.8328654 17
 4 0.9133290 8.7
 5 0.9557833 4.4
 6 0.9776551 2.2

As anticipated, the method is linearly convergent toward the true value of 1.0.
 For the modified method, the second derivative is f ″(x) = 6x − 10, and the iterative 
relationship is [Eq. (6.16)]

xi+1 = xi −
(x3

i − 5x2
i + 7xi − 3)(3x2

i − 10xi + 7)
(3x2

i − 10xi + 7)2 − (x3
i − 5x2

i + 7xi − 3)(6xi − 10)
which can be solved for

 i xi εt (%)

 0 0 100
 1 1.105263 11
 2 1.003082 0.31
 3 1.000002 0.00024

Thus, the modified formula is quadratically convergent. 
 We can also use both methods to search for the single root at x = 3. Using an initial 
guess of x0 = 4 gives the following results:

 i Standard εt (%) Modified εt (%)

 0 4 33 4 33
 1 3.4 13 2.636364 12
 2 3.1 3.3 2.820225 6.0
 3 3.008696 0.29 2.961728 1.3
 4 3.000075 0.0025 2.998479 0.051
 5 3.000000 2 × 10−7 2.999998 7.7 × 10−5

Thus, both methods converge quickly, with the standard method being somewhat more 
efficient.
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 The preceding example illustrates the trade-offs involved in opting for the modified 
Newton-Raphson method. Although it is preferable for multiple roots, it is somewhat less 
efficient and requires more computational effort than the standard method for simple 
roots.
 It should be noted that a modified version of the secant method suited for multiple 
roots can also be developed by substituting Eq. (6.13) into Eq. (6.7). The resulting 
formula is (Ralston and Rabinowitz 1978)

xi+1 = xi −
u(xi) (xi−1 − xi)
u(xi−1) − u(xi)

 6.6 SYSTEMS OF NONLINEAR EQUATIONS
To this point, we have focused on the determination of the roots of a single equation. A 
related problem is to locate the roots of a set of simultaneous equations,

f1(x1, x2, … , xn) = 0
f2(x1, x2, … , xn) = 0
         ·              ·
         ·              · (6.17)

         ·              ·
fn(x1, x2, … , xn) = 0

The solution of this system consists of a set of x values that simultaneously result in all 
the equations equaling zero.
 In Part Three, we will present methods for the case where the simultaneous equations 
are linear—that is, they can be expressed in the general form

f(x) = a1x1 + a2x2 + … + anxn − b = 0 (6.18)

where the b and the a’s are constants. Algebraic and transcendental equations that do 
not fit this format are called nonlinear equations. For example,

x2 + xy = 10

and

y + 3xy2 = 57

are two simultaneous nonlinear equations with two unknowns, x and y. They can be 
expressed in the form of Eq. (6.17) as

u(x, y) = x2 + xy − 10 = 0 (6.19a)

υ(x, y) = y + 3xy2 − 57 = 0 (6.19b)

Thus, the solution would be the values of x and y that make the functions u(x, y) and 
υ(x, y) equal to zero. Most approaches for determining such solutions are extensions of 
the open methods for solving single equations. In this section, we will investigate two 
of these: fixed-point iteration and Newton-Raphson.
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6.6.1 Fixed-Point Iteration
The fixed-point-iteration approach (Sec. 6.1) can be modified to solve two simultaneous, 
nonlinear equations. This approach will be illustrated in the following example.

 EXAMPLE 6.11 Fixed-Point Iteration for a Nonlinear System
Problem Statement. Use fixed-point iteration to determine the roots of Eq. (6.19). 
Note that a correct pair of roots is x = 2 and y = 3. Initiate the computation with guesses 
of x = 1.5 and y = 3.5.

Solution. Equation (6.19a) can be solved for

xi+1 =
10 − x2

i

yi
 (E6.11.1)

and Eq. (6.19b) can be solved for

yi+1 = 57 − 3xi  y
2
i  (E6.11.2)

Note that we will drop the subscripts for the remainder of the example.
 On the basis of the initial guesses, Eq. (E6.11.1) can be used to determine a new 
value of x:

x =
10 − (1.5)2

3.5
= 2.21429

This result and the initial value of y = 3.5 can be substituted into Eq. (E6.11.2) to 
 determine a new value of y:

y = 57 − 3(2.21429)(3.5)2 = −24.37516

Thus, the approach seems to be diverging. This behavior is even more pronounced on 
the second iteration:

x =
10 − (2.21429)2

−24.37516
= −0.20910

y = 57 − 3(−0.20910)(−24.37516)2 = 429.709

Obviously, the approach is deteriorating.
 Now we will repeat the computation but with the original equations set up in a 
 different format. For example, an alternative formulation of Eq. (6.19a) is

x = √10 − xy

and of Eq. (6.19b) is

y = √
57 − y

3x

Now the results are more satisfactory:

x = √10 − 1.5(3.5) = 2.17945
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y = √
57 − 3.5

3(2.17945)
= 2.86051

x = √10 − 2.17945(2.86051) = 1.94053

y = √
57 − 2.86051
3(1.94053)

= 3.04955

Thus, the approach is converging on the true values of x = 2 and y = 3.

 The previous example illustrates the most serious shortcoming of simple fixed-point 
iteration—that is, convergence often depends on the manner in which the equations are 
formulated. Additionally, even in those instances where convergence is possible, diver-
gence can occur if the initial guesses are insufficiently close to the true solution. Using 
reasoning similar to that in Box 6.1, it can be demonstrated that sufficient conditions for 
convergence for the two-equation case are

∣ ∂u

∂x ∣ + ∣ ∂u

∂y ∣ < 1

and

∣ ∂υ

∂x ∣ + ∣ ∂υ

∂y ∣ < 1

These criteria are so restrictive that fixed-point iteration has limited utility for solving 
nonlinear systems. However, as we will describe later in the book, it can be very useful 
for solving linear systems.

6.6.2 Newton-Raphson
Recall that the Newton-Raphson method was predicated on employing the derivative (that 
is, the slope) of a function to estimate its intercept with the axis of the independent 
 variable—that is, the root (Fig. 6.5). This estimate was based on a first-order Taylor 
series expansion (recall Box 6.2),

f(xi+1) = f(xi) + (xi+1 − xi) f ′(xi) (6.20)

where xi is the initial guess at the root and xi+1 is the point at which the slope intercepts 
the x axis. At this intercept, f(xi+1) by definition equals zero and Eq. (6.20) can be rear-
ranged to yield

xi+1 = xi −
f(xi)
f ′(xi)

 (6.21)

which is the single-equation form of the Newton-Raphson method.
 The multiequation form is derived in an identical fashion. However, a multivariable 
Taylor series must be used to account for the fact that more than one independent 
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variable contributes to the determination of the root. For the two-variable case, a first-
order Taylor series can be written [recall Eq. (4.26)] for each nonlinear equation as

ui+1 = ui + (xi+1 − xi) 

∂ui

∂x
+ (yi+1 − yi) 

∂ui

∂y
 (6.22a)

and

υi+1 = υi + (xi+1 − xi) 

∂υi

∂x
+ (yi+1 − yi) 

∂υi

∂y
 (6.22b)

Just as for the single-equation version, the root estimate corresponds to the values of x and 
y where ui+1 and υi+1 equal zero. For this situation, Eq. (6.22) can be rearranged to give

 
∂ui

∂x
 xi+1 +

∂ui

∂y
 yi+1 = −ui + xi 

∂ui

∂x
+ yi 

∂ui

∂y
 (6.23a)

 
∂υi

∂x
 xi+1 +

∂υi

∂y
 yi+1 = −υi + xi 

∂υi

∂x
+ yi 

∂υi

∂y
 (6.23b)

Because all values subscripted with i’s are known (they correspond to the latest guess 
or approximation), the only unknowns are xi+1 and yi+1. Thus, Eq. (6.23) is a set of two 
linear equations with two unknowns [compare with Eq. (6.19)]. Consequently, algebraic 
manipulations (for example, Cramer’s rule) can be employed to solve for

xi+1 = xi −
ui 

∂υi

∂y
− υi 

∂ui

∂y

∂ui

∂x
 
∂υi

∂y
−

∂ui

∂y
 
∂υi

∂x

 (6.24a)

yi+1 = yi −
υi 

∂ui

∂x
− ui 

∂υi

∂x

∂ui

∂x
 
∂υi

∂y
−

∂ui

∂y
 
∂υi

∂x

 (6.24b)

The denominator of each of these equations is formally referred to as the determinant of 
the Jacobian of the system.
 Equation (6.24) is the two-equation version of the Newton-Raphson formula. As in 
the following example, it can be employed iteratively to home in on the roots of two 
simultaneous equations.

 EXAMPLE 6.12 Newton-Raphson for a Nonlinear System
Problem Statement. Use the multiequation Newton-Raphson method to determine 
roots of Eq. (6.19). Note that a correct pair of roots is x = 2 and y = 3. Initiate the 
computation with guesses of x = 1.5 and y = 3.5.

Solution. First compute the partial derivatives and evaluate them at the initial guesses 
of x and y:

∂u0

∂x
= 2x + y = 2(1.5) + 3.5 = 6.5  

∂u0

∂y
= x = 1.5
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∂υ0

∂x
= 3y2 = 3(3.5)2 = 36.75    

∂υ0

∂y
= 1 + 6xy = 1 + 6(1.5)(3.5) = 32.5

Thus, the determinant of the Jacobian for the first iteration is

6.5(32.5) − 1.5(36.75) = 156.125

The values of the functions can be evaluated at the initial guesses as

u0 = (1.5)2 + 1.5(3.5) − 10 = −2.5
υ0 = 3.5 + 3(1.5)(3.5)2 − 57 = 1.625

These values can be substituted into Eq. (6.24) to give

x = 1.5 −
−2.5(32.5) − 1.625(1.5)

156.125
= 2.03603

y = 3.5 −
1.625(6.5) − (−2.5)(36.75)

156.125
= 2.84388

Thus, the results are converging to the true values of x = 2 and y = 3. The computation 
can be repeated until an acceptable accuracy is obtained.

 Just as with fixed-point iteration, the Newton-Raphson approach will often diverge if 
the initial guesses are not sufficiently close to the true roots. Whereas graphical methods 
could be employed to derive good guesses for the single-equation case, no such simple 
procedure is available for the multiequation version. Although there are some advanced 
approaches for obtaining acceptable first estimates, often the initial guesses must be ob-
tained on the basis of trial and error and knowledge of the physical system being modeled.
 The two-equation Newton-Raphson approach can be generalized to solve n simulta-
neous equations. Because the most efficient way to do this involves matrix algebra and 
the solution of simultaneous linear equations, we will defer discussion of the general 
approach to Part Three.

PROBLEMS

6.1 Use simple fixed-point iteration to locate the root of

f (x) =  2 sin (√x) − x

Use an initial guess of x0 = 0.5 and iterate until εa ≤ 0.01%. Verify 
that the process is linearly convergent as described in Box 6.1.
6.2 Determine the highest real root of

f (x) = 2.1x3 − 11.6x2 + 17.5x − 6

(a) Graphically.
(b) Fixed-point iteration method (three iterations, x0 = 3). Note: Make 

certain that you develop a solution that converges on the root.
(c) Newton-Raphson method (three iterations, x0 = 3).

(d) Secant method (three iterations, x−1 = 3, x0 = 4).
(e) Modified secant method (three iterations, x0 = 3, δ = 0.01).
Compute the approximate percent relative errors for your solutions.
6.3 Use (a) fixed-point iteration and (b) the Newton-Raphson 
method to determine a root of f(x) = −x2 + 1.8x + 2.5 using  
x0 = 5. Perform the computation until εa is less than εs = 0.01%. 
Also perform an error check of your final answer.
6.4 Determine the real roots of f (x) = −1.5 + 6x − 3.9x2 + 0.5x3: 
(a) graphically and (b) using the Newton-Raphson method to 
within εs = 0.01%.
6.5 Employ the Newton-Raphson method to determine a real root for 
f (x) = −2 + 6x − 4x2 + 0.5x3 using initial guesses of (a) 4.2 and 
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(b) 4.43. Discuss and use graphical and analytical methods to explain 
any peculiarities in your results.
6.6 Determine the lowest real root of f (x) = −10 − 20x +
16x2 − 2.5x3: (a) graphically and (b) using the secant method to a 
value of εs corresponding to three significant figures.
6.7 Locate the first positive root of

f (x) =  sin x +  cos (1 + x2) − 1

where x is in radians. Use four iterations of the secant method with 
initial guesses of (a) x−1 = 1.0 and x0 = 3.0; (b) x−1 = 1.5 and  
x0 = 2.5, and (c) x−1 = 1.5 and x0 = 2.25 to locate the root. (d) Use 
the graphical method to explain your results.
6.8 Determine the real root of x3.6 = 75, with the modified secant 
method to within εs = 0.1% using an initial guess of x0 = 3.5 and  
δ = 0.01.
6.9 Determine the highest real root of f(x) = 0.95x3 − 5.9x2 + 
10.9x − 6:
(a) Graphically.
(b) Using the Newton-Raphson method (three iterations, x0 = 3.5).
(c) Using the secant method (three iterations, x−1 = 2.5 and  

x0 = 3.5).
(d) Using the modified secant method (three iterations, x0 = 3.5,  

δ = 0.01).
6.10 Determine the lowest positive root of f (x) = 8 sin (x)e−x − 1:
(a) Graphically.
(b) Using the Newton-Raphson method (three iterations, x0 = 0.3).
(c) Using the secant method (five iterations, x−1 = 0.5 and  

x0 = 0.4).
(d) Using the modified secant method (three iterations, x0 = 0.3,  

δ = 0.01).
6.11 Use the Newton-Raphson method to find the root of

f (x) = e−0.5x(4 − x) − 2

Employ initial guesses of (a) 2, (b) 6, and (c) 8. Explain your results.
6.12 Given

f (x) = −2x6 − 1.5x4 + 10x + 2

use a root-location technique to determine the maximum of this 
function. Perform iterations until the approximate relative error 
falls below 5%. If you use a bracketing method, use initial guesses 
of xl = 0 and xu = 1. If you use the Newton-Raphson or the modi-
fied secant method, use an initial guess of xi = 1. If you use the 
secant method, use initial guesses of x−1 = 0 and x0 = 1. Assuming 
that convergence is not an issue, choose the technique that is best 
suited to this problem. Justify your choice.
6.13 You must determine the root of the following easily differen-
tiable function,

e0.3x = 6 − 6x

Pick the best numerical technique, justify your choice, and then 
use that technique to determine the root. Note that it is known 
that for positive initial guesses, all techniques except fixed-point 
iteration will eventually converge. Perform iterations until the 
approximate relative error falls below 2%. If you use a bracketing 
method, use initial guesses of xl = 0 and xu = 2. If you use the 
Newton-Raphson or the modified secant method, use an initial 
guess of xi = 0.8. If you use the secant method, use initial guesses 
of xi−1 = 0 and xi = 2.
6.14 Use (a) the Newton-Raphson method and (b) the modified 
secant method (δ = 0.05) to determine a root of f(x) = x5 − 16.05x4 + 
88.75x3 − 192.0375x2 + 116.35x + 31.6875 using an initial guess 
of x0 = 0.5825 and εs = 0.01%. Explain your results.
6.15 The “divide and average” method, an old-time method for 
approximating the square root of any positive number a, can be 
formulated as

x =
x + a∕x

2

Prove that this is equivalent to the Newton-Raphson algorithm.
6.16 (a) Apply the Newton-Raphson method to the function f(x) = 
tanh(x2 − 9) to evaluate its known real root at x = 3. Use an initial 
guess of x0 = 3.2 and take a minimum of four iterations. (b) Did the 
method exhibit convergence onto the real root? Sketch the plot with 
the results for each iteration shown.
6.17 The polynomial f(x) = 0.0074x4 − 0.284x3 + 3.355x2 − 12.183x + 
5 has a real root between 15 and 20. Apply the Newton-Raphson 
method to this function using an initial guess of x0 = 16.15. Explain 
your results.
6.18 Use the secant method on the circle function (x + 1)2 + 
(y − 2)2 = 16 to find a positive real root. Set your initial guess to 
x0 = 3 and x−1 = 0.5. Approach the solution from the first and 
fourth quadrants. When solving for f(x) in the fourth quadrant, be 
sure to take the negative value of the square root. Why does your 
solution diverge?
6.19 You are designing a spherical tank (Fig. P6.19) to hold water 
for a small village in a developing country. The volume of liquid it 
can hold can be computed as

V = πh2 
[3R − h]

3

where V = volume (m3), h = depth of water in tank (m), and R = 
the tank radius (m). If R = 4 m, what depth must the tank be filled 
to so that it holds 50 m3? Use three iterations of the Newton-
Raphson method to determine your answer. Determine the ap-
proximate relative error after each iteration. Note that an initial 
guess of R will always converge.
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6.20 The Manning equation can be written for a rectangular open 
channel as

Q =
√S(BH)5∕3

n(B + 2H)2∕3

where Q = flow (m3/s), S = slope (m/m), B = channel width (m), 
H = depth (m), and n = the Manning roughness coefficient. De-
velop a fixed-point iteration scheme to solve this equation for  
H given Q = 10, S = 0.0001, B = 30, and n = 0.025. Prove that your 
scheme converges for all initial guesses greater than or equal to zero.
6.21 The function x3 − 2x2 − 4x + 8 has a double root at x = 2. Use 
(a) the standard Newton-Raphson [Eq. (6.6)], (b) the modified 
Newton-Raphson [Eq. (6.12)], and (c) the modified Newton-
Raphson [Eq. (6.16)] to solve for the root at x = 2. Compare and 
discuss the rate of convergence using an initial guess of x0 = 1.2.
6.22 Determine the roots of the following simultaneous nonlinear 
equations using (a) fixed-point iteration and (b) the Newton-Raphson 
method:

y = −x2 + x + 0.75

y + 5xy = x2

Employ initial guesses of x = y = 1.2 and discuss the results.
6.23 Determine the roots of the simultaneous nonlinear equations

(x − 4)2 + (y − 4)2 = 5

x2 + y2 = 16

Use a graphical approach to obtain your initial guesses. Determine 
refined estimates with the two-equation Newton-Raphson method 
described in Sec. 6.6.2.
6.24 Repeat Prob. 6.23, except determine the positive root of

y = x2 + 1

y = 2 cos x

6.25  A mass balance for a pollutant in a well-mixed lake can be 
written as

V 
dc

dt
= W − Qc − kV √c

Given the parameter values V = 2 × 106 m3, Q = 2 × 105 m3/yr,  
W = 2 × 106 g/yr, and k = 0.33 m0.5/g0.5/yr, use the modified secant 
method to solve for the steady-state concentration. Employ an ini-
tial guess of c = 4 g/m3 and δ = 0.5. Perform three iterations and 
determine the percent relative error after the third iteration.
6.26 For Prob. 6.25, the root can be located with fixed-point 
iteration as

c = (
W − Qc

kV )
2

or as

c =
W − kV √c

Q

Only one will converge for initial guesses of 2 < c < 6. Select the 
correct one and demonstrate why it will always work.
6.27 Develop a user-friendly program for the Newton-Raphson 
method based on Fig. 6.4 and Sec. 6.2.3. Test it by duplicating the 
computation from Example 6.3.
6.28 Develop a user-friendly program for the secant method based 
on Fig. 6.4 and Sec. 6.3.2. Test it by duplicating the computation 
from Example 6.6.
6.29 Develop a user-friendly program for the modified secant 
method based on Fig. 6.4 and Sec. 6.3.3. Test it by duplicating the 
computation from Example 6.8.
6.30 Develop a user-friendly program for Brent’s root-location 
method based on Fig. 6.12. Test it by solving Prob. 6.6.
6.31 Develop a user-friendly program for the two-equation 
Newton-Raphson method based on Sec. 6.6.2. Test it by solving 
Example 6.12.
6.32 Use the program you developed in Prob. 6.31 to solve Probs. 
6.22 and 6.23 to within a tolerance of εs = 0.01%.

hV

R

FIGURE P6.19
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C H A P T E R

7
Roots of Polynomials

In this chapter, we will discuss methods used to find the roots of polynomial equations 
of the general form

fn(x) = a0 + a1x + a2x2 + … + anxn (7.1)

where n = the order of the polynomial and the a’s are constant coefficients. Although 
the coefficients can be complex numbers, we will limit our discussion to cases where 
they are real. For such cases, the roots can be real and/or complex.
 The roots of such polynomials follow these rules:

1. For an nth-order equation, there are n real or complex roots. It should be noted that 
these roots will not necessarily be distinct.

2. If n is odd, there is at least one real root.
3. If complex roots exist, they exist in conjugate pairs (that is, λ + μi and λ − μi, where 

i = √−1).

 Before describing the techniques for locating the roots of polynomials, we will provide 
some background. The first section offers some motivation for studying the techniques; 
the second deals with some fundamental computer manipulations involving polynomials.

 7.1 POLYNOMIALS IN ENGINEERING AND SCIENCE
Polynomials have many applications in engineering and science. For example, they are used 
extensively in curve fitting. However, we believe that one of their most interesting and 
powerful applications is in characterizing dynamic systems and, in particular, linear systems. 
Examples include mechanical devices, structures, and electrical circuits. We will be explor-
ing specific examples throughout the remainder of this text. In particular, they will be the 
focus of several of the engineering applications throughout the remainder of this text.
 For the time being, we will keep the discussion simple and general by focusing on 
a simple second-order system defined by the following linear ordinary differential equa-
tion (or ODE):

a2 

d2y

dt2 + a1 

dy

dt
+ a0y = F(t) (7.2)
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where y and t are the dependent and independent variables, respectively, the a’s are 
constant coefficients, and F(t) is the forcing function.
 In addition, it should be noted that Eq. (7.2) can be alternatively expressed as a pair 
of first-order ODEs by defining a new variable z,

z =
dy

dt
 (7.3)

Equation (7.3) can be substituted along with its derivative into Eq. (7.2) to remove the 
second-derivative term. This reduces the problem to solving

dz

dt
=

F(t) − a1z − a0y

a2
 (7.4)

dz

dt
= z (7.5)

In a similar fashion, an nth-order linear ODE can always be expressed as a system of n 
first-order ODEs.
 Now let’s look at the solution. The forcing function represents the effect of the 
external world on the system. The homogeneous solution, or general solution, of the 
equation deals with the case when the forcing function is set to zero,

a2 

d2y

dt2 + a1 

dy

dt
+ a0y = 0 (7.6)

Thus, as the name implies, the general solution should tell us something very fundamental 
about the system being simulated—that is, how the system responds in the absence of 
external stimuli.
 Now, the general solution to all unforced linear systems is of the form y = ert. If 
this function is differentiated and substituted into Eq. (7.6), the result is

a2r2ert + a1r ert + a0ert = 0

or canceling the exponential terms,

a2r
2 + a1r + a0 = 0 (7.7)

 Notice that the result is a polynomial called the characteristic equation. The roots 
of this polynomial are the values of r that satisfy Eq. (7.7). These r’s are referred to as 
the system’s characteristic values, or eigenvalues.
 So, here is the connection between roots of polynomials and engineering and 
science. The eigenvalue tells us something fundamental about the system we are modeling, 
and finding the eigenvalues involves finding the roots of polynomials. And, whereas 
finding the root of a second-order equation is easy with the quadratic formula, finding 
roots of higher-order systems (and hence, higher-order polynomials) is arduous analyti-
cally. Thus, the best general approach requires numerical methods of the type described 
in this chapter.
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 Before proceeding to these methods, let us take our analysis a bit farther by in-
vestigating what specific values of the eigenvalues might imply about the behavior of 
physical systems. First, let us evaluate the roots of Eq. (7.7) with the quadratic 
 formula,

r1

r2
=

−a1 ± √a2
1 − 4a2a0

a0

Thus, we get two roots. If the discriminant (a2
1 − 4a2a0) is positive, the roots are real 

and the general solution can be represented as

y = c1e
r1t + c2e

r2t (7.8)

where the c’s are constants that can be determined from the initial conditions. This is 
called the overdamped case.
 If the discriminant is zero, a single real root results, and the general solution can be 
formulated as

y = (c1 + c2t)eλt (7.9)

This is called the critically damped case.
 If the discriminant is negative, the roots will be complex conjugate numbers,

r1

r2
= λ ± μi

and the general solution can be formulated as

y = c1e(λ+μi) t + c2e(λ−μi) t

The physical behavior of this solution can be elucidated by using Euler’s formula,

eμit =  cos μt + i  sin  μt

to reformulate the general solution as (see Boyce and DiPrima, 1992, for details of the 
derivation)

y = c1e
λt cos μt + c2e

λt sin μt (7.10)

This is called the underdamped case.
 Equations (7.8), (7.9), and (7.10) express the possible ways that linear systems 
respond dynamically. The exponential terms mean that the solutions are capable of 
decaying (negative real part) or growing (positive real part) exponentially with time 
(Fig. 7.1a). The sinusoidal terms (imaginary part) mean that the solutions can oscillate 
(Fig. 7.1b). If the eigenvalue has both real and imaginary parts, the exponential and 
sinusoidal shapes are combined (Fig. 7.1c). Because such knowledge is a key element 
in understanding, designing, and controlling the behavior of a physical system, charac-
teristic polynomials are very important in engineering and many branches of science. 
We will explore the dynamics of several engineering systems in the applications covered 
in Chap. 8.
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 7.2 COMPUTING WITH POLYNOMIALS
Before describing root-location methods, we will discuss some fundamental computer 
operations involving polynomials. These have utility in their own right as well as provid-
ing support for root finding.

7.2.1 Polynomial Evaluation and Differentiation
Although it is the most common format, Eq. (7.1) provides a poor means for determin-
ing the value of a polynomial for a particular value of x. For example, evaluating a 
third-order polynomial as

f3(x) = a3 x3 + a2 x2 + a1x + a0 (7.11)

involves six multiplications and three additions. In general, for an nth-order polynomial, 
this approach requires n(n + 1)∕2 multiplications and n additions.
 In contrast, a nested format,

f3(x) = ((a3x + a2)x + a1)x + a0 (7.12)

involves three multiplications and three additions. For an nth-order polynomial, this ap-
proach requires n multiplications and n additions. Because the nested format minimizes 
the number of operations, it also tends to minimize round-off errors. Note that, depend-
ing on your preference, the order of nesting can be reversed:

f3(x) = a0 + x(a1 + x(a2 + xa3) ) (7.13)

FIGURE 7.1
The general solution for linear 
ODEs can be composed of (a) 
exponential and (b) sinusoidal 
components. The combination 
of the two shapes results in the 
damped sinusoid shown in (c).
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 Succinct pseudocode to implement the nested form can be written simply as

DOFOR j = n, 0, −1
 p = p * x+a(j)
END DO

where p holds the value of the polynomial (defined by its coefficients, the a’s) evaluated 
at x.
 There are cases (such as in the Newton-Raphson method) where you might want to 
evaluate both the function and its derivative. This evaluation can also be neatly included 
by adding a single line to the preceding pseudocode,

D0FOR j = n, 0, −1

  df = df * x+p

  p = p * x+a(j)
END DO

where df holds the first derivative of the polynomial.

7.2.2 Polynomial Deflation
Suppose that you determine a single root of an nth-order polynomial. If you repeat your 
root-location procedure, you might find the same root. Therefore, it would be nice to 
remove the found root before proceeding. This removal process is referred to as polyno-
mial deflation.
 Before we show how this is done, some orientation might be useful. Polynomials 
are typically represented in the format of Eq. (7.1). For example, a fifth-order polynomial 
could be written as

f5(x) = −120 − 46x + 79x2 − 3x3 − 7x4 + x5 (7.14)

Although this is a familiar format, it is not necessarily the best expression for understand-
ing the polynomial’s mathematical behavior. For example, this fifth-order polynomial 
might be expressed alternatively as

f5(x) = (x + 1)(x − 4)(x − 5)(x + 3)(x − 2) (7.15)

 This is called the factored form of the polynomial. If multiplication is completed 
and like terms collected, Eq. (7.14) would be obtained. However, the format of Eq. (7.15) 
has the advantage that it clearly indicates the function’s roots. Thus, it is apparent that  
x = −1, 4, 5, −3, and 2 are all roots because each causes an individual term in Eq. (7.15) 
to become zero.
 Now, suppose that we divide this fifth-order polynomial by any of its factors, for 
example, x + 3. For this case, the result would be a fourth-order polynomial,

f4(x) = (x + 1)(x − 4)(x − 5)(x − 2) = −40 − 2x + 27x2 − 10x3 + x4 (7.16)

with a remainder of zero.
 In the distant past, you probably learned to divide polynomials using the approach 
called synthetic division. Several computer algorithms (based on both synthetic division 
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and other methods) are available for performing the operation. One simple scheme is 
provided by the following pseudocode, which divides an nth-order polynomial by a 
 monomial factor x − t:

r = a(n)
a(n) = 0
DOFOR i = n−1, 0, −1

 s = a(i)
 a(i) = r
 r = s + r * t
END DO

If the monomial is a root of the polynomial, the remainder r will be zero, and the coef-
ficients of the quotient stored in a, at the end of the loop.

 EXAMPLE 7.1 Polynomial Deflation
Problem Statement. Divide the second-order polynomial

f(x) = (x − 4)(x + 6) = x2 + 2x − 24

by the factor x − 4.

Solution. Using the approach outlined in the above pseudocode, the parameters are  
n = 2, a0 = −24, a1 = 2, a2 = 1, and t = 4. These can be used to compute

r = a2 = 1
a2 = 0

The loop is then iterated from i = 2 − 1 = 1 to 0. For i = 1,

s = a1 = 2
a1 = r = 1
r = s + rt = 2 + 1(4) = 6

For i = 0,

s = a0 = −24
a0 = r = 6
r = −24 + 6(4) = 0

Thus, the result is as expected—the quotient is a0 + a1x = 6 + x, with a remainder of zero.

 It is also possible to divide by polynomials of higher order. As we will see later in 
this chapter, the most common task involves dividing by a second-order polynomial or 
parabola. The subroutine in Fig. 7.2 addresses the more general problem of dividing an 
nth-order polynomial a by an mth-order polynomial d. The result is an (n − m)th-order 
polynomial q, with an (m − 1)th-order polynomial as the remainder.
 Because each calculated root is known only approximately, it should be noted that 
deflation is sensitive to round-off errors. In some cases, round-off error can grow to the 
point that the results can become meaningless.
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 Some general strategies can be applied to minimize this problem. For example, round-off 
error is affected by the order in which the terms are evaluated. Forward  deflation refers to the 
case where new polynomial coefficients are in order of descending powers of x (that is, 
from the highest-order to the zero-order term). For this case, it is preferable to divide by 
the roots of smallest absolute value first. Conversely, for backward deflation (that is, 
from the zero-order to the highest-order term), it is preferable to divide by the roots of 
largest absolute value first.
 Another way to reduce round-off errors is to consider each successive root estimate 
obtained during deflation as a good first guess. Each estimate can then be used as a 
starting guess, and the root determined again with the original nondeflated polynomial. 
This is referred to as root polishing.
 Finally, a problem arises when two deflated roots are inaccurate enough that they 
both converge on the same undeflated root. In that case, you might be erroneously led 
to believe that the polynomial has a multiple root (recall Sec. 6.5). One way to detect 
this problem is to compare each polished root with those that were located previously. 
Press et al. (2007) discuss this problem in more detail.

 7.3 CONVENTIONAL METHODS
Now that we have covered some background material on polynomials, we can begin to 
describe methods to locate their roots. The obvious first step would be to investigate the 
viability of the bracketing and open approaches described in Chaps. 5 and 6.
 The efficacy of these approaches depends on whether the problem being solved involves 
complex roots. If only real roots exist, any of the previously described methods could have 
utility. However, the problem of finding good initial guesses complicates both the bracketing 
and the open methods, whereas the open methods could be susceptible to divergence.

SUB poldiv(a, n, d, m, q, r)
DOFOR j = 0, n
 r(j) = a(j)
 q(j) = 0
END DO
DOFOR k = n−m, 0, −1
 q(k+1) = r(m+k) ∕ d(m)
 DOFOR j = m+k−1, k, −1
  r(j) = r(j)−q(k+1) * d(j−k)
 END DO
END DO
DOFOR j = m, n
 r(j) = 0
END DO
n = n−m
END SUB

FIGURE 7.2
Algorithm to divide a polynomial (defined by its coefficients a) by a lower-order polynomial d.
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 When complex roots are possible, the bracketing methods cannot be used because 
of the obvious problem that the criterion for defining a bracket (that is, sign change) 
does not translate to complex guesses.
 Of the open methods, the conventional Newton-Raphson method would provide a 
viable approach. In particular, concise code including deflation can be developed. If a 
language that accommodates complex variables (like Fortran) is used, such an algorithm 
will locate both real and complex roots. However, as might be expected, it would be 
susceptible to convergence problems. For this reason, special methods have been devel-
oped to find the real and complex roots of polynomials. We describe two—the Müller 
and Bairstow methods—in the following sections. As you will see, both are related to 
the more conventional open approaches described in Chap. 6.

 7.4 MÜLLER’S METHOD
Recall that the secant method obtains a root estimate by projecting a straight line to the 
x axis through two function values (Fig. 7.3a). Müller’s method takes a similar approach, 
but projects a parabola through three points (Fig. 7.3b).
 The method consists of deriving the coefficients of the parabola that goes through 
the three points. These coefficients can then be substituted into the quadratic formula to 
obtain the point where the parabola intercepts the x axis—that is, the root estimate. The 
approach is facilitated by writing the parabolic equation in a convenient form,

f2(x) = a(x − x2)2 + b(x − x2) + c (7.17)

We want this parabola to intersect the three points [x0, f(x0)], [x1, f(x1)], and [x2, f(x2)]. The 
coefficients of Eq. (7.17) can be evaluated by substituting each of the three points to give

f(x0) = a(x0 − x2)2 + b(x0 − x2) + c (7.18)

f(x1) = a(x1 − x2)2 + b(x1 − x2) + c (7.19)

f(x2) = a(x2 − x2)2 + b(x2 − x2) + c (7.20)

FIGURE 7.3
A comparison of two related 
approaches for locating roots: 
(a) the secant method and  
(b) Müller’s method.
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Note that we have dropped the subscript “2” from the function for conciseness. Because 
we have three equations, we can solve for the three unknown coefficients, a, b, and c. 
Because two of the terms in Eq. (7.20) are zero, it can be immediately solved for  
c = f(x2). Thus, the coefficient c is merely equal to the function value evaluated at the 
third guess, x2. This result can then be substituted into Eqs. (7.18) and (7.19) to yield 
two equations with two unknowns:

f(x0) − f(x2) = a(x0 − x2)2 + b(x0 − x2) (7.21)

f(x1) − f(x2) = a(x1 − x2)2 + b(x1 − x2) (7.22)

 Algebraic manipulation can then be used to solve for the remaining coefficients, 
a and b. One way to do this involves defining a number of differences,

h0 = x1 − x0  h1 = x2 − x1

δ0 =
f(x1) − f(x0)

x1 − x0
 δ1 =

f(x2) − f(x1)
x2 − x1

 (7.23)

These can be substituted into Eqs. (7.21) and (7.22) to give

(h0 + h1)b − (h0 + h1)2a = h0δ0 + h1δ1

 h1 b − h2
1
 a = h1δ1

which can be solved for a and b. The results can be summarized as

a =
δ1 − δ0

h1 + h0
 (7.24)

b = ah1 + δ1 (7.25)

c = f(x2) (7.26)

 To find the root, we apply the quadratic formula to Eq. (7.17). However, because of 
potential round-off error, rather than using the conventional form, we use the alternative 
formulation [Eq. (3.13)] to yield

x3 − x2 =
−2c

b ± √b2 − 4ac
 (7.27a)

or isolating the unknown x3 on the left side of the equal sign,

x3 = x2 +
−2c

b ± √b2 − 4ac
 (7.27b)

Note that the use of the quadratic formula means that both real and complex roots can 
be located. This is a major benefit of the method.
 In addition, Eq. (7.27a) provides a neat means to determine the approximate error. 
Because the left side represents the difference between the present (x3) and the previous 
(x2) root estimate, the error can be calculated as

εa = ∣ x3 − x2

x3
∣  100%
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 Now, a problem with Eq. (7.27a) is that it yields two roots, corresponding to the 
± term in the denominator. In Müller’s method, the sign is chosen to agree with the sign 
of b. This choice will result in the largest denominator, and hence, will give the root 
estimate that is closest to x2.
 Once x3 is determined, the process is repeated. This brings up the issue of which 
point is discarded. Two general strategies are typically used:

1. If only real roots are being located, we choose the two original points that are near-
est the new root estimate, x3.

2. If both real and complex roots are being evaluated, a sequential approach is employed. 
That is, just as in the secant method, x1, x2, and x3 take the place of x0, x1, and x2.

 EXAMPLE 7.2 Müller’s Method
Problem Statement. Use Müller’s method with guesses of x0, x1, and x2 = 4.5, 5.5, 
and 5, respectively, to determine a root of the equation

f(x) = x3 − 13x − 12

Note that the roots of this equation are −3, −1, and 4.

Solution. First, we evaluate the function at the guesses:

f(4.5) = 20.625  f(5.5) = 82.875  f(5) = 48

which can be used to calculate

h0 = 5.5 − 4.5 = 1  h1 = 5 − 5.5 = −0.5

δ0 =
82.875 − 20.625

5.5 − 4.5
= 62.25  δ1 =

48 − 82.875
5 − 5.5

= 69.75

These values in turn can be substituted into Eqs. (7.24) through (7.26) to compute

a =
69.75 − 62.25

−0.5 + 1
= 15  b = 15(−0.5) + 69.75 = 62.25  c = 48

The square root of the discriminant can be evaluated as
√62.252 − 4(15)48 = 31.54461

Then, because ∣62.25 + 31.54451∣ > ∣62.25 − 31.54451∣, a positive sign is employed in 
the denominator of Eq. (7.27b), and the new root estimate can be determined as

x3 = 5 +
−2(48)

62.25 + 31.54451
= 3.976487

for which the approximate error is

εa = ∣ −1.023513
3.976487 ∣  100% = 25.74%

Because the error is large, new guesses are assigned; x0 is replaced by x1, x1 is replaced 
by x2, and x2 is replaced by x3. Therefore, for the new iteration,

x0 = 5.5  x1 = 5  x2 = 3.976487
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 Pseudocode to implement Müller’s method for real roots is presented in Fig. 7.4. 
Notice that this routine is set up to take a single initial nonzero guess that is then 
 perturbed to develop the other two guesses. Of course, the algorithm can also be 

and the calculation is repeated. The results, tabulated below, show that the method con-
verges rapidly on the root, xr = 4:

i xr εa (%)

0 5
1 3.976487 25.74
2 4.00105 0.6139
3 4 0.0262
4 4 0.0000119

FIGURE 7.4
Pseudocode for Müller’s method.

SUB Muller(xr, h, eps, maxit)
x2 = xr
x1 = xr + h*xr
x0 = xr − h*xr
DO
 iter = iter + 1
 h0 = x1 − x0
 h1 = x2 − x1
 d0 = (f(x1) − f(x0)) ∕ h0
 d1 = (f(x2) − f(x1)) ∕ h1
 a = (d1 − d0) / (h1 + h0)
 b = a*h1 + d1
 c = f(x2)
 rad = SQRT(b*b − 4*a*c)
 IF |b+rad| > |b−rad| THEN
   den = b + rad
 ELSE
  den = b − rad
 END IF
 dxr = −2*c ∕ den
 xr = x2 + dxr
 PRINT iter, xr
 IF (|dxr| < eps*xr OR iter > = maxit) EXIT
 x0 = x1
 x1 = x2
 x2 = xr
END DO
END Muller

 7.4 MÜLLER’S METHOD 187
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188 ROOTS OF POLYNOMIALS

programmed to accommodate three guesses. For languages like Fortran, the code will 
find complex roots if the proper variables are declared as complex.

 7.5 BAIRSTOW’S METHOD
Bairstow’s method is an iterative approach related loosely to both the Müller and Newton-
Raphson methods. Before we launch into a mathematical description of the technique, 
recall the factored form of the polynomial,

f5(x) = (x + 1)(x − 4)(x − 5)(x + 3)(x − 2) (7.28)

If we divided by a factor that is not a root (for example, x + 6), the quotient would be 
a fourth-order polynomial. However, for this case, a remainder would result.
 On the basis of the above, we can elaborate on an algorithm for determining a root of 
a polynomial: (1) guess a value for the root, x = t, (2) divide the polynomial by the factor 
x − t, and (3) determine whether there is a remainder. If not, the guess was perfect and 
the root is equal to t. If there is a remainder, the guess can be systematically adjusted and 
the procedure repeated until the remainder disappears and a root is located. After this is 
accomplished, the entire procedure can be repeated for the quotient to locate another root.
 Bairstow’s method is generally based on this approach. Consequently, it hinges on 
the mathematical process of dividing a polynomial by a factor. Recall from our discus-
sion of polynomial deflation (Sec. 7.2.2) that synthetic division involves dividing a poly-
nomial by a factor x − t. For example, the general polynomial [Eq. (7.1)]

fn(x) = a0 + a1x + a2x2 + … + anxn (7.29)

can be divided by the factor x − t to yield a second polynomial that is one order lower,

fn−1(x) = b1 + b2x + b3x2 + … + bnxn−1 (7.30)

with a remainder R = b0, where the coefficients can be calculated by the recurrence 
relationship

bn = an

bi = ai + bi+1t  for i = n − 1 to 0

Note that if t were a root of the original polynomial, the remainder b0 would equal zero.
 To permit the evaluation of complex roots, Bairstow’s method divides the polyno-
mial by a quadratic factor, x2 − rx − s. If this is done to Eq. (7.29), the result is a new 
polynomial,

fn−2(x) = b2 + b3x + … + bn−1 xn−3 + bnxn−2

with the remainder

R = b1(x − r) + b0 (7.31)

As with normal synthetic division, a simple recurrence relationship can be used to perform 
the division by the quadratic factor:

bn = an (7.32a)

bn−1 = an−1 + rbn (7.32b)

bi = ai + rbi+1 + sbi+2  for  i = n − 2 to  0 (7.32c)
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 The quadratic factor is introduced to allow the determination of complex roots. 
This relates to the fact that, if the coefficients of the original polynomial are real, the 
complex roots occur in conjugate pairs. If x2 − rx − s is an exact divisor of the poly-
nomial, complex roots can be determined by the quadratic formula. Thus, the method 
reduces to determining the values of r and s that make the quadratic factor an exact 
divisor. In other words, we seek the values that make the remainder term equal to 
zero.
 Inspection of Eq. (7.31) leads us to conclude that for the remainder to be zero, b0 
and b1 must be zero. Because it is unlikely that our initial guesses at the values of r and s 
will lead to this result, we must determine a systematic way to modify our guesses so 
that b0 and b1 approach zero. To do this, Bairstow’s method uses a strategy similar to 
the Newton-Raphson approach. Because both b0 and b1 are functions of both r and s, 
they can be expanded using a Taylor series, as in [recall Eq. (4.26)]

b1(r + Δr, s + Δs) = b1 +
∂b1

∂r
 Δr +

∂b1

∂s
 Δs

b0(r + Δr, s + Δs) = b0 +
∂b0

∂r
 Δr +

∂b0

∂s
 Δs

 (7.33)

where the values on the right-hand side are all evaluated at r and s. Notice that second- 
and higher-order terms have been neglected. This represents an implicit assumption that 
Δr and Δs are small enough that the higher-order terms are negligible. Another way of 
expressing this assumption is to say that the initial guesses are adequately close to the 
values of r and s at the roots.
 The changes, Δr and Δs, needed to improve our guesses can be estimated by setting 
Eq. (7.33) equal to zero to give

∂b1

∂r
 Δr +

∂b1

∂s
 Δs = −b1 (7.34)

∂b0

∂r
 Δr +

∂b0

∂s
 Δs = −b0 (7.35)

If the partial derivatives of the b’s can be determined, these are a system of two equa-
tions that can be solved simultaneously for the two unknowns, Δr and Δs. Bairstow 
showed that the partial derivatives can be obtained by a synthetic division of the b’s in 
a fashion similar to the way in which the b’s themselves were derived:

 cn = bn (7.36a)

 cn−1 = bn−1 + r cn (7.36b)

 ci = bi + r ci+1 + sci+2  for  i = n − 2 to 1 (7.36c)

where ∂b0∕∂r = c1, ∂b0∕∂s = ∂b1∕∂r = c2, and ∂b1∕∂s = c3. Thus, the partial derivatives 
are obtained by synthetic division of the b’s. Then the partial derivatives can be substi-
tuted into Eqs. (7.34) and (7.35) along with the b’s to give

c2 Δr + c3 Δs = −b1

c1 Δr + c2 Δs = −b0
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190 ROOTS OF POLYNOMIALS

These equations can be solved for Δr and Δs, which can in turn be employed to improve 
the initial guesses of r and s. At each step, an approximate error in r and s can be esti-
mated, as in

∣εa,r∣ = ∣ Δr

r ∣ 100% (7.37)

and

∣εa,s∣ = ∣ Δs

s ∣ 100% (7.38)

When both of these error estimates fall below a prespecified stopping criterion εs, the 
values of the roots can be determined by

x =
r ± √r2 + 4s

2
 (7.39)

At this point, three possibilities exist:

1. The quotient is a third-order polynomial or greater. For this case, Bairstow’s method 
would be applied to the quotient to evaluate new values for r and s. The previous 
values of r and s can serve as the starting guesses for this application.

2. The quotient is a quadratic. For this case, the remaining two roots could be evaluated 
with Eq. (7.39).

3. The quotient is a first-order polynomial. For this case, the remaining single root can 
be evaluated simply as

x = −s

r
 (7.40)

 EXAMPLE 7.3 Bairstow’s Method
Problem Statement. Employ Bairstow’s method to determine the roots of the polynomial

f5(x) = x5 − 3.5x4 + 2.75x3 + 2.125x2 − 3.875x + 1.25

Use initial guesses of r = s = −1 and iterate to a level of εs = 1%.

Solution. Equations (7.32) and (7.36) can be applied to compute

b5 = 1  b4 = −4.5  b3 = 6.25  b2 = 0.375  b1 = −10.5
b0 = 11.375 
c5 = 1  c4 = −5.5  c3 = 10.75  c2 = −4.875  c1 = −16.375

Thus, the simultaneous equations to solve for Δr and Δs are

−4.875Δr + 10.75Δs = 10.5
−16.375Δr − 4.875Δs = −11.375

which can be solved for Δr = 0.3558 and Δs = 1.1381. Therefore, our original guesses 
can be corrected to

r = −1 + 0.3558 = −0.6442
s = −1 + 1.1381 = 0.1381
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and the approximate errors can be evaluated by Eqs. (7.37) and (7.38),

∣εa,r∣ = ∣ 0.3558
−0.6442 ∣ 100% = 55.23%  ∣εa, s∣ = ∣ 1.1381

0.1381 ∣ 100% = 824.1%

Next, the computation is repeated using the revised values for r and s. Applying Eqs. (7.32) 
and (7.36) yields

b5 = 1 b4 = −4.1442 b3 = 5.5578 b2 = −2.0276 b1 = −1.8013
b0 = 2.1304
c5 = 1 c4 = −4.7884 c3 = 8.7806 c2 = −8.3454 c1 = 4.7874

Therefore, we must solve
−8.3454Δr + 8.7806Δs = 1.8013
   4.7874Δr − 8.3454Δs = −2.1304

for Δr = 0.1331 and Δs = 0.3316, which can be used to correct the root estimates:
r = −0.6442 + 0.1331 = −0.5111  ∣εa,r∣ = 26.0%
s = 0.1381 + 0.3316 = 0.4697  ∣εa,s∣ = 70.6%

 The computation can be continued, with the result that after four iterations the 
method converges on values of r = −0.5 (∣εa,r 

∣ = 0.063%) and s = 0.5 (∣εa,s∣ = 0.040%). 
Equation (7.39) can then be employed to evaluate the roots as

x =
−0.5 ± √(−0.5)2 + 4(0.5)

2
= 0.5, −1.0

At this point, the quotient is the cubic equation
f(x) = x3 − 4x2 + 5.25x − 2.5

Bairstow’s method can be applied to this polynomial using the results of the previous 
step, r = −0.5 and s = 0.5, as starting guesses. Five iterations yield estimates of r = 2 
and s = −1.249, which can be used to compute

x =
2 ± √22 + 4(−1.249)

2
= 1 ± 0.499i

 At this point, the quotient is a first-order polynomial that can be directly evaluated 
by Eq. (7.40) to determine the fifth root: 2.

 Note that the heart of Bairstow’s method is the evaluation of the b’s and c’s via 
Eqs. (7.32) and (7.36). One of the primary strengths of the method is the concise way 
in which these recurrence relationships can be programmed.
 Figure 7.5 lists pseudocode to implement Bairstow’s method. The heart of the algo-
rithm consists of the loop to evaluate the b’s and c’s. Also notice that the code to solve 
the simultaneous equations checks to prevent division by zero. If this is the case, the 
values of r and s are perturbed slightly and the procedure is begun again. In addition, 
the algorithm places a user-defined upper limit on the number of iterations (maxit) and 
should be designed to avoid division by zero while calculating the error estimates. 
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(a) Bairstow Algorithm

SUB Bairstow (a,nn,es,rr,ss,maxit,re,im,ier)
DIMENSION b(nn), c(nn)
r = rr; s = ss; n = nn
ier = 0; ea1 = 1; ea2 = 1
DO
  IF n < 3 OR iter ≥ maxit EXIT
  iter = 0
  DO
    iter = iter + 1
    b(n) = a(n)
    b(n − 1) = a(n − 1) + r * b(n)
    c(n) = b(n)
    c(n − 1) = b(n − 1) + r * c(n)
    DO i = n − 2, 0, −1
      b(i) = a(i) + r * b(i + 1) + s * b(i + 2)
      c(i) = b(i) + r * c(i + 1) + s * c(i + 2)
    END DO
    det = c(2) * c(2) − c(3) * c(1)
    IF det ≠ 0 THEN
       dr = (−b(1) * c(2) + b(0) * c(3))∕det
       ds = (−b(0) * c(2) + b(1) * c(1))∕det
       r = r + dr
       s = s + ds
       IF r≠0 THEN ea1 = ABS(dr∕r) * 100
       IF s≠0 THEN ea2 = ABS(ds∕s) * 100
    ELSE
       r = r + 1
       s = s + 1
       iter = 0
    END IF
    IF ea1 ≤ es AND ea2 ≤ es OR iter ≥ maxit EXIT
  END DO
  CALL Quadroot(r,s,r1,i1,r2,i2)
  re(n) = r1
  im(n) = i1
  re(n − 1) = r2
  im(n − 1) = i2
  n = n − 2
  DO i = 0, n
    a(i) = b(i + 2)
  END DO
END DO

IF iter < maxit THEN
   IF n = 2 THEN
      r = −a(1)∕a(2)
      s = −a(0)∕a(2)
      CALL Quadroot(r,s,r1,i1,r2,i2)
      re(n) = r1
      im(n) = i1
      re(n − 1) = r2
      im(n − 1) = i2
    ELSE
      re(n) = −a(0)∕a(1)
      im(n) = 0
    END IF
ELSE
    ier = 1
END IF
END Bairstow

(b) Roots of Quadratic Algorithm

SUB Quadroot(r,s,r1,i1,r2,i2)
disc = r ̂  2 + 4 * s
IF disc > 0 THEN
   r1 = (r + SQRT(disc))∕2
   r2 = (r − SQRT(disc))∕2
   i1 = 0
   i2 = 0
ELSE
   r1 = r∕2
   r2 = r1
   i1 = SQRT(ABS(disc))∕2
   i2 = −i1
END IF
END Quadroot

FIGURE 7.5
(a) Algorithm for implementing Bairstow’s method, along with (b) an algorithm to determine the roots of a quadratic.
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 Finally, the algorithm requires initial guesses for r and s (rr and ss in the code). If no 
prior knowledge of the roots exist, they can be set to zero in the calling program.

 7.6 OTHER METHODS
Other methods are available to locate the roots of polynomials. The Jenkins-Traub method 
is commonly used in software libraries. It is fairly complicated, and a good starting point 
to understanding it is found in Ralston and Rabinowitz (1978).
 Laguerre’s method, which approximates both real and complex roots and has cubic 
convergence, is among the best approaches. A complete discussion can be found in 
Householder (1970). In addition, Press et al. (2007) present a nice algorithm to imple-
ment the method.

 7.7 ROOT LOCATION WITH SOFTWARE PACKAGES
Software packages have great capabilities for locating roots. In this section, we will give 
you a taste of some of the more useful ones.

7.7.1 Excel
A spreadsheet like Excel can be used to locate a root by trial and error. For example, 
if you want to find a root of

f(x) = x −  cos x

first, you can enter a value for x in a cell. Then set up another cell for f(x) that would 
obtain its value for x from the first cell. You can then vary the x cell until the f(x) cell 
approaches zero. This process can be further enhanced by using Excel’s plotting capa-
bilities to obtain a good initial guess (Fig. 7.6).

FIGURE 7.6
A spreadsheet set up to  
determine the root of  
f (x) = x − cos x by trial and  
error. The plot is used to ob-
tain a good initial guess.
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 Although Excel does facilitate a trial-and-error approach, it also has two standard 
tools that can be employed for root location: Goal Seek and Solver. Both these tools can 
be employed to systematically adjust the initial guesses. Goal Seek is expressly used to 
drive an equation to a value (in our case, zero) by varying a single parameter.

 EXAMPLE 7.4 Using Excel’s Goal Seek Tool to Locate a Single Root
Problem Statement. Employ Goal Seek to determine the root of the transcendental 
function

f(x) = x −  cos x

Solution. As in Fig. 7.6, the key to solving a single equation with Excel is creating a 
cell to hold the value of the function in question and then making the value dependent 
on another cell. Once this is done, the selection Goal Seek is chosen from the What-If 
Analysis button on your Data ribbon. At this point a dialogue box will be displayed, 
asking you to set a cell to a value by changing another cell. For the example, suppose 
that as in Fig. 7.6 your guess is entered in cell A11 and your function result in cell B11. 
The Goal Seek dialogue box would be filled out as follows:

When the OK button is selected, a message box displays the results:

The cells on the spreadsheet would also be modified to the new values (as shown in Fig. 7.6).
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 The Solver tool is more sophisticated than Goal Seek in that (1) it can vary several 
cells simultaneously and (2) along with driving a target cell to a value, it can minimize 
and maximize its value. The next example illustrates how it can be used to solve a system 
of nonlinear equations.

 EXAMPLE 7.5 Using Excel’s Solver for a Nonlinear System
Problem Statement. Recall that in Sec. 6.6 we obtained the solution of the following 
set of simultaneous equations,

u(x, y) = x2 + xy − 10 = 0

υ(x, y) = y + 3xy2 − 57 = 0

Note that a correct pair of roots is x = 2 and y = 3. Use Solver to determine the roots 
using initial guesses of x = 1 and y = 3.5.

Solution. As shown below, two cells (B1 and B2) can be created to hold the guesses 
for x and y. The function values themselves, u(x, y) and υ(x, y) can then be entered into 
two other cells (B3 and B4). As can be seen, the initial guesses result in function values 
that are far from zero.

 Next, another cell can be created that contains a single value reflecting how close 
both functions are to zero. One way to do this is to sum the squares of the function val-
ues. This is done and the result entered in cell B6. If both functions are at zero, this 
function should also be at zero. Further, using the squared functions avoids the possibility 
that both functions could have the same nonzero value, but with opposite signs. For this 
case, the target cell (B6) would be zero, but the roots would be incorrect.
 Once the spreadsheet is created, the selection Solver is chosen from the Data ribbon.1 
At this point a dialogue box will be displayed, querying you for pertinent information. 
The pertinent cells of the Solver dialogue box would be filled out as follows:

1Note that you may have to install Solver by choosing Office, Excel Options, Add-Ins. Select Excel Add-Ins 
from the Manage drop-down box at the bottom of the Excel options menu and click Go. Then, check the Solver 
box. The Solver then should be installed and a button to access it should appear on your Data ribbon.
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When the OK button is selected, a dialogue box will open with a report on the success 
of the operation. For the present case, the Solver obtains the correct solution:
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 It should be noted that the Solver can fail. Its success depends on (1) the condition 
of the system of equations and/or (2) the quality of the initial guesses. Thus, the suc-
cessful outcome of the previous example is not guaranteed. Despite this, we have found 
Solver useful enough to make it a feasible option for quickly obtaining roots in a wide 
range of engineering applications.

7.7.2 MATLAB
As summarized in Table 7.1, MATLAB software is capable of locating roots of single 
algebraic and transcendental equations. It is superb at manipulating and locating the roots 
of polynomials.
 The fzero function is designed to locate one root of a single function. A simplified 
representation of its syntax is

fzero(f,x0,options)

where f is the function you are analyzing, x0 is the initial guess, and options are the 
optimization parameters (these are changed using the function optimset). If options 
are omitted, default values are employed. Note that one or two guesses can be employed. 
If two guesses are employed, they are assumed to bracket a root. The following example 
illustrates how fzero can be used.

TABLE 7.1  Common functions in MATLAB related to root 
location and polynomial manipulation.

Function Description

fzero Root of single function.
roots Find polynomial roots.
poly Construct polynomial with specified roots.
polyval Evaluate polynomial.
polyvalm Evaluate polynomial with matrix argument.
residue Partial-fraction expansion (residues).
polyder Differentiate polynomial.
conv Multiply polynomials.
deconv Divide polynomials.

 EXAMPLE 7.6 Using MATLAB for Root Location
Problem Statement. Use the MATLAB function fzero to find the roots of

f(x) = x10 − 1

within the interval xl = 0 and xu = 4. Obviously two roots occur at −1 and 1. Recall that 
in Example 5.6, we used the false-position and bisection methods with initial guesses of 
0 and 1.3 to determine the positive root.
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to determine the positive root as in

>> x0= [0 1.3];
>> x=fzero(@(x) x^10–1,x0)

x =
1

 In a similar fashion, we can use initial guesses of −1.3 and 0 to determine the negative 
root,

>> x0= [−1.3 0];
>> x=fzero(@(x) x^10–1,x0)

x =
–1

 We can also employ a single guess. An interesting case would be to use an initial 
guess of 0,

>> x0=0;
>> x=fzero(@(x) x^10–1,x0)

x =
–1

Thus, for this guess, the underlying algorithm happens to home in on the negative root.
 The use of optimset can be illustrated by using it to display the actual iterations 
as the solution progresses:

>> x0=0;
>> option=optimset('DISP','ITER');
>> x=fzero(@(x) x^10–1,x0,option)

Func–count x f(x) Procedure
     1 0 –1 initial
     2 –0.0282843 –1 search
     3 0.0282843 –1 search
     4 –0.04 –1 search
     •
     •
     •
     21 0.64 –0.988471 search
     22 –0.905097 –0.631065 search
     23 0.905097 –0.631065 search
     24 –1.28 10.8059 search

    Looking for a zero in the interval [–1.28, 0.9051]

     25 0.784528 –0.911674 interpolation
     26 –0.247736 –0.999999 bisection
     27 –0.763868 –0.932363 bisection
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     28 –1.02193 0.242305 bisection
     29 –0.968701 –0.27239 interpolation
     30 –0.996873 –0.0308299 interpolation
     31 –0.999702 –0.00297526 interpolation
     32 –1 5.53132e–006 interpolation
     33 –1 –7.41965e–009 interpolation
     34 –1 –1.88738e–014 interpolation
     35 –1 0 interpolation
  Zero found in the interval [–1.28, 0.9051].

  x =
   −1

 These results illustrate the strategy used by fzero when it is provided with a single 
guess. First, it searches in the vicinity of the guess until it detects a sign change. Then 
it uses a combination of bisection and interpolation to home in on the root. The interpo-
lation involves both the secant method and inverse quadratic interpolation (recall Sec. 6.4). 
It should be noted that the fzero algorithm has more to it than this basic  description 
might imply. You can consult Press et al. (2007) for additional details.

 EXAMPLE 7.7  Using MATLAB to Manipulate and Determine the Roots of 
 Polynomials
Problem Statement. Explore how MATLAB can be employed to manipulate and 
 determine the roots of polynomials. Use the following equation from Example 7.3,

f5(x) = x5 − 3.5x4 + 2.75x3 + 2.125x2 − 3.875x + 1.25 (E7.7.1)

which has three real roots: 0.5, −1.0, and 2, and one pair of complex roots: 1 ± 0.5i.

Solution. Polynomials are entered into MATLAB by storing the coefficients as a vector. 
For example, at the MATLAB prompt (>>), typing and entering the follow line stores 
the coefficients in the vector a,

>> a= [1 –3.5 2.75 2.125 –3.875 1.25];

We can then proceed to manipulate the polynomial. For example, we can evaluate it at 
x = 1 by typing

>> polyval(a,1)

with the result 1(1)5 − 3.5(1)4 + 2.75(1)3 + 2.125(1)2 − 3.875(1) + 1.25 = −0.25,

ans = 
   –0.2500

We can evaluate the derivative f ′(x) = 5x4 − 14x3 + 8.25x2 + 4.25x − 3.875 by

>> polyder(a)
ans =
    5.0000  –14.0000  8.2500  4.2500  –3.8750
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roots of Eq. (E7.7.1): 0.5 and −1. This quadratic is (x − 0.5)(x + 1) = x2 + 0.5x − 0.5 and 
can be entered into MATLAB as the vector b,

>> b= [1 0.5 –0.5];

We can divide this polynomial into the original polynomial by

>> [d,e] =deconv(a,b)

with the result being a quotient (a third-order polynomial d) and a remainder (e),

d  =
   1.0000  –4.0000  5.2500  –2.5000
e  =
   0   0   0   0    0   0

Because the polynomial is a perfect divisor, the remainder polynomial has zero coeffi-
cients. Now, the roots of the quotient polynomial can be determined as

>> roots(d)

with the expected result that the remaining roots of the original polynomial (E7.7.1) are found,

ans =
  2.0000
  1.0000 + 0.5000i
  1.0000 – 0.5000i

We can now multiply d by b to come up with the original polynomial,

 >> conv(d,b)
ans =
   1.0000  –3.5000  2.7500  2.1250  –3.8750  1.2500

Finally, we can determine all the roots of the original polynomial by

>> r=roots(a)
r =
  –1.0000
   2.0000
   1.0000 + 0.5000i
   1.0000 – 0.5000i
   0.5000

7.7.3 Mathcad
Mathcad has a numeric mode function called root that can be used to solve an equation 
of a single variable. The method requires that you supply a function f(x) and either an 
initial guess or a bracket. When a single guess value is used, root uses the secant and 
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Müller methods. In the case where two guesses that bracket a root are supplied, it uses 
a combination of the Ridder method (a variation of false position) and Brent’s method. 
It iterates until the magnitude of f(x) at the proposed root is less than the predefined 
value of TOL. The Mathcad implementation has similar advantages and disadvantages 
to conventional root-location methods, such as issues concerning the quality of the initial 
guess and the rate of convergence.
 Mathcad can find all the real or complex roots of polynomials with polyroots. This nu-
meric or symbolic mode function is based on the Laguerre method. This function does not 
require initial guesses, and all the roots are returned at the same time.
 Mathcad contains a numeric mode function called Find that can be used to solve 
up to 50 simultaneous nonlinear algebraic equations. The Find function chooses an ap-
propriate method from a group of available methods, depending on whether the problem 
is linear or nonlinear, and other attributes. Acceptable values for the solution may be 
unconstrained or constrained to fall within specified limits. If Find fails to locate a solu-
tion that satisfies the equations and constraints, it returns the error message “did not find 
solution.” However, Mathcad also contains a similar function called Minerr. This func-
tion gives solution results that minimize the errors in the constraints even when exact 
solutions cannot be found. Thus, the problem of solving for the roots of nonlinear equa-
tions is closely related to both optimization and nonlinear least squares. These areas and 
Minerr are covered in detail in Parts Four and Five.
 Figure 7.7 shows a typical Mathcad worksheet. The menus at the top provide quick 
access to common arithmetic operators and functions, various two- and three-dimensional 
plot types, and the environment to create subprograms. Equations, text, data, or graphs 

FIGURE 7.7
Mathcad screen to find the 
root of a single equation.
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can be placed anywhere on the screen. You can use a variety of fonts, colors, and styles 
to construct worksheets with almost any design and format that pleases you. Consult the 
summary of the Mathcad User’s manual in Appendix C or the full manual available from 
MathSoft. Note that in all our Mathcad examples, we have tried to fit the entire Mathcad 
session onto a single screen. You should realize that the graph would have to be placed 
below the commands to work properly.
 Let’s start with an example that solves for the root of f(x) = x − cos x. The first 
step is to enter the function. This is done by typing f(x): which is automatically converted 
to f(x):= by Mathcad. The := is called the definition symbol. Next an initial guess is 
input in a similar manner using the definition symbol. Now, soln is defined as root(f(x), x), 
which invokes the secant method with a starting value of 1.0. Iteration is continued until 
f(x) evaluated at the proposed root is less than TOL. The value of TOL is set from the 
Math/Options pull-down menu. Finally, the value of soln is displayed using a normal 
equal sign (=). The number of significant figures is set from the Format/Number pull-
down menu. The text labels and equation definitions can be placed anywhere on the 
screen in a number of different fonts, styles, sizes, and colors. The graph can be placed 
anywhere on the worksheet by clicking to the desired location. This places a red crosshair 
at that location. Then use the Insert/Graph/X-Y Plot pull-down menu to place an empty 
plot on the worksheet with placeholders for the expressions to be graphed and for the 
ranges of the x and y axes. Simply type f(z) in the placeholder on the y axis and −10 
and 10 for the z-axis range. Mathcad does all the rest to produce the graph shown in 
Fig. 7.7. Once the graph has been created, you can use the Format/Graph/X-Y Plot pull-
down menu to vary the type of graph; change the color, type, and weight of the trace of 
the function; and add titles, labels and other features.
 Figure 7.8 shows how Mathcad can be used to find the roots of a polynomial using 
the polyroots function. First, p(x) and v are input using the := definition symbol. Note that 
v is a vector that contains the coefficients of the polynomial starting with the zero-order 
term and ending in this case with the third-order term. Next, r is defined (using :=) as 
polyroots(v), which invokes the Laguerre method. The roots contained in r are displayed 
as rT using a normal equal sign (=). Next, a plot is constructed in a manner similar to the 
above, except that now two range variables, x and j, are used to define the range of the x 
axis and the location of the roots. The range variable for x is constructed by typing x and 
then “:” (which appears as :=) and then −4, and then “,” and then −3.99, and then “;” 
(which is transformed into .. by Mathcad), and finally 4. This creates a vector of values of 
x ranging from −4 to 4 with an increment of 0.01 for the x axis with corresponding values 
for p(x) on the y axis. The j range variable is used to create three values for r and p(r) that 
are plotted as individual small circles. Note that again, in our effort to fit the entire Mathcad 
session onto a single screen, we have placed the graph above the commands. You should 
realize that the graph would have to be below the commands to work properly.
 The last example shows the solution of a system of nonlinear equations using a 
Mathcad Solve Block (Fig. 7.9). The process begins with using the definition symbol to 
create initial guesses for x and y. The word Given then alerts Mathcad that what follows 
is a system of equations. Then comes the equations and inequalities (not used here). Note 
that for this application Mathcad requires the use of a symbolic equal sign typed as 
[Ctrl]= or < and > to separate the left and right sides of an equation. Now, the variable 
vec is defined as Find(x,y) and the value of vec is shown using an equal sign.
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system of nonlinear equations.
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PROBLEMS

7.1 Divide the polynomial f(x) = x4 − 5x3 + 5x2 + 5x − 6 by the 
monomial factor x − 2. Is x = 2 a root?
7.2 Divide the polynomial f(x) = x5 − 6x4 + x3 − 7x2 − 7x + 12 by 
the monomial factor x − 2.
7.3 Use Müller’s method to determine the positive real root of
(a) f(x) = x3 + x2 − 4x − 4
(b) f(x) = x3 − 0.5x2 + 4x − 2
7.4 Use Müller’s method or MATLAB to determine the real and 
complex roots of
(a) f(x) = x3 − x2 + 2x − 2
(b) f(x) = x4 + 3x2 + 5
(c) f(x) = x4 − 2x3 + 6x2 − 8x + 8
7.5 Use Bairstow’s method to determine the roots of
(a) f(x) = −2 + 6.2x − 4x2 + 0.7x3

(b) f(x) = 9 − 22x + 16x2 − 3.6x3

(c) f(x) = x4 − 2x3 + 21x2 − 8x + 68
7.6 Develop a program to implement Müller’s method. Test it by 
duplicating Example 7.2.
7.7 Use the program developed in Prob. 7.6 to determine the real 
roots of Prob. 7.4a. Construct a graph (by hand or with a software 
package) to develop suitable starting guesses.
7.8 Develop a program to implement Bairstow’s method. Test it by 
duplicating Example 7.3.
7.9 Use the program developed in Prob. 7.8 to determine the roots 
of the equations in Prob. 7.5.
7.10 Determine the real root of x3.6 = 75 with Excel, MATLAB, or 
Mathcad.
7.11 The velocity of a falling parachutist is given by

υ =
gm

c
 (1 − e−(c∕m)t)

where g = 9.81 m/s2. For a parachutist with a drag coefficient c = 
16 kg/s, compute the mass m so that the velocity is υ = 36 m/s at 
t = 7 s. Use Excel, MATLAB, or Mathcad to determine m.
7.12 Perform the same calculation as in Prob. 7.11 but for the more 
accurate representation of drag as a function of the square of the 
velocity. For this case, the closed-form solution is

v = √
gm

c′
 tanh (√

gc′
m

 t)

where c′ = a second-order drag coefficient = 0.25 kg/m.
7.13 Determine the roots of the simultaneous nonlinear equations

y = −x2 + x + 0.75

y + 5xy = x2

Employ initial guesses of x = y = 1.2 and use the Solver tool from 
Excel or a software package of your choice.
7.14 Determine the roots of the simultaneous nonlinear equations

(x − 4)2 + (y − 4)4 = 5

x2 + y2 = 16

Use a graphical approach to obtain your initial guesses. Determine 
refined estimates with the Solver tool from Excel or a software 
package of your choice.
7.15 Perform the identical MATLAB operations used in Ex-
ample 7.7 or use a software package of your choice to find all the 
roots of the polynomial

f(x) = (x − 6)(x + 2)(x − 1)(x + 4)(x − 8)

Note that the poly function can be used to convert the roots to a 
polynomial.
7.16 Use MATLAB or Mathcad to determine the roots for the 
equations in Prob. 7.5.
7.17 A two-dimensional circular cylinder is placed in a high-speed 
uniform flow. Vortices shed from the cylinder at a constant 
 frequency, and pressure sensors on the rear surface of the cylinder 
detect this frequency by calculating how often the pressure oscil-
lates. Given three data points, use Müller’s method to find the time 
when the pressure was zero.

Time 0.60 0.62 0.64

Pressure 20 50 60

7.18 When trying to find the acidity of a solution of magne-
sium hydroxide in hydrochloric acid, we obtain the following 
 equation

A(x) = x3 + 3.5x2 − 40

where x is the hydronium ion concentration. Find the hydronium 
ion concentration for a saturated solution (acidity equals zero) 
 using two different methods in MATLAB (for example, graphically 
and the roots function).
7.19 Consider the following system with three unknowns a, u, 
and υ:

u2 − 2υ2 = a2

u + υ = 2

a2 − 2a − u = 0
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Solve for the real values of the unknowns using: (a) the Excel 
Solver and (b) a symbolic manipulator software package.
7.20 In control systems analysis, transfer functions are developed 
that mathematically relate the dynamics of a system’s input to its 
output. A transfer function for a robotic-positioning system is 
given by

G(s) =
C(s)
N(s)

=
s3 + 12.5s2 + 50.5s + 66

s4 + 19s3 + 122s2 + 296s + 192

where G(s) = system gain, C(s) = system output, N(s) = system 
input, and s = Laplace transform complex frequency. Use a 
 numerical technique to find the roots of the numerator and denomi-
nator and factor these into the form

G(s) =
(s + a1) (s + a2) (s + a3)

(s + b1) (s + b2) (s + b3) (s + b4)

where ai and bi = the roots of the numerator and denominator, 
 respectively.

7.21 Develop an M-file function for bisection similar to the 
 algorithm in Fig. 5.10. Test the function by duplicating the compu-
tations from Examples 5.3 and 5.4.
7.22 Develop an M-file function for the false-position method. The 
structure of your function should be similar to the bisection 
 algorithm outlined in Fig. 5.10. Test the program by duplicating 
Example 5.5.
7.23 Develop an M-file function for the Newton-Raphson method 
based on Fig. 6.4 and Sec. 6.2.3. Along with the initial guess, pass 
the function and its derivative as arguments. Test it by duplicating 
the computation from Example 6.3.
7.24 Develop an M-file function for the secant method based on 
Fig. 6.4 and Sec. 6.3.2. Along with the two initial guesses, pass the 
function as an argument. Test it by duplicating the computation 
from Example 6.6.
7.25 Develop an M-file function for the modified secant method 
based on Fig. 6.4 and Sec. 6.3.3. Along with the initial guess and 
the perturbation fraction, pass the function as an argument. Test it 
by duplicating the computation from Example 6.8.
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8
Case Studies:  
Roots of Equations

The purpose of this chapter is to use the numerical procedures discussed in Chaps. 5, 6, 
and 7 to solve actual engineering problems. Numerical techniques are important for 
practical applications because engineers frequently encounter problems that cannot be 
approached using analytical techniques. For example, simple mathematical models that 
can be solved analytically may not be applicable when real problems are involved. Thus, 
more complicated models must be employed. For these cases, it is appropriate to imple-
ment a numerical solution on a computer. In other situations, engineering design prob-
lems may require solutions for implicit variables in complicated equations.
 The following case studies are typical of those that are routinely encountered during 
upper-class courses and graduate studies. Furthermore, they are representative of prob-
lems you will address professionally. The problems are drawn from the four major 
 disciplines of engineering: chemical, civil, electrical, and mechanical. These applications 
also serve to illustrate the trade-offs among the various numerical techniques.
 The first application, taken from chemical engineering, provides an excellent example 
of how root-location methods allow you to use realistic formulas in engineering practice. 
In addition, it also demonstrates how the efficiency of the Newton-Raphson technique is 
used to advantage when a large number of root-location computations is required.
 The following engineering design problems are taken from civil, electrical, and mechan-
ical engineering. Section 8.2 uses bisection to determine changes in rainwater chemistry due 
to increases in atmospheric carbon dioxide. Section 8.3 shows how the roots of transcendental 
equations can be used in the design of an electrical circuit. Sections 8.2 and 8.3 also illustrate 
how graphical methods provide insight into the root-location process. Finally, Sec. 8.4 uses a 
variety of numerical methods to compute the friction factor for fluid flow in a pipe.

 8.1 IDEAL AND NONIDEAL GAS LAWS  
(CHEMICAL/BIO ENGINEERING)
Background. The ideal gas law is given by

pV = nRT  (8.1)

where p is the absolute pressure, V is the volume, n is the number of moles, R is the 
universal gas constant, and T is the absolute temperature. Although this equation is 
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widely used by engineers and scientists, it is accurate over only a limited range of pres-
sure and temperature. Furthermore, Eq. (8.1) is more appropriate for some gases than 
for others.
 An alternative equation of state for gases is given by

(p +
a

υ2)(υ − b) = RT  (8.2)

and is known as the van der Waals equation, where υ = V∕n is the molal volume and 
a and b are empirical constants that depend on the particular gas.
 A chemical engineering design project requires that you accurately estimate the molal 
volume (υ) of both carbon dioxide and oxygen for a number of different temperature and 
pressure combinations so that appropriate containment vessels can be selected. It is also 
of interest to examine how well each gas conforms to the ideal gas law by comparing the 
molal volumes as calculated by Eqs. (8.1) and (8.2). The following data are provided:

R = 0.082054 L atm /(mol K)
a = 3.592
b = 0.04267}

 carbon dioxide

a = 1.360
b = 0.03183}

 oxygen

The design pressures of interest are 1, 10, and 100 atm for temperature combinations of 
300, 500, and 700 K.

Solution. Molal volumes for both gases are calculated using the ideal gas law, with n = 1. 
For example, if p = 1 atm and T = 300 K,

υ =
V

n
=

RT

p
= 0.082054 

L atm
mol K

 
300 K
1 atm

= 24.6162 L/mol

These calculations are repeated for all temperature and pressure combinations and 
presented in Table 8.1.

TABLE 8.1 Computations of molal volume.

      Molal Volume Molal Volume 
    Molal Volume  (van der Waals) (van der Waals) 
 Temperature, Pressure, (Ideal Gas Law), Carbon Dioxide,  Oxygen, 
 K atm L/mol L/mol L/mol

 300 1 24.6162 24.5126 24.5928
  10 2.4616 2.3545 2.4384
  100 0.2462 0.0795 0.2264
 500 1 41.0270 40.9821 41.0259
  10 4.1027 4.0578 4.1016
  100 0.4103 0.3663 0.4116
 700 1 57.4378 57.4179 57.4460
  10 5.7438 5.7242 5.7521
  100 0.5744 0.5575 0.5842
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 The computation of molal volume from the van der Waals equation can be accom-
plished using any of the numerical methods for finding roots of equations discussed in 
Chaps. 5, 6, and 7, with

f(υ) = (p +
a

υ2)(υ − b) − RT  (8.3)

In this case, the derivative of f(υ) is easy to determine and the Newton-Raphson method is 
convenient and efficient to implement. The derivative of f(υ) with respect to υ is given by

f ′(υ) = p −
a

υ2 +
2ab

υ3  (8.4)

 The Newton-Raphson method is described by Eq. (6.6):

υi+1 = υi −
f(υi)
f ′(υi)

which can be used to estimate the root. For example, using the initial guess of 24.6162, 
the molal volume of carbon dioxide at 300 K and 1 atm is computed as 24.5126 L∕mol. 
This result was obtained after just two iterations and has an εa of less than 0.001%.
 Similar computations for all combinations of pressure and temperature for both gases 
are presented in Table 8.1. It is seen that the results for the ideal gas law differ from 
those for the van der Waals equation for both gases, depending on specific values for p 
and T. Furthermore, because some of these results are significantly different, your design 
of the containment vessels would be quite different, depending on which equation of 
state was used.
 In this case, a complicated equation of state was examined using the Newton-Raphson 
method. The results varied significantly from the ideal gas law for several cases. From 
a practical standpoint, the Newton-Raphson method was appropriate for this application 
because f ′(υ) was easy to calculate. Thus, the rapid convergence properties of the 
 Newton-Raphson method could be exploited.
 In addition to demonstrating its power for a single computation, the present design 
problem also illustrates how the Newton-Raphson method is especially attractive when 
numerous computations are required. Because of the speed of digital computers, the 
 efficiency of various numerical methods for determining most roots of equations is in-
distinguishable for a single computation. Even a 1-s difference between the crude bisec-
tion approach and the efficient Newton-Raphson method does not amount to a significant 
time loss when only one computation is performed. However, suppose that millions of 
root evaluations are required to solve a problem. In this case, the efficiency of the method 
could be a deciding factor in the choice of a technique.
 For example, suppose that you are called upon to design an automatic computerized 
control system for a chemical production process. This system requires accurate estimates 
of molal volumes on an essentially continuous basis to properly manufacture the final 
product. Gauges are installed that provide instantaneous readings of pressure and tempera-
ture. Evaluations of υ must be obtained for a variety of gases that are used in the process.
 For such an application, bracketing methods such as bisection or false position would 
probably be too time-consuming. In addition, the two initial guesses that are required for 
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these approaches may also interject a critical delay in the procedure. This shortcoming 
is relevant to the secant method, which also needs two initial estimates.
 In contrast, the Newton-Raphson method requires only one guess for the root. The 
ideal gas law could be employed to obtain this guess at the initiation of the process. 
Then, assuming that the time frame is short enough so that pressure and temperature do 
not vary wildly between computations, the previous root solution would provide a good 
guess for the next application. Thus, the close guess that is often a prerequisite for con-
vergence of the Newton-Raphson method would automatically be available. All the above 
considerations would greatly favor the Newton-Raphson technique for such problems.

 8.2 GREENHOUSE GASES AND RAINWATER  
(CIVIL/ENVIRONMENTAL ENGINEERING)
Background. Civil engineering is a broad field that includes such diverse areas as 
structural, geotechnical, transportation, water-resources, and environmental engineering. 
The last area has traditionally dealt with pollution control. However, in recent years, 
environmental engineers (as well as chemical engineers) have addressed broader prob-
lems such as climate change.
 It is well documented that the atmospheric levels of several greenhouse gases have 
been increasing over the past 60 years. For example, Fig. 8.1 shows data for the partial 
pressure of carbon dioxide (CO2) collected at Mauna Loa, Hawaii, from 1958 through 2003. 
The trend in the data can be nicely fit with a quadratic polynomial (in Part Five, we will 
learn how to determine such polynomials),

pCO2
= 0.011825(t − 1980.5)2 + 1.356975(t − 1980.5) + 339

where pCO2
= the partial pressure of CO2 in the atmosphere [ppm]. The data indicate that 

levels have increased during the period: from 315 to 376 ppm.

FIGURE 8.1
Average annual partial pressures of atmospheric carbon dioxide (ppm) measured at Mauna 
Loa, Hawaii.
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 Aside from global warming, greenhouse gases can also influence atmospheric chemistry. 
One question that we can address is how the carbon dioxide trend is affecting the pH of 
rainwater. Outside of urban and industrial areas, it is well documented that carbon dioxide is 
the primary determinant of the pH of the rain. pH is the measure of the activity of hydrogen 
ions and, therefore, of acidity. For dilute aqueous solutions, it can be computed as

pH = −log10[H+] (8.5)

where [H+] is the molar concentration of hydrogen ions.
 The following five nonlinear system of equations govern the chemistry of rainwater,

K1 = 106 
[H+][HCO−

3 ]
KH pCO2

 (8.6)

K2 =
[H+][CO2−

3 ]
[HCO−

3 ]
 (8.7)

Kw = [H+ ][OH− ] (8.8)

cT =
KH pCO2

106 + [HCO−
3 ] + [CO2−

3 ] (8.9)

0 = [HCO−
3 ] + 2[CO2−

3 ] + [OH−] − [H+] (8.10)

where KH = Henry’s constant, and K1, K2, and Kw are equilibrium coefficients. The five 
unknowns in this system of five nonlinear equations are cT = total inorganic carbon, 
[HCO−

3 ] = bicarbonate, [CO2−
3 ] = carbonate, [H+] = hydrogen ion, and [OH−] = 

 hydroxyl ion. Notice how the partial pressure of CO2 shows up in Eqs. (8.6) and (8.9).
 Use these equations to compute the pH of rainwater given that KH = 10−1.46, K1 = 
10−6.3, K2 = 10−10.3, and Kw = 10−14. Compare the results for 1958 when the pCO2

 was 
315 and for 2003 when it was 375 ppm. When selecting a numerical method for your 
computation, consider the following:

 You know with certainty that the pH of rain in pristine areas always falls between 
2 and 12.

 You also know that your measurement devices can only measure pH to two places of 
decimal precision.

Solution. There are a variety of ways to solve this nonlinear system of five equations. 
One way is to eliminate unknowns by combining them to produce a single function that 
only depends on [H+]. To do this, first solve Eqs. (8.6) and (8.7) for

[HCO−
3 ] =

K1

106[H+]
 KH pCO2

 (8.11)

[CO2−
3 ] =

K2[HCO−
3 ]

[H+]
 (8.12)

Substitute Eq. (8.11) into (8.12)

[CO2−
3 ] =

K2K1

106[H+]2 KH pCO2
 (8.13)
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Equations (8.11) and (8.13) can be substituted along with Eq. (8.8) into Eq. (8.10) to give

0 =
K1

106[H+]
 KH pCO2

+ 2 

K2K1

106[H+]2 KH pCO2
+

Kw

[H+]
− [H+] (8.14)

Although it might not be apparent, this result is a third-order polynomial in [H+]. Thus, 
its root can be used to compute the pH of the rainwater.
 Now we must decide which numerical method to employ to obtain the solution. 
There are two reasons why bisection would be a good choice. First, the fact that the pH 
always falls within the range from 2 to 12 provides us with two good initial guesses. 
Second, because the pH can only be measured to two decimal places of precision, we 
will be satisfied with an absolute error of Ea,d = 0.005. Remember that given an initial 
bracket and the desired relative error, we can compute the number of iterations a priori. 
Using Eq. (5.5), the result is n = log2(10)∕0.005 = 10.9658. Thus, eleven iterations of 
bisection will produce the desired precision.
 If this is done, the result for 1958 will be a pH of 5.6279 with a relative error of 
0.0868%. We can be confident that the rounded result of 5.63 is correct to two decimal 
places. This can be verified by performing another run with more iterations. For ex-
ample, if we perform 35 iterations, a result of 5.6304 is obtained with an approximate 
relative error of εa = 5.17 × 10−9%. The same calculation can be repeated for the 2003 
conditions to give pH = 5.59 with εa = 0.0874%.
 Interestingly, these results indicate that the 19% rise in atmospheric CO2 levels has 
produced only a 0.67% drop in pH. Although this is certainly true, remember that the 
pH represents a logarithmic scale as defined by Eq. (8.5). Consequently, a unit drop in 
pH represents a 10-fold increase in hydrogen ion. The concentration can be computed 
as [H+] = 10−pH and the resulting percent change can be calculated as 9.1%. Therefore, 
the hydrogen ion concentration has increased about 9%.
 There is quite a lot of controversy related to the true significance of the greenhouse 
gas trends. However, regardless of the ultimate implications, it is quite sobering to realize 
that something as large as our atmosphere has changed so much over a relatively short 
time period. This case study illustrates how numerical methods can be employed to analyze 
and interpret such trends. Over the coming years, engineers and scientists can hopefully 
use such tools to gain increased understanding and help rationalize the debate over the 
ramifications of these trends.

 8.3 DESIGN OF AN ELECTRIC CIRCUIT  
(ELECTRICAL ENGINEERING)
Background. Electrical engineers often use Kirchhoff’s laws to study the steady-state 
(not time-varying) behavior of electric circuits. Such steady-state behavior will be exam-
ined in Sec. 12.3. Another important problem involves circuits that are transient in nature, 
where sudden temporal changes take place. Such a situation occurs following the closing 
of the switch in Fig. 8.2. In this case, there will be a period of adjustment following the 
closing of the switch as a new steady state is reached. The length of this adjustment 
period is closely related to the storage properties of the capacitor and the inductor. Energy 
storage may oscillate between these two elements during a transient period. However, 
resistance in the circuit will dissipate the magnitude of the oscillations.
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 The flow of current through the resistor causes a voltage drop (VR) given by

VR = iR

where i = the current and R = the resistance of the resistor. When R and i have units of 
ohms and amperes, respectively, VR has units of volts.
 Similarly, an inductor resists changes in current, such that the voltage drop VL across 
it is

VL = L 

di

dt

where L = the inductance. When L and i have units of henrys and amperes, respectively, 
VL has units of volts and t has units of seconds.
 The voltage drop across the capacitor (VC) depends on the charge (q) on it:

VC =
q

C
 (8.15)

where C = the capacitance. When the charge is expressed in units of coulombs, the unit 
of C is the farad.
 Kirchhoff’s second law states that the algebraic sum of voltage drops around a closed 
circuit is zero. After the switch is closed, we have

L 

di

dt
+ Ri +

q

C
= 0 (8.16)

However, the current is related to the charge according to

i =
dq

dt
 (8.17)

Therefore,

L 

d 
2q

dt 
2 + R 

dq

dt
+

1
C

 q = 0 (8.18)

This is a second-order linear ordinary differential equation that can be solved using the 
methods of calculus. The solution is given by

q(t) = q0e
−Rt∕(2L)cos[√

1
LC

− (
R

2L)
2

t] (8.19)

FIGURE 8.2
An electric circuit. When the 
switch is closed, the current 
will undergo a series of oscilla-
tions until a new steady state 
is reached.
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Resistor
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–

+
V0

i
–

+
Battery Inductor
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where at t = 0, q = q0 = V0C, and V0 = the voltage from the charging battery. Equation 
(8.19) describes the time variation of the charge on the capacitor. The solution q(t) is 
plotted in Fig. 8.3.
 A typical electrical engineering design problem might involve determining the proper 
resistor to dissipate energy at a specified rate, with known values for L and C. For this prob-
lem, assume the charge must be dissipated to 1% of its original value (q∕q0 = 0.01) in t = 
0.05 s, with L = 5 H and C = 10−4 F.

Solution. It is necessary to solve Eq. (8.19) for R, with known values of q, q0, L, and 
C. However, a numerical approximation technique must be employed because R is an 
implicit variable in Eq. (8.19). The bisection method will be used for this purpose. The 
other methods discussed in Chaps. 5 and 6 are also appropriate, although the Newton-
Raphson method might be deemed inconvenient because the derivative of Eq. (8.19) is 
a little cumbersome. Rearranging Eq. (8.19),

f(R) = e−Rt∕(2L)cos[√
1

LC
− (

R

2L)
2

t] −
q

q0

or using the numerical values given,

f(R) = e−0.005Rcos[√2000 − 0.01R2 (0.05)] − 0.01 (8.20)

Examination of this equation suggests that a reasonable initial range for R is 0 to 400 Ω 
(because 2000 − 0.01R2 must be greater than zero). Figure 8.4, a plot of Eq. (8.20), 
confirms this. Twenty-one iterations of the bisection method give R = 328.1515 Ω, with 
an error of less than 0.0001%.

FIGURE 8.3
The charge on a capacitor as 
a function of time following the 
closing of the switch in  
Fig. 8.2.

q(t)
q0

Time

FIGURE 8.4
Plot of Eq. (8.20) used to  
obtain initial guesses for R  
that bracket the root.

f (R)

R
0.0

– 0.2

– 0.4

– 0.6
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Root ≅ 325

400
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214 CASE STUDIES: ROOTS OF EQUATIONS

 Thus, you can specify a resistor with this rating for the circuit shown in Fig. 8.2 
and expect to achieve a dissipation performance that is consistent with the requirements 
of the problem. This design problem could not be solved efficiently without using the 
numerical methods in Chaps. 5 and 6.

 8.4 PIPE FRICTION (MECHANICAL/AEROSPACE ENGINEERING)
Background. Determining fluid flow through pipes and tubes has great relevance in 
many areas of engineering and science. In mechanical and aerospace engineering, typical 
applications include the flow of liquids and gases through cooling systems.
 The resistance to flow in such conduits is parameterized by a dimensionless number 
called the friction factor. For turbulent flow, the Colebrook equation provides a means 
to calculate the friction factor,

0 =
1

√f 

+ 2.0 log (
ε

3.7D
+

2.51
Re√f )

 (8.21)

where ε = the roughness (m), D = diameter (m), and Re = the Reynolds number,

Re =
ρVD

μ

where ρ = the fluid’s density (kg∕m3), V = its velocity (m∕s), and µ = dynamic viscos-
ity (N s∕m2). In addition to appearing in Eq. (8.21), the Reynolds number also serves as 
the criterion for whether flow is turbulent (Re > 4000).
 In the present case study, we will illustrate how the numerical methods covered in this 
part of the book can be employed to determine f for air flow through a smooth, thin tube. 
For this case, the parameters are ρ = 1.23 kg∕m3, µ = 1.79 × 10−5 N s∕m2, D = 0.005 m, 
V = 40 m∕s, and ε = 0.0015 mm. Note that friction factors range from about 0.008 to 0.08. 
In addition, an explicit formulation called the Swamee-Jain equation provides an approxi-
mate estimate,

f =
1.325

[ln (
ε

3.7D
+

5.74
Re0.9)]

2  (8.22)

Solution. The Reynolds number can be computed as

Re =
ρVD

μ
=

1.23(40)0.005
1.79 × 10−5 = 13,743

This value along with the other parameters can be substituted into Eq. (8.21) to give

g( f  ) =
1

√f 
+ 2.0 log (

0.0000015
3.7(0.005)

+
2.51

13,743√f )

 Before determining the root, it is advisable to plot the function to estimate initial 
guesses and to anticipate possible difficulties. This can be done easily with tools such 
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as MATLAB software, Excel, or Mathcad. For example, a plot of the function can be 
generated with the following MATLAB commands

>> rho=1.23;mu=1.79e-5;D=0.005;V=40;e=0.0015/1000;
>> Re=rho*V*D/mu;
>> g=@(f) 1/sqrt(f)+2*log10(e/(3.7*D)+2.51/(Re*sqrt(f)));
>> fplot(g,[0.008 0.08]),grid,xlabel('f'),ylabel('g(f)')

As you can see in Fig. 8.5, the root is located at about 0.03.
 Because we are supplied initial guesses (xl = 0.008 and xu = 0.08), either of the 
bracketing methods from Chap. 5 could be used. For example, bisection gives a value 
of f = 0.0289678 with a percent relative error of error of 5.926 × 10−5 in 22 iterations. 
False position yields a result of similar precision in 26 iterations. Thus, although they 
produce the correct result, they are somewhat inefficient. This would not be important 
for a single application, but could become prohibitive if many evaluations were made.
 We could try to attain improved performance by turning to an open method. Because 
Eq. (8.21) is relatively straightforward to differentiate, the Newton-Raphson method is a good 
candidate. For example, using an initial guess at the lower end of the range (x0 = 0.008), 
Newton-Raphson converges quickly to 0.0289678 with an approximate error of 6.87 × 10−6% 
in only six iterations. However, when the initial guess is set at the upper end of the range 
(x0 = 0.08), the routine diverges!
 As can be seen by inspecting Fig. 8.5, this occurs because the function’s slope at 
the initial guess causes the first iteration to jump to a negative value. Further runs 
demonstrate that for this case, convergence only occurs when the initial guess is below 
about 0.066.

FIGURE 8.5
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 So we can see that although the Newton-Raphson method is very efficient, it requires 
good initial guesses. For the Colebrook equation, a good strategy might be to this and other 
"fzero" employ the Swamee-Jain equation (Eq. 8.22) to provide the initial guess, as in

f =
1.325

[ln (
0.0000015
3.7(0.005)

+
5.74

137430.9)]
2 = 0.029031

For this case, Newton-Raphson converges in only 3 iterations quickly to 0.0289678 with 
an approximate error of 8.51 × 10−10%.
 Aside from our homemade functions, we can also use professional root finders like 
MATLAB’s built-in fzero function. However, just as with the Newton-Raphson method, 
divergence also occurs when the fzero function is used with a single guess. However, 
in this case, guesses at the lower end of the range cause problems. For example,

>> rho=1.23;mu=1.79e-5;D=0.005;V=40;e=0.0015/1000;
>> Re=rho*V*D/mu
>> g=@(f) 1/sqrt(f)+2*log10(e/(3.7*D)+2.51/(Re*sqrt(f)));
>> fzero(g,0.008)

Exiting fzero: aborting search for an interval containing a 
sign change because complex function value encountered 
during search. (Function value at -0.0028 is -4.92028-
20.2423i.)
Check function or try again with a different starting value.
ans =
  NaN

If the iterations are displayed using optimset (recall Sec. 7.7.2), it is revealed that a 
negative value occurs during the search phase before a sign change is detected and the 
routine aborts. However, for single initial guesses above about 0.016, the routine works 
nicely. For example, for the guess of 0.08 that caused problems for Newton-Raphson, 
fzero does just fine,

>> fzero(g,0.08)

ans =
  0.02896781017144

 As a final note, let’s see whether convergence is possible for simple fixed-point iteration. 
The easiest and most straightforward version involves solving for the first f in Eq. (8.21),

fi+1 =
0.25

(log(
ε

3.7D
+

2.51
Re√fi

))
2 (8.23)
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 The cobweb display of this function indicates a surprising result (Fig. 8.6). Recall 
that fixed-point iteration converges when the y2 curve has a relatively flat slope (i.e., 
∣g′(ξ)∣ < 1). As indicated by Fig. 8.6, the fact that the y2 curve is quite flat in the range 
from f = 0.008 to 0.08 means that not only does fixed-point iteration converge, but it 
converges fairly rapidly! In fact, for initial guesses anywhere between 0.008 and 0.08, 
fixed-point iteration yields predictions with percent relative errors less than 0.008% in 
six or fewer iterations. Thus, this simple approach that requires only one guess and no 
derivative estimates performs really well for this particular case.
 The take-home message from this case study is that even great, professionally 
 developed software like MATLAB is not always foolproof. Further, there is usually no 
single method that works best for all problems. Sophisticated users understand the 
strengths and weaknesses of the available numerical techniques. In addition, they under-
stand enough of the underlying theory so that they can effectively deal with situations 
where a method breaks down.

FIGURE 8.6
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FIGURE P8.2
Schematic representation of a plug flow reactor with recycle.

Plug flow reactor

Recycle

Feed Product

PROBLEMS

Chemical/Bio Engineering
8.1 Perform the same computation as in Sec. 8.1, but for acetone 
(a = 14.09 and b = 0.0994) at a temperature of 400 K and p of 
2.5 atm. Compare your results with that from the ideal gas law. Use 
any of the numerical methods discussed in Chaps. 5 and 6 to per-
form the computation. Justify your choice of technique.
8.2 In chemical engineering, plug flow reactors (that is, those in 
which fluid flows from one end to the other with minimal mixing 
along the longitudinal axis) are often used to convert reactants 
into products. It has been determined that the efficiency of the 
conversion can sometimes be improved by recycling a portion of 
the product stream so that it returns to the entrance for an addi-
tional pass through the reactor (Fig. P8.2). The recycle rate is 
 defined as

R =
volume of fluid returned to entrance

volume leaving the system

Suppose that we are processing a chemical A to generate a product B. 
For the case where A forms B according to an autocatalytic reac-
tion (that is, in which one of the products acts as a catalyst or 
stimulus for the reaction), it can be shown that an optimal recycle 
rate must satisfy

ln 
1 + R(1 − XAf)

R(1 − XAf)
=

R + 1
R[1 + R(1 − XAf)]

where XAf = the fraction of reactant A that is converted to product 
B. The optimal recycle rate corresponds to the minimum-sized 
 reactor needed to attain the desired level of conversion. Use a 
 numerical method to determine the recycle rates needed to mini-
mize reactor size for a fractional conversion of XAf = 0.96.
8.3 In a chemical engineering process, water vapor (H2O) is heated to 
sufficiently high temperatures that a significant portion of the water 
dissociates, or splits apart, to form oxygen (O2) and hydrogen (H2):

H2O  H2 + 1
2 
O2

If it is assumed that this is the only reaction involved, the mole 
fraction x of H2O that dissociates can be represented by

K =
x

1 − x
 √

2pt

2 + x
 (P8.3.1)

where K = the reaction equilibrium constant and pt = the total pres-
sure of the mixture. If pt = 3 atm and K = 0.05, determine the value 
of x that satisfies Eq. (P8.3.1).
8.4 The following equation pertains to the concentration of a 
chemical in a completely mixed reactor:

c = cin(1 − e−0.04t) + c0e
−0.04t

If the initial concentration c0 = 4 and the inflow concentration cin = 10, 
compute the time required for c to be 93% of cin.
8.5 A reversible chemical reaction

2A + B  C

can be characterized by the equilibrium relationship

K =
cc

c2
a 
cb

where the nomenclature ci represents the concentration of constituent i. 
Suppose that we define a variable x as representing the number of 
moles of C that are produced. Conservation of mass can be used to 
reformulate the equilibrium relationship as

K =
(cc,0 + x)

(ca,0 − 2x)2(cb,0 − x)

where the subscript 0 designates the initial concentration of each 
constituent. If K = 0.016, ca,0 = 42, cb,0 = 28, and cc,0 = 4, determine 
the value of x. (a) Obtain the solution graphically. (b) On the basis of 
(a), solve for the root with initial guesses of xl = 0 and xu = 20 to εs = 
0.5%. Choose either bisection or false position to obtain your solu-
tion. Justify your choice.
8.6 The following chemical reactions take place in a closed system

2A + B  C
A + D  C

At equilibrium, they can be characterized by

K1 =
cc

c2
a 
cb

K2 =
cc

ca 
cd
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and

h = √
3 3(rh2 −

V

π)

If r = 1 m and V = 0.5 m3, determine whether either of these is 
stable and the range of initial guesses for which they are stable.
8.11 The operation of a constant density plug flow reactor for the 
production of a substance via an enzymatic reaction is described 
by the equation below, where V is the volume of the reactor, F is 
the flow rate of reactant C, Cin and Cout are the concentrations of 
reactant entering and leaving the reactor, respectively, and K and 
kmax are constants. For a 500-L reactor, with an inlet concentra-
tion of Cin = 0.5 M, an inlet flow rate of 40 L∕s, kmax = 0.005 s−1, 
and K = 0.1 M, find the concentration of C at the outlet of the 
reactor.

V

F
= − ∫Cout

Cin

K

kmaxC
+

1
kmax

 dC

8.12 The Ergun equation, shown below, is used to describe the 
flow of a fluid through a packed bed. ΔP is the pressure drop, ρ is 
the density of the fluid, Go is the mass velocity (mass flow rate di-
vided by cross-sectional area), Dp is the diameter of the particles 
within the bed, μ is the fluid viscosity, L is the length of the bed, 
and ε is the void fraction of the bed.

ΔPρ

G2
o

 
Dp

L
 

ε3

1 − ε
= 150 

1 − ε

(DpGo∕μ)
+ 1.75

Given the parameter values listed below, find the void fraction ε of 
the bed.

DpGo

μ
= 1000

ΔPρDp

G2
oL

= 10

8.13 The pressure drop in a section of pipe can be calculated as

Δp = f  

LρV 
2

2D

where Δp = the pressure drop (Pa), f = the friction factor, L = the 
length of pipe (m), ρ = density (kg∕m3), V = velocity (m∕s), and 
D = diameter (m). For turbulent flow, the Colebrook equation pro-
vides a means to calculate the friction factor,

1
√f 

= −2.0 log(
ε

3.7D
+

2.51
Re√f )

where the nomenclature ci represents the concentration of constitu-
ent i. If x1 and x2 are the numbers of moles of C that are produced 
due to the first and second reactions, respectively, use an approach 
similar to that of Prob. 8.5 to reformulate the equilibrium relation-
ships in terms of the initial concentrations of the constituents. 
Then, use the Newton-Raphson method to solve the pair of simul-
taneous nonlinear equations for x1 and x2 if K1 = 4 × 10−4, K2 = 
3.7 × 10−2, ca,0 = 50, cb,0 = 20, cc,0 = 5, and cd,0 = 10. Use a 
graphical  approach to develop your initial guesses.
8.7 The Redlich-Kwong equation of state is given by

p =
RT

υ − b
−

a

υ(υ + b)√T

where R = the universal gas constant [= 0.518 kJ/(kg K)], 
T = absolute temperature (K), p = absolute pressure (kPa), and 
υ = the volume of a kg of gas (m3/kg). The parameters a and b are 
 calculated by

a = 0.427 

R2 T 
2.5
c

pc

     b = 0.0866R 

Tc

pc

where pc = critical pressure (kPa) and Tc = critical temperature (K). 
As a chemical engineer, you are asked to determine the amount of 
methane fuel (pc = 4600 kPa and Tc = 191 K) that can be held in a 
3-m3 tank at a temperature of −40°C with a pressure of 65,000 kPa. 
Use a root-locating method of your choice to  calculate υ and then 
determine the mass of methane contained in the tank.
8.8 The volume V of liquid in a hollow horizontal cylinder of 
 radius r and length L is related to the depth of the liquid h by

V = [r2cos−1 
(

r − h

r ) − (r − h) √2rh − h2
]L

Determine h given r = 2 m, L = 5 m, and V = 8 m3. Note that if you 
are using a programming language or software tool that is not rich in 
trigonometric functions, the arccosine can be computed with

cos−1  x =
π

2
− tan−1

(
x

√1 − x2)

8.9 The volume V of liquid in a spherical tank of radius r is related 
to the depth h of the liquid by

V =
πh2(3r − h)

3

Determine h given r = 0.9 m and V = 0.6 m3.
8.10 For the spherical tank in Prob. 8.9, it is possible to develop 
the following two fixed-point formulas:

h = √
h3 + (3V∕π)

3r
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substrate concentration (mgC∕m3). Use a root-location technique to 
 determine the steady-state concentrations of the substrate, bacteria, 
and total organic carbon (X + S) for a residence time of τw = 20 h. 
Employ the following parameters for the simulation: X(0) = 
100 gC∕m3, S(0) = 0, kg,max = 0.2∕h, Ks = 150 gC∕m3, kd = kr = 
0.01∕h, Y = 0.5 gCcell∕gCsubstrate, V = 0.01 m3, and Sin = 1000 gC∕m3. 
Verify your results by substituting them into the steady-state ver-
sions of the mass balance equations.
8.15 Enzymes are proteins produced by living organisms ranging 
from bacteria to humans to catalyze or accelerate biochemical reac-
tions. The molecules upon which enzymes may act are called sub-
strates. For example, the enzyme amylase, found in saliva and 
pancreatic fluid, converts the substrate starch into simple sugars. 
The rate of the conversion when dealing with a single substrate can 
be formulated by the Michaelis-Menten model, 

dS

dt
= − 

Vmax 
S

Km + S

where S = substrate concentration (mM), t = time (min), Vmax = the 
maximum conversion rate (mM∕min), and Km = the Michaelis con-
stant, or half-saturation constant (mM). As the name implies, Km 
equals the substrate concentration at which the rate is half the max-
imum rate (Fig. P8.15).

The above equation can be integrated to yield an implicit non-
linear equation for substrate concentration as a function of time.

Km ln (
S

S0) − (S0 − S) = −Vmax t

where ε = the roughness (m) and Re = the Reynolds number,

Re =
ρVD

μ

where µ = dynamic viscosity (N s∕m2).
(a) Determine Δp for a 0.2-m-long horizontal stretch of smooth 

drawn tubing given ρ = 1.23 kg∕m3, μ = 1.79 × 10−5 N s∕m2, 
D = 0.006 m, V = 45 m∕s, and ε = 0.0014 mm. Use a numerical 
method to determine the friction factor. Note that for smooth 
pipes with Re < 105, a good initial guess can be obtained using 
the Blasius formula, f = 0.316∕Re0.25.

(b) Repeat the computation but for a rougher commercial steel 
pipe (ε = 0.045 mm).

8.14 Figure P8.14 shows the kinetic interactions governing the 
concentrations of a bacteria culture and their nutrition source (sub-
strate) in a continuously stirred flow-through bioreactor.

The mass balances for the bacteria biomass, X (gC∕m3), and the 
substrate concentration, S (gC∕m3), can be written as

dX

dt
 =(Ykg,max 

S

Ks + S
− kd − kr −

1
τw

)X

dS

dt
= − kg,max 

S

Ks + S
 X + kd X +

1
τw

 (Sin − S)

where t = time (h), kg,max = maximum bacterial growth rate (d−1), 
Ks = half-saturation constant (gC∕m3), kd = death rate (d−1),  
kr = respiration rate (d−1), Q = flow rate (m3∕h), V = reactor vol-
ume (m3), Y = yield coefficient (gCcell∕gCsubstrate), and Sin = inflow 

Sin

krX

kgX

kgX

kgX

kdX
Bacteria

X
Substrate

S
1
Y

Y – 1
Y

Y

FIGURE P8.14 
Continuously stirred flow-through bioreactor to grow a bacte-
rial culture.

FIGURE P8.15
Michaelis-Menten curve for an enzyme reaction depicting the 
relation between the reaction rate (−dS ∕dt) and the substrate 
concentration (S).

dS
dt

–

Vmax

0.5Vmax

Sm

S
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FIGURE P8.19
(a) Forces acting on a section AB of a flexible hanging cable. The load is 
uniform along the cable (but not uniform per the horizontal distance x). (b) A 
free-body diagram of section AB.
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discharge.) Determine your answer to a 1% error. Note that 
levels of oxygen below 5 mg∕L are generally harmful to game-
fish such as trout and salmon.

(b) Determine the distance downstream at which the oxygen is at a 
minimum. What is the concentration at that location?

8.18 The concentration of pollutant bacteria c in a lake decreases 
according to

c = 75e−1.5t + 20e−0.075t

Determine the time required for the bacteria concentration to be 
reduced to 9 using (a) the graphical method and (b) the 
 Newton-Raphson method with an initial guess of t = 6 and a 
 stopping criterion of 0.5%. Check your result.
8.19 A catenary cable is one that is hung between two points not in 
the same vertical line. As depicted in Fig. P8.19a, it is subject to no 
loads other than its own weight. Thus, its weight (N∕m) acts as a 
uniform load per unit length along the cable. A free-body diagram 
of a section AB is depicted in Fig. P8.19b, where TA and TB are the 
tension forces at the ends. Based on horizontal and vertical force 
balances, the following differential equation model of the cable can 
be derived:

d2y

dx2 =
w

TA
√1 + (

dy

dx)
2

(a) Use a root-location method to determine the substrate concen-
tration after t = 8 min given S0 = 2.5 mM, Km = 1 mM, and  
Vmax = 0.5 mM/min.

(b) Using the same parameters as in (a), generate a plot of sub-
strate concentration versus time for t = 0 to 10 min.

Civil and Environmental Engineering
8.16 In structural engineering, the secant formula defines the force 
per unit area, P∕A, that causes a maximum stress σm in a column of 
given slenderness ratio L∕k:

P

A
=

σm

1 + (ec∕k2)sec [0.5√P∕(EA) (L∕k)]

where ec∕k2 = the eccentricity ratio and E = the modulus of elasticity. 
If for a steel beam, E = 200,000 MPa, ec∕k2 = 0.4, and σm = 250 MPa, 
compute P∕A for L∕k = 50. Recall that sec x = 1∕cos x.
8.17 In environmental engineering (a specialty area in civil 
 engineering), the following equation can be used to compute the 
oxygen level c (mg∕L) in a river downstream from a sewage dis-
charge:

c = 10 − 20(e−0.15x − e−0.5x)
where x is the distance downstream in kilometers.
(a) Determine the distance downstream where the oxygen level 

first falls to a reading of 5 mg∕L. (Hint: It is within 2 km of the 
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where k = 0.7 and ω = 4.
(a) Use the graphical method to make an initial estimate of the 

time required for the displacement to decrease to 4.
(b) Use the Newton-Raphson method to determine the root to  

εs = 0.01%.
(c) Use the secant method to determine the root to εs = 0.01%.
8.22 The Manning equation can be written for a rectangular open 
channel as

Q =
√S(BH)5∕3

n(B + 2H)2∕3

where Q = flow (m3∕s), S = slope (m∕m), H = depth (m), and 
n  = the Manning roughness coefficient. Develop a fixed-point 
iteration scheme to solve this equation for H given Q = 5,  
S = 0.0002, B = 20, and n = 0.03. Prove that your scheme con-
verges for all initial guesses greater than or equal to zero.
8.23 In ocean engineering, the equation for a reflected standing 
wave in a harbor is given by λ = 16, t = 12, υ = 48:

h = h0[sin (
2πx

λ )cos(
2πtυ

λ ) + e−x

]

Solve for the lowest positive value of x if h = 0.4h0.
8.24 You buy a $25,000 piece of equipment for nothing down and 
$5,500 per year for 6 years. What interest rate are you paying? The 
formula relating present worth P, annual payments A, number of 
years n, and interest rate i is

A = P 

i(1 + i)n

(1 + i)n − 1

8.25 Many fields of engineering require accurate population esti-
mates. For example, transportation engineers might find it neces-
sary to determine separately the population growth trends of a city 
and an adjacent suburb. The population of the urban area is declin-
ing with time according to

Pu(t) = Pu,maxe
−kut + Pu,min

while the suburban population is growing, as in

Ps(t) =
Ps,max

1 + [Ps,max∕P0 − 1]e−kst

where Pu,max, ku, Ps,max, P0, and ks = empirically derived parameters. 
Determine the time and corresponding values of Pu(t) and Ps(t) 
when the suburbs are 20% larger than the city. The parameter 
values are Pu,max = 75,000, ku = 0.045/yr, Pu,min = 100,000 people, 
Ps,max = 300,000 people, P0 = 10,000 people, ks = 0.08∕yr. To ob-
tain your solutions, use (a) graphical, (b) false-position, and 
(c) modified secant methods.

Calculus can be employed to solve this equation for the height y of 
the cable as a function of distance x,

y =
TA

w
 cosh(

w

TA

x) + y0 −
TA

w

where the hyperbolic cosine can be computed by

cosh x =
1
2

 (ex + e−x)

Use a numerical method to calculate a value for the parameter TA 
given values for the parameters w = 12 and y0 = 6, such that the 
cable has a height of y = 15 at x = 50.
8.20 Figure P8.20a shows a uniform beam subject to a linearly in-
creasing distributed load. The equation for the resulting elastic 
curve is (see Fig. P8.20b)

y =
w0

120EIL
 (−x5 + 2L2x3 − L4x) (P8.20)

Use bisection to determine the point of maximum deflection (that is, 
the value of x where dy/dx = 0). Then substitute this value into  
Eq. (P8.20) to determine the value of the maximum deflection. Use 
the following parameter values in your computation: L = 600 cm, 
E = 50,000 kN∕cm2, I = 30,000 cm4, and w0 = 2.5 kN∕cm.
8.21 The displacement of a structure is defined by the following 
equation for a damped oscillation:

y = 9e−kt cos ωt

w0

L

(a)

(x = 0, y = 0)
(x = L, y = 0)

x

(b)

FIGURE P8.20
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(b) How would you use a root-location technique to determine the 
location of the minimum displacement?

8.30 Although we did not mention it in Sec. 8.2, Eq. (8.10) is actu-
ally an expression of electroneutrality, that is, that positive and 
negative charges must balance. This can be seen more clearly by 
expressing the equation as

[H+] = [HCO−
3 ] + 2[CO2−

3 ] + [OH− ]

In other words, the positive charges must equal the negative 
charges. Thus, when you compute the pH of a natural water body 
such as a lake, you must account for other ions that may be present. 
For the case where these ions originate from nonreactive salts, the 
net negative minus the positive charges due to these ions are 
lumped together in a quantity called alkalinity, and the equation is 
reformulated as

Alk + [H+] = [HCO−
3 ] + 2[CO2−

3 ] + [OH− ] (P8.30)

where Alk = alkalinity (eq∕L). For example, the alkalinity of 
Lake Superior is approximately 0.4 × 10−3 eq∕L. Perform the 
same calculations as in Sec. 8.2 to compute the pH of Lake Supe-
rior in 2008. Assume that just like the raindrops, the lake is in 
equilibrium with atmospheric CO2, but account for the alkalinity 
as in Eq. (P8.30).
8.31 At sea level, the saturation vapor pressure of fresh water in air 
is a function of the air temperature, Tair (°C),

es = 4.596e17.27Tair∕237.3+Tair

If the vapor pressure exceeds this value, condensation will convert 
the vapor into liquid, producing phenomena such as fog, clouds, and 
dew. Of course, the water content of the air is often below saturation 
as can be calculated with 

ea = 4.596e17.27Tdew∕237.3+Tdew

where Tdew = the dew-point temperature, which is the temperature 
to which a parcel of air must be cooled at constant pressure 
for water vapor to condense into liquid water, hence the name 

8.26 A simply supported beam is loaded as shown in Fig. P8.26. 
Using singularity functions, the shear along the beam can be 
 expressed by the equation:

V(x) = 20[⟨x − 0⟩1 − ⟨x − 5⟩1] − 15⟨x − 8⟩0 − 57

By definition, the singularity function can be expressed as follows:

⟨x − a⟩n = {
(x − a)n when x > a

0 when x  ≤  a}

Use a numerical method to find the point(s) where the shear equals 
zero.
8.27 For the simply supported beam from Prob. 8.26, the moment 
along the beam, M(x), is given by:

 M(x) = −10[⟨x − 0⟩2 − ⟨x − 5⟩2] + 15⟨x − 8⟩1

 + 150⟨x − 7⟩0 + 57x

Use a numerical method to find the point(s) where the moment 
equals zero.
8.28 For the simply supported beam from Prob. 8.26, the slope 
along the beam is given by:

duy

dx
 (x) =

−10
3

[⟨x − 0⟩3 − ⟨x − 5⟩3] +
15
2

 ⟨x − 8⟩2

+ 150 ⟨x − 7⟩1 +
57
2

 x2 − 238.25

Use a numerical method to find the point(s) where the slope equals 
zero.
8.29 For the simply supported beam from Prob. 8.26, the displace-
ment along the beam is given by:

uy(x) =
−5
6

 [⟨x − 0⟩4 − ⟨x − 5⟩4] +
15
6

  ⟨x − 8⟩3

+ 75 ⟨x − 7⟩2 +
57
6

 x3 − 238.25x

(a) Find the point(s) where the displacement equals zero.

FIGURE P8.26

300 kN/m
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Electrical Engineering
8.33 Perform the same computation as in Sec. 8.3, but determine 
the value of C required for the circuit to dissipate to 1% of its origi-
nal value in t = 0.05 s, given R = 280 Ω and L = 7.5 H. Use  
(a) a graphical approach, (b) bisection, and (c) root-location soft-
ware such as Excel Solver, the MATLAB function fzero, or the 
Mathcad function root.
8.34 An oscillating current in an electric circuit is described by 
i = 9e−t cos (2πt), where t is in seconds. Determine the lowest 
value of t such that i = 3.5.
8.35 The resistivity ρ of doped silicon is based on the charge q on 
an electron, the electron density n, and the electron mobility µ. The 
electron density is given in terms of the doping density N and the 
intrinsic carrier density ni. The electron mobility is described by 
the temperature T, the reference temperature T0, and the reference 
 mobility µ0. The equations required to compute the resistivity are

ρ =
1

qnμ

where

n =
1
2

 (N + √N2 + 4n2
i )  and  μ = μ0 (

T

T0)
−2.42

Determine N, given T0 = 300 K, T = 1000 K, µ0 = 1350 cm2 (V s)−1, 
qe = 1.602 × 10−19 C, ni = 6.21 × 109 cm−3, and a desired ρ = 6.5 × 
106 V s cm∕C. Use (a) bisection and (b) the modified  secant method.
8.36 A total charge Q is uniformly distributed around a ring-
shaped conductor with radius a. A charge q is located at a distance 
x from the center of the ring (Fig. P8.36). The force exerted on the 
charge by the ring is given by

F =
1

4πe0
 

qQx

(x2 + a2)3∕2

“dew point.” The ratio of these two formulas is called the relative 
humidity,

Rh =
ea

es
× 100%

Develop a function to compute the dew-point temperature given the 
air temperature and the relative humidity. Test your function for 
Tair = 25°C and Rh = 50%.
8.32 The heat flux across a pond’s surface, J (W∕m2), which de-
pends on a combination of five heat-transfer processes (Fig. P8.32), 
can be computed as:

J = Jsn + 0.97 (0.6 + 0.031 √eair ) σ (Tair + 273)4 − 0.97σ (Tw + 273)4

solar      atmospheric radiation      back radiation
− 0.47 f (Uw)(Tw − Tair) − f (Uw)(es − eair)

convection      evaporation

where Jsn = net solar shortwave radiation at the water surface 
(W∕m2), eair = the air vapor pressure (mm Hg), σ = the Stefan-
Boltzmann constant = 11.7 × 10−8 cal∕(cm2 d K4), Tair = air tem-
perature (°C), Tw = the pond’s water temperature (°C), f(Uw) = the 
dependence of the transfer on wind velocity over the water surface, 
Uw = the wind speed above the water surface (m∕s), and es = the 
saturation vapor pressure at the water surface (mmHg). The satura-
tion vapor pressure is computed as

eair = 4.596e17.27Tdew∕237.3+Tdew (P8.32.1)

es = 4.596e17.27Tw∕237.3+Tw (P8.32.2)

f(Uw) = 19.0 + 0.95U2
w (P8.32.3)

where Tdew = the dew-point temperature (°C). Determine the water 
temperature and evaporation flux at steady state (J = 0) given the 
following values: Jsn = 300 cal∕cm2∕d; Tair = 25°C; Tdew = 16.7°C; 
and Uw = 3 m∕s.

Solar
shortwave
radiation

Water
longwave
radiation

Conduction
and

convection

Evaporation
and

condensation

Radiation terms Nonradiation terms

Net absorbed radiation Water-dependent terms

Atmospheric
longwave
radiation

Air-water
Interface

FIGURE P8.32
Components of heat exchange across the surface of a lake.
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surface temperature (K), and h = convective heat transfer coeffi-
cient (W∕(m2 K)). Use a steady-state heat balance to compute the 
chip’s surface temperature given the following parameter values: 
ε = 0.9, Ta,∞ = 293.15 K, and h = 50 (W∕(m2 K)).

Mechanical and Aerospace Engineering
8.39 Beyond the Colebrook equation, other relationships, such as 
the Fanning friction factor f, are available to estimate friction in 
pipes. The Fanning friction factor is dependent on a number of pa-
rameters related to the size of the pipe and the fluid, which can all be 
represented by another dimensionless quantity, the Reynolds number 
Re. A formula that predicts f given Re is the von Karman equation,

1
√f 

= 4 log10(Re√f ) − 0.4

Typical values for the Reynolds number for turbulent flow are 10,000 
to 500,000 and for the Fanning friction factor are 0.001 to 0.01. De-
velop a function that uses bisection to solve for f given a user-supplied 
value of Re between 2500 and 1,000,000. Design the function so that 
it ensures that the absolute error in the result is Ea,d < 0.000005.
8.40 Real mechanical systems may involve the deflection of nonlin-
ear springs. In Fig. P8.40, a mass m is released a distance h above a 
nonlinear spring. The resistance force F of the spring is given by

F = −(k1d + k2d 
3∕2) 

where e0 = 8.854 × 10−12 C2∕(N m2). Find the distance x where 
the force is 1.2 N if q and Q are 2.25 × 10−5 C for a ring with a 
radius of 0.9 m.
8.37 Figure P8.37 shows a circuit with a resistor, an inductor, and 
a capacitor in parallel. Kirchhoff’s rules can be used to express the 
impedance of the system as

1
Z

= √
1
R2 + (ωC −

1
ωL)

2

where Z = impedance (Ω) and ω = the angular frequency. Find the 
ω that results in an impedance of 75 Ω using both bisection and 
false position with initial guesses of 1 and 1000 for the following 
parameters: R = 225 Ω, C = 0.6 × 10−6 F, and L = 0.5 H. Determine 
how many iterations of each technique are necessary to determine 
the answer to εs = 0.1%. Use the graphical approach to explain any 
difficulties that arise.

FIGURE P8.36
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FIGURE P8.37

R L C∼
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d
h + d

Jconv

Jrad

FIGURE P8.38
An embedded silicon chip insulated on all sides except its top 
face, where it exchanges heat with the surrounding air via ra-
diation and convection.

8.38 A silicon chip measuring 5 × 5 × 1 mm is embedded in a 
substrate (Fig. P8.38). At steady state, the chip generates 0.03 W of 
waste heat. Although the bottom and sides are insulated, the top 
surface is exposed to air flow and subject to both radiation and 
convective heat transfer. The radiation heat flux, Jrad (W∕m2), can 
be determined via the Stefan-Boltzmann law,

Jrad = εσ(T 4
a,∞ − T 4

a,s)

and the convective heat flux, Jconv (W∕m2), by

Jconv = h(Ta,∞ − Ta,s)

where ε = emissivity, σ = Stefan Boltzmann constant [= 5.67 × 
10−8 W∕(m2 K4)], Ta,∞ = ambient temperature (K), Ta,s = the chip’s 
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Conservation of energy can be used to show that

0 =
2k2d 

5∕2

5
+

1
2

 k1d
2 − mgd − mgh

Solve for d given the following parameter values: k1 = 40,000 g∕s2, 
k2 = 40 g∕(s2 m0.5), m = 95 g, g = 9.81 m∕s2, and h = 0.43 m.
8.41 Mechanical engineers, as well as most other engineers, use 
thermodynamics extensively in their work. The following polyno-
mial can be used to relate the zero-pressure specific heat of dry air, 
cp [kJ∕(kg K)], to temperature (K):

cp = 0.99403 + 1.671 × 10−4T + 9.7215 × 10−8T 
2

−9.5838 × 10−11T 
3 + 1.9520 × 10−14T 

4

Determine the temperature that corresponds to a specific heat of 
1.2 kJ∕(kg K).
8.42 Aerospace engineers sometimes compute the trajectories of pro-
jectiles like rockets. A related problem deals with the trajectory of a 
thrown ball. The trajectory of a ball is defined by the (x, y)  coordinates, 
as displayed in Fig. P8.42. The trajectory can be  modeled as

y = (tan θ0)x −
g

2υ2
0 cos2 θ0

 x
2 + y0

Find the appropriate initial angle θ0 if the initial velocity υ0 = 20 m∕s 
and the distance to the catcher x is 40 m. Note that the ball leaves the 
thrower’s hand at an elevation of y0 = 1.8 m and the catcher receives 
it at 1 m. Express the final result in degrees. Use a value of 9.81 m∕s2 
for g and employ the graphical method to  develop your initial guesses.
8.43 The general form for a three-dimensional stress field is 
given by

[
σxx σxy σxz

σxy σyy σyz

σxz σyz σzz
]

where the diagonal terms represent tensile or compressive stresses 
and the off-diagonal terms represent shear stresses. A stress field 
(in MPa) is given by

[
10 14 25
14 7 15
25 15 16]

To solve for the principal stresses, it is necessary to construct the 
following matrix (again in MPa):

[
10 − σ 14 25

14 7 − σ 15
25 15 16 − σ]

σ1, σ2, and σ3 can be found from the equation

σ3 − Iσ2 + IIσ − III = 0

where

I = σxx + σyy + σzz

II = σxxσyy + σxxσzz + σyyσzz − σ2
xy − σ2

xz − σ2
yz

III = σxxσyyσzz − σxxσ
2
yz − σyyσ

2
xz − σzzσ

2
xy + 2σxyσxzσyz

I, II, and III are known as the stress invariants. Find σ1, σ2, and σ3 
using a root-finding technique.
8.44 The upward velocity of a rocket can be computed with the 
following formula:

υ = u ln 

m0

m0 − qt
− gt

where υ = upward velocity, u = the velocity at which fuel is expelled 
relative to the rocket, m0 = the initial mass of the rocket at time t = 
0, q = the fuel consumption rate, and g = the downward acceleration of 
gravity (assumed constant = 9.81 m∕s2). If u = 2200 m∕s, m0 = 
160,000 kg, and q = 2680 kg∕s, compute the time at which υ =  
1000 m∕s. (Hint: t is somewhere between 10 and 50 s.) Determine 
your result so that it is within 1% of the true value. Check your answer.
8.45 The phase angle ϕ between the forced vibration caused by the 
rough road and the motion of the car is given by

tan ϕ =
2(c∕cc) (ω∕p)
1 − (ω∕p)2

As a mechanical engineer, you would like to know if there are cases 
where ϕ = ω∕2 − 1. Use the other parameters from the section to 
set up the equation as a root-location problem and solve for ω.
8.46 Two fluids at different temperatures enter a mixer and 
come out at the same temperature. The heat capacity of fluid A 
is given by:

cp = 3.381 + 1.804 × 10−2T − 4.300 × 10−6T 
2

FIGURE P8.42
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the space is evacuated). Heat transfer between the middle layer 
and outside shell q2 is by convection in a small space. Heat trans-
fer from the outside shell to the air q3 is by natural convection. 
The heat flux from each region of the thermos must be equal—
that is, q1 = q2 = q3. Find the temperatures T1 and T2 at steady 
state. T0 is 500°C and T3 = 25°C.

q1 = 10−9[(T0 + 273)4 − (T1 + 273)4]

q2 = 4(T1 − T2)

q3 = 1.3(T2 − T3)4∕3

8.49 Figure P8.49 shows three reservoirs connected by circular pipes. 
The pipes, which are made of asphalt-dipped cast iron (ε = 0.0012 m), 
have the following characteristics:

Pipe 1 2 3
Length, m 1800 500 1400
Diameter, m 0.4 0.25 0.2
Flow, m3/s ? 0.1 ?

If the water surface elevations in Reservoirs A and C are 200 and 
172.5 m, respectively, determine the elevation in Reservoir B and 
the flows in pipes 1 and 3. Note that the kinematic viscosity of 
water is 1 × 10−6 m2∕s and use the Colebrook equation to deter-
mine the friction factor (recall Prob. 8.13).

and the heat capacity of fluid B is given by:

cp = 8.592 + 1.290 × 10−1T − 4.078 × 10−5T 
2

where cp is in units of cal∕mol K, and T is in units of K. Note that

ΔH = ∫T2

T1

cp  
dT

A enters the mixer at 400°C. B enters the mixer at 600°C. There is 
twice as much A as there is B entering the mixer. At what tempera-
ture do the two fluids exit the mixer?
8.47 A compressor is operating at compression ratio Rc of 3.0 (the 
pressure of gas at the outlet is three times greater than the pressure 
of the gas at the inlet). The power requirement of the compressor 
Hp can be determined from the equation below. Assuming that 
the power requirement of the compressor is exactly equal to 
zRT1∕MW, find the polytropic efficiency n of the compressor. The 
parameter z is compressibility of the gas under operating condi-
tions of the compressor, R is the gas constant, T1 is the temperature 
of the gas at the compressor inlet, and MW is the molecular weight 
of the gas.

HP =
z RT1

MW
 

n

n − 1
 (R(n−1)∕n

c − 1)

8.48 In the thermos shown in Fig. P8.48, the innermost compart-
ment is separated from the middle container by a vacuum. There 
is a final shell around the thermos. This final shell is separated 
from the middle layer by a thin layer of air. The outside of the 
 final shell comes in contact with room air. Heat transfer from the 
inner compartment to the next layer q1 is by radiation only (since 

FIGURE P8.48
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8.50 A fluid is pumped into the network of pipes shown in Fig. 
P8.50. At steady state, the following flow balances must hold,

Q1 = Q2 + Q3

Q3 = Q4 + Q5

Q5 = Q6 + Q7
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the orbiter with a full payload is WS = 0.23 × 106 lb. The combined 
thrust of the two solid rocket boosters is TB = 5.30 × 106 lb. The 
combined thrust of the three liquid fuel orbiter engines is TS = 
1.125 × 106 lb.

At liftoff, the orbiter engine thrust is directed at angle θ to 
make the resultant moment acting on the entire craft assembly 

where Qi = flow in pipe i (m3∕s). In addition, the pressure drops 
around the three right-hand loops must equal zero. The pressure 
drop in each circular pipe length can be computed with

ΔP =
16
π2  

f Lρ

2 D5 Q2

where ΔP = the pressure drop (Pa), f = the friction factor (dimen-
sionless), L = the pipe length (m), ρ = the fluid density (kg∕m3), 
and D = pipe diameter (m). Write a program (or develop an algo-
rithm in a mathematics software package) that will allow you to 
compute the flow in every pipe length given that Q1 = 1 m3∕s and 
ρ = 1.23 kg∕m3. All the pipes have D = 500 mm and f = 0.005. The 
pipe lengths are: L3 = L5 = L8 = L9 = 2 m; L2 = L4 = L6 = 4 m; and L7 
= 8 m.
8.51 Repeat Prob. 8.50, but incorporate the fact that the friction 
factor can be computed with the von Karman equation,

1
√f 

= 4 log10(Re√f ) − 0.4

where Re = the Reynolds number

Re =
ρVD

μ

where V = the velocity of the fluid in the pipe (m∕s) and µ = 
 dynamic viscosity (N s∕m2). Note that for a circular pipe V = 
4Q∕π D2. Also, assume that the fluid has a viscosity of 1.79 × 
10−5 N s∕m2.
8.52 The space shuttle, at liftoff from the launch pad, has four 
forces acting on it, which are shown on the free-body diagram 
(Fig. P8.52). The combined weight of the two solid rocket boost-
ers and external fuel tank is WB = 1.663 × 106 lb. The weight of 

FIGURE P8.52
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where CD = the drag coefficient, which depends on the Reynolds 
number as in

CD =
24
Re

+
3

√Re
+ 0.34 (P8.53.4)

(a) Combine Eqs. (P8.53.2), (P8.53.3), and (P8.53.4) to express 
the determination of υ as a roots of equations problem. That is, 
express the combined formula in the format f(υ) = 0.

(b) Use the modified secant method with δ = 10−3 and εS = 0.05% to 
determine υ for a spherical iron particle settling in water, where 
d = 200 µm, ρ = 1 g∕cm3, ρs = 7.874 g∕cm3, and µ = 0.014  
g∕(cm s). Employ Eq. (P8.53.2) to generate your initial guess.

(c) Based on the result of (b), compute the Reynolds number and 
the drag coefficient, and use the latter to confirm that the flow 
regime is not laminar.

(d) Develop a fixed-point iteration solution for the conditions 
 outlined in (b).

(e) Use a graphical approach to illustrate that the formulation 
 developed in (d) will converge for any positive guess.

8.54 The paths of two rockets in the x-y plane can be described by 
the following parametric equations

Rocket 1: Rocket 2:
x1 = 200t x2 = 800 − 100(cos α)t
y1 = 80t − 16t2 y2 = 50(sin α)t − 0.8t2

where t = time and α = the launch angle of the second rocket. As 
depicted in Fig. P8.54, the two paths intersect but the rockets will 
only collide if they simultaneously arrive at the same point. Deter-
mine the value of t and α so that this occurs.
8.55 Bernoulli’s equation can be used to relate the pressure, veloc-
ity, and height of any two points in a steady-streamline, constant 
density flowing fluid. As depicted in Fig. P8.55, suppose we have 

(external tank, solid rocket boosters, and orbiter) equal to zero. 
With the resultant moment equal to zero, the craft will not rotate 
about its mass center G at liftoff. With these forces, the craft will 
have a resultant force with components in both the vertical and 
horizontal direction. The vertical resultant force component is 
what allows the craft to lift off from the launch pad and fly verti-
cally. The horizontal resultant force component causes the craft to 
fly horizontally. The resultant moment acting on the craft will be 
zero when θ is adjusted to the proper value. If this angle is not 
adjusted properly, and there is some resultant moment acting on 
the craft, the craft will tend to rotate about its mass center.
(a) Resolve the orbiter thrust TS into horizontal and vertical com-

ponents, and then sum moments about point G, the craft’s 
mass center. Set the resulting moment equation equal to zero. 
This equation can now be solved for the value of θ required for 
liftoff.

(b) Derive an equation for the resultant moment acting on the craft 
in terms of the angle θ. Plot the resultant moment as a function 
of the angle θ over a range of −5 radians to +5 radians.

(c) Write a computer program to solve for the angle θ using 
 Newton’s method to find the root of the resultant moment equa-
tion. Make an initial first guess at the root of interest using the 
plot. Terminate your iterations when the value of θ has better 
than five significant figures.

(d) Repeat the program for the minimum payload weight of the 
orbiter: WS = 195,000 lb.

8.53 Determining the velocity of particles settling through fluids is 
of great importance of many areas of engineering and science. Such 
calculations depend on the flow regime as represented by the 
 dimensionless Reynolds number,

Re =
ρdυ

μ
 (P8.53.1)

where ρ = the fluid’s density (kg/m3), d = the particle diameter 
(m), υ = the particle’s settling velocity (m∕s), and µ = the fluid’s 
dynamic viscosity (N s∕m2). Under laminar conditions (Re < 0.1), 
the settling velocity of a spherical particle can be computed with 
the following formula based on Stokes law,

υ =
g

18(
ρs − ρ

μ ) d2 (P8.53.2)

where g = the gravitational constant (= 9.81 m∕s2) and ρs = the 
particle’s density (kg∕m3). For turbulent conditions (i.e., higher 
Reynolds numbers), an alternative approach can be used based on 
the following formula:

υ = √
4g(ρs − ρ)d

3CDρ
 (P8.53.3)
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a liquid (density, ρ = 1,264 kg/m3) pumped through a pipeline from 
points 1 to 2 with a pump adding 18 kW into the flow between the 
two points. Given D1 = 60 cm, p1 = 310 kPa, D2 = 30 cm, p2 = 
350 kPa, z1 = 0 and z2 = –100 cm, determine Q assuming minimal 
friction losses. According to Bernoulli’s equation

(
p1

ρg
+ z1 +

V2
1

2g) + hp = (
p2

ρg
+ z2 +

V2
2

2g)

where g = the gravitational constant (≅ 9.81 m/s2), and hp = the 
energy head added to the flow by the pump (m). Note that the con-
tinuity equation, Q = AV, holds in each constant diameter pipe sec-
tion, and the pump’s power, P, is related to flow by

P = ρgQhp

p2
Q

Q p1

D1

D2

Δz

P

1

2

FIGURE P8.55
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 PT2.4 TRADE-OFFS
Table PT2.3 provides a summary of the trade-offs involved in solving for roots of alge-
braic and transcendental equations. Although graphical methods are time-consuming, 
they provide insight into the behavior of the function and are useful in identifying initial 
guesses and potential problems such as multiple roots. Therefore, if time permits, a quick 
sketch (or better yet, a computerized graph) can yield valuable information regarding the 
behavior of the function.
 The numerical methods themselves are divided into two general categories: bracket-
ing and open methods. The former requires two initial guesses that are on either side of 
a root. This “bracketing” is maintained as the solution proceeds, and thus, these tech-
niques are always convergent. However, a price is paid for this property in that the rate 
of convergence is relatively slow.

TABLE PT2.3  Comparison of the characteristics of alternative methods for finding roots of algebraic and  
transcendental equations. The comparisons are based on general experience and do not account for the 
behavior of specific functions.

Method Type Guesses Convergence Stability Programming Comments

Direct Analytical — — —
Graphical Visual — — — — Imprecise
Bisection Bracketing 2 Slow Always Easy
False-position Bracketing 2 Slow/medium Always Easy
Modified FP Bracketing 2 Medium Always Easy
Fixed-point Open   1 Slow Possibly divergent Easy 
 iteration
Newton-Raphson Open   1 Fast Possibly divergent Easy Requires 
       evaluation of f ′(x)
Modified Newton- Open   1 Fast (multiple), Possibly divergent Easy Requires 
 Raphson   medium (single)    evaluation of 
       f ′(x) and f″(x)
Secant Open 2 Medium/fast Possibly divergent Easy Initial guesses do  
       not have to  
       bracket the root
Modified secant Open   1 Medium/fast Possibly divergent Easy
Brent Hybrid   1 or 2 Medium Always (for Moderate Robust 
     2 guesses)
Müller Polynomials 2 Medium/fast Possibly divergent Moderate
Bairstow Polynomials 2 Fast Possibly divergent Moderate

EPILOGUE: PART TWO
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 Open techniques differ from bracketing methods in that they use information at a 
single point (or two values that need not bracket the root to extrapolate to a new root 
estimate). This property is a double-edged sword. Although use of an open technique 
generally leads to quicker convergence, it also allows the possibility that the solution may 
diverge. In general, the convergence of open techniques is partially dependent on the 
quality of the initial guess and the nature of the function. The closer the guess is to the 
true root, the more likely the methods will converge.
 Of the open techniques, the standard Newton-Raphson method is often used because 
of its property of quadratic convergence. However, its major shortcoming is that it requires 
that the derivative of the function be obtained analytically. For some functions this is 
impractical. In these cases, the secant method, which employs a finite-difference repre-
sentation of the derivative, provides a viable alternative. Because of the finite-difference 
approximation, the rate of convergence of the secant method is initially slower than for 
the Newton-Raphson method. However, as the root estimate is refined, the difference 
 approximation becomes a better representation of the true derivative, and convergence 
accelerates rapidly. The modified Newton-Raphson technique can be used to attain rapid 
convergence for multiple roots. However, this technique requires an analytical expression 
for both the first and second derivatives.
 Of particular interest are hybrid methods that combine the reliability of bracketing 
with the speed of open methods. Brent’s method does this by combining bisection with 
several open methods. All the methods are easy to moderate to program on computers 
and require minimal time to determine a single root. On this basis, you might conclude 
that simple methods such as bisection would be good enough for practical purposes. 
This would be true if you were exclusively interested in determining the root of an 
equation once. However, there are many cases in engineering where numerous root 
locations are required and where speed becomes important. For these cases, slow meth-
ods are very time-consuming and, hence, costly. On the other hand, the fast open meth-
ods may diverge, and the accompanying delays can also be costly. Some computer 
algorithms attempt to capitalize on the strong points of both classes of techniques by 
initially employing a bracketing method to approach the root, then switching to an open 
method to rapidly refine the estimate. Whether a single approach or a combination is 
used, the trade-offs between convergence and speed are at the heart of the choice of a 
root-location technique.

 PT2.5 IMPORTANT RELATIONSHIPS AND FORMULAS
Table PT2.4 summarizes important information that was presented in Part Two. This 
table can be consulted to quickly access important relationships and formulas.

 PT2.6 ADVANCED METHODS AND ADDITIONAL REFERENCES
The methods in this text have focused on determining a single real root of an algebraic 
or transcendental equation based on foreknowledge of its approximate location. In ad-
dition, we have also described methods expressly designed to determine both the real 
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and complex roots of polynomials. Additional references on the subject are Ralston and 
Rabinowitz (1978) and Carnahan, Luther, and Wilkes (1969).
 In addition to Müller’s and Bairstow’s methods, several techniques are available to 
determine all the roots of polynomials. In particular, the quotient difference (QD) algo-
rithm (Henrici 1964; Gerald and Wheatley 2004) determines all roots without initial 
guesses. Ralston and Rabinowitz (1978) and Carnahan, Luther, and Wilkes (1969) 
 contain discussions of this method as well as of other techniques for locating roots of 

TABLE PT2.4 Summary of important information presented in Part Two.

  Graphical Errors and 
Method Formulation Interpretation Stopping Criteria

  Bracketing methods:

Bisection xr =
xl + xu

2
  Stopping criterion:

 If f (xl)f (xr) < 0, xu = xr  ∣ x new
r − x old

r

x new
r

∣ 100% ≤ ϵs 

  
f (xl)f (xr) > 0,  xl = xr

False position xr = xu −
f(xu) (xl − xu)
f(xl) − f(xu)

  Stopping criterion:

 If f (xl)f (xr) < 0, xu = xr  ∣ x new
r − x old

r

x new
r

∣ 100% ≤ ϵs

  
f (xl)f (xr) > 0,  xl = xr

Newton-Raphson   Stopping criterion:

 xi+ 1 = xi −
f(xi)
f ′ (xi)

  ∣ xi+ 1 − xi
xi+ 1

∣ 100% ≤ ϵs

   Error: Ei+1 = O(E2
i )

Secant   Stopping criterion:

 xi+1 = xi −
f(xi) (xi−1 − xi)
f(xi−1) − f(xi)

  ∣ xi+ 1 − xi
xi+ 1

∣ 100% ≤ ϵs

f (x)

xxuxl L

L/2

Root

L/4

f (x)

xxuxl

xr

Chord

f (x)

xxixi + 1

Tangent

f (x)

xxi xi – 1
xi + 1
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polynomials. As discussed in the text, the Jenkins-Traub and Laguerre’s methods are 
widely employed.
 In summary, the foregoing is intended to provide you with avenues for deeper 
exploration of the subject. Additionally, all the above references provide descrip-
tions of the basic techniques covered in Part Two. We urge you to consult these 
alternative sources to broaden your understanding of numerical methods for root 
location.1

1Books are referenced only by author here, a complete bibliography will be found at the back of this text.
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PA R T  T H R E E

 PT3.1 MOTIVATION
In Part Two, we determined the value x that satisfied a single equation, f(x) = 0. Now, 
we deal with the case of determining the values x1, x2, . . . , xn that simultaneously sat-
isfy a set of equations

 f1(x1, x2, … , xn) = 0
 f2(x1, x2, … , xn) = 0
 . .
 . .
 . .
 fn(x1, x2, … , xn) = 0

Such systems can be either linear or nonlinear. In Part Three, we deal with linear alge-
braic equations that are of the general form

 a11x1 + a12x2 + … + a1nxn = b1

 a21x1 + a22x2 + … + a2nxn = b2
 . .
 . . (PT3.1)
 . .
 an1x1 + an2x2 + … + annxn = bn

where the a’s are constant coefficients, the b’s are constants, and n is the number of 
equations. All other equations are nonlinear. Nonlinear systems were discussed in Chap. 
6 and will be covered briefly again in Chap. 9.

PT3.1.1 Noncomputer Methods for Solving Systems of Equations
For small numbers of equations (n ≤ 3), linear (and sometimes nonlinear) equations can be 
solved readily by simple techniques. Some of these methods will be reviewed at the begin-
ning of Chap. 9. However, for four or more equations, solutions become arduous and com-
puters must be utilized. Historically, the inability to solve all but the smallest sets of equations 
by hand has limited the scope of problems addressed in many engineering applications.

LINEAR ALGEBRAIC 
EQUATIONS
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 Before computers, techniques to solve linear algebraic equations were time-consum-
ing and awkward. These approaches placed a constraint on creativity because the methods 
were often difficult to implement and understand. Consequently, the techniques were 
sometimes overemphasized at the expense of other aspects of the problem-solving process 
such as formulation and interpretation (recall Fig. PT1.1 and accompanying discussion).
 The accessibility of computers makes it possible and practical for you to solve large 
sets of simultaneous linear algebraic equations. Thus, you can approach more complex 
and realistic examples and problems. Furthermore, you will have more time to test your 
creative skills because you will be able to place more emphasis on problem formulation 
and solution interpretation.

PT3.1.2 Linear Algebraic Equations and Engineering Practice
Many of the fundamental equations of engineering are based on conservation laws (recall 
Table 1.1). Some familiar quantities that conform to such laws are mass, energy, and 
momentum. In mathematical terms, these principles lead to balance or continuity equa-
tions that relate system behavior as represented by the levels or response of the quantity 
being modeled to the properties or characteristics of the system and the external stimuli 
or forcing functions acting on the system.
 As an example, the principle of mass conservation can be used to formulate a model 
for a series of chemical reactors (Fig. PT3.1a). For this case, the quantity being modeled 
is the mass of the chemical in each reactor. The system properties are the reaction char-
acteristics of the chemical and the reactors’ sizes and flow rates. The forcing functions 
are the feed rates of the chemical into the system.

FIGURE PT3.1
Two types of systems that can be modeled using linear algebraic equations: (a) lumped  
variable system that involves coupled finite components and (b) distributed variable system that 
involves a continuum.

x1 xi xi+1xi–1 xn

(b)

Feed

Feed x1 x5

(a)

……

x2

x3

x4
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 In Part Two, you saw how single-component systems result in a single equation that 
can be solved using root-location techniques. Multicomponent systems result in a coupled 
set of mathematical equations that must be solved simultaneously. The equations are 
coupled because the individual parts of the system are influenced by other parts. For 
example, in Fig. PT3.1a, reactor 4 receives chemical inputs from reactors 2 and 3. Con-
sequently, its response is dependent on the quantity of chemical in these other reactors.
 When these dependencies are expressed mathematically, the resulting equations are often 
of the linear algebraic form of Eq. (PT3.1). The x’s are usually measures of the magnitudes 
of the responses of the individual components. Using Fig. PT3.1a as an example, x1 might 
quantify the amount of mass in the first reactor, x2 might quantify the amount in the second, 
and so forth. The a’s typically represent the properties and characteristics that bear on the 
interactions between components. For instance, the a’s for Fig. PT3.1a might be reflective 
of the flow rates of mass between the reactors. Finally, the b’s usually represent the forcing 
functions acting on the system, such as the feed rate in Fig. PT3.1a. The applications in 
Chap. 12 provide other examples of such equations derived from engineering practice.
 Multicomponent problems of the above types arise from both lumped (macro-) or 
distributed (micro-) variable mathematical models (Fig. PT3.1). Lumped variable prob-
lems involve coupled finite components. Examples include trusses (Sec. 12.2), reactors 
(Fig. PT3.1a and Sec. 12.1), and electric circuits (Sec. 12.3). These types of problems 
use models that provide little or no spatial detail.
 Conversely, distributed variable problems attempt to describe spatial detail of sys-
tems on a continuous or semicontinuous basis. The distribution of chemicals along the 
length of an elongated, rectangular reactor (Fig. PT3.1b) is an example of a continuous 
variable model. Differential equations derived from the conservation laws specify the 
distribution of the dependent variable for such systems. These differential equations can 
be solved numerically by converting them to an equivalent system of simultaneous alge-
braic equations. The solution of such sets of equations represents a major engineering 
application area for the methods in the following chapters. These equations are coupled 
because the variables at one location are dependent on the variables in adjoining regions. 
For example, the concentration at the middle of the reactor is a function of the concen-
tration in adjoining regions. Similar examples could be developed for the spatial distribu-
tion of temperature or momentum. We will address such problems when we discuss 
differential equations later in the book.
 Aside from physical systems, simultaneous linear algebraic equations also arise in a 
variety of mathematical problem contexts. These result when mathematical functions are 
required to satisfy several conditions simultaneously. Each condition results in an equa-
tion that contains known coefficients and unknown variables. The techniques discussed 
in this part can be used to solve for the unknowns when the equations are linear and 
algebraic. Some widely used numerical techniques that employ simultaneous equations 
are regression analysis (Chap. 17) and spline interpolation (Chap. 18).

 PT3.2 MATHEMATICAL BACKGROUND
All parts of this book require some mathematical background. For Part Three, matrix 
notation and algebra are useful because they provide a concise way to represent and 
manipulate linear algebraic equations. If you are already familiar with matrices, feel free 

cha32077_p03_235-248.indd   237 7/11/19   10:26 AM



238 LINEAR ALGEBRAIC EQUATIONS

to skip to Sec. PT3.3. For those who are unfamiliar or require a review, the following 
material provides a brief introduction to the subject.

PT3.2.1 Matrix Notation
A matrix consists of a rectangular array of elements represented by a single symbol. As 
depicted in Fig. PT3.2, [A] is the shorthand notation for the matrix and aij designates an 
individual element of the matrix.
 A horizontal set of elements is called a row and a vertical set is called a column. 
The first subscript i always designates the number of the row in which the element lies. 
The second subscript j designates the column. For example, element a23 is in row 2 and 
column 3.
 The matrix in Fig. PT3.2 has n rows and m columns and is said to have a dimension 
of n by m (or n × m). It is referred to as an n by m matrix.
 Matrices with row dimension n = 1, such as

[B] = [b1 b2 … bm]

are called row vectors. Note that for simplicity, the first subscript of each element is 
dropped. Also, it should be mentioned that there are times when it is desirable to employ 
a special shorthand notation to distinguish a row matrix from other types of matrices. 
One way to accomplish this is to employ special open-topped brackets, as in ⌊B⌋.
 Matrices with column dimension m = 1, such as

[C] =

[

c1

c2

.

.

.
cn

]
are referred to as column vectors. For simplicity, the second subscript is dropped. As 
with the row vector, there are occasions when it is desirable to employ a special short-
hand notation to distinguish a column matrix from other types of matrices. One way to 
accomplish this is to employ special brackets, as in {C}.

FIGURE PT3.2
A matrix.

Column 3

[A] =

[

a11 a12 a13 … a1m

a21 a22 a23 … a2m

. . .

. . .

. . .
an1 an2 an3 … anm

]
 Row 2
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 Matrices where n = m are called square matrices. For example, a 4 by 4 matrix is

[A] =
[

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44
]

The diagonal consisting of the elements a11, a22, a33, and a44 is termed the principal, or 
main, diagonal of the matrix.
 Square matrices are particularly important when solving sets of simultaneous 
linear equations. For such systems, the number of equations (corresponding to rows) 
and the number of unknowns (corresponding to columns) must be equal for a unique 
solution to be possible. Consequently, square matrices of coefficients are encountered 
when dealing with such systems. Some special types of square matrices are described 
in Box PT3.1.

There are a number of special forms of square matrices that are 
important and should be noted:
 A symmetric matrix is one where aij = aji for all i’s and j’s. 
For example,

[A] = [
5 1 2
1 3 7
2 7 8]

is a 3 by 3 symmetric matrix.
 A diagonal matrix is a square matrix where all elements off 
the main diagonal are equal to zero, as in

[A] =
[

a11

a22

a33

a44
]

Note that where large blocks of elements are zero, they are left 
blank.
 An identity matrix is a diagonal matrix where all elements 
on the main diagonal are equal to 1, as in

[I ] = [
1

1
1

1 ]

The symbol [I] is used to denote the identity matrix. The iden-
tity matrix has properties similar to unity.
 An upper triangular matrix is one where all the elements 
below the main diagonal are zero, as in

[A] =
[

a11 a12 a13 a14

a22 a23 a24

a33 a34

a44
]

 A lower triangular matrix is one where all elements above 
the main diagonal are zero, as in

[A] =
[

a11

a21 a22

a31 a32 a33

a41 a42 a43 a44
]

 A banded matrix has all elements equal to zero, with the 
exception of a band centered on the main diagonal:

[A] =
[

a12 a12

a21 a22 a23

a32 a33 a34

a43 a44
]

The above matrix has a bandwidth of 3 and is given a special 
name—the tridiagonal matrix.

 Box PT3.1 Special Types of Square Matrices
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PT3.2.2 Matrix Operating Rules
Now that we have specified what we mean by a matrix, we can define some operating rules 
that govern its use. Two n by m matrices are equal if, and only if, every element in the first 
is equal to every element in the second, that is, [A] = [B] if aij = bij for all i and j.
 Addition of two matrices, say, [A] and [B], is accomplished by adding corresponding 
terms in each matrix. The elements of the resulting matrix [C] are computed as

cij = aij + bij

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. Similarly, the subtraction of two matrices, 
say, [E] minus [F], is obtained by subtracting corresponding terms, as in

dij = eij − fij

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. It follows directly from the above definitions 
that addition and subtraction can be performed only between matrices having the same 
dimensions.
 Both addition and subtraction are commutative:

[A] + [B] = [B] + [A]

Addition and subtraction are also associative, that is,

( [A] + [B] ) + [C] = [A] + ([B] + [C] )

 The multiplication of a matrix [A] by a scalar g is obtained by multiplying every 
element of [A] by g, as in

[D] = g[A] =

[
 

ga11 ga12 … ga1m

ga21 ga22 … ga2m

. . .

. . .

. . .
gan1 gan2 … ganm

]
The product of two matrices is represented as [C] = [A][B], where the elements of [C] 
are defined as (see Box PT3.2 for a simple way to conceptualize matrix multiplication)

cij =∑
n

k=1
aikbkj (PT3.2)

where n = the column dimension of [A] and the row dimension of [B]. That is, the cij 
element is obtained by adding the product of individual elements from the ith row of the 
first matrix, in this case [A], by the jth column of the second matrix [B].
 According to this definition, multiplication of two matrices can be performed only 
if the first matrix has as many columns as the number of rows in the second matrix. 
Thus, if [A] is an n by m matrix, [B] could be an m by l matrix. For this case, the result-
ing [C] matrix would have the dimension of n by l. However, if [B] were an l by m 
matrix, the multiplication could not be performed. Figure PT3.3 provides an easy way 
to check whether two matrices can be multiplied.
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FIGURE PT3.3

 Box PT3.2 A Simple Method for Multiplying Two Matrices

Although Eq. (PT3.2) is well suited for implementation on a 
 computer, it is not the simplest means for visualizing the me-
chanics of multiplying two matrices. What follows gives more 
tangible  expression to the operation.
 Suppose that we want to multiply [X] by [Y] to yield [Z],

[Z] = [X] [Y] = [
3 1
8 6
0 4][

5 9
7 2]

A simple way to visualize the computation of [Z] is to raise 
[Y], as in

 ⇑

 [
5 9
7 2] ← [Y]

[X] → [
3 1
8 6
0 4] [ ? ] ← [Z]

Now the answer [Z] can be computed in the space vacated by 
[Y]. This format has utility because it aligns the appropriate 
rows and columns that are to be multiplied. For example, ac-
cording to Eq. (PT3.2), the element z11 is obtained by multi-
plying the first row of [X] by the first column of [Y]. This 
amounts to adding the product of x11 and y11 to the product of 
x12 and y21, as in

 [
5 9
7 2]

 ↓

[
3 1
8 6
0 4]

→

[
3 × 5 + 1 × 7 = 22  

]

Thus, z11 is equal to 22. Element z21 can be computed in a simi-
lar fashion, as in

[
5 9
7 2]

 ↓

[
3 1
8 6
0 4] → [

22
8 × 5 + 6 × 7 = 82  ]

 The computation can be continued in this way, following the 
alignment of the rows and columns, to yield the result

[Z] = [
22 29
82 84
28 8 ]

 Note how this simple method makes it clear why it is impos-
sible to multiply two matrices if the number of columns of the 
first matrix does not equal the number of rows in the second 
matrix. Also, note how it demonstrates that the order of multipli-
cation matters (that is, matrix multiplication is not commutative).

[A]n × m       [B]m × l    =    [C]n × l

Interior dimensions
are equal;

multiplication
is possible

Exterior dimensions define
the dimensions of the result
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 If the dimensions of the matrices are suitable, matrix multiplication is associative,

( [A] [B] ) [C] = [A] ( [B] [C] )

and distributive,

[A] ( [B] + [C] ) = [A] [B] + [A] [C]

or

([A] + [B] ) [C] = [A] [C] + [B] [C]

However, multiplication is not generally commutative:

[A] [B] ≠ [B] [A]

That is, the order of multiplication is important.
 Figure PT3.4 shows pseudocode to multiply an n by m matrix [A] by an m by l 
matrix [B], and store the result in an n by l matrix [C]. Notice that, instead of the 
inner product being directly accumulated in [C], it is collected in a temporary vari-
able, sum. This is done for two reasons. First, it is a bit more efficient, because the 
computer need determine the location of ci, j only n × l times rather than n × l × m 
times. Second, the precision of the multiplication can be greatly improved by declar-
ing sum as a double precision variable (recall the discussion of inner products in 
Sec. 3.4.2).
 Although multiplication is possible, matrix division is not a defined operation. How-
ever, if a matrix [A] is square and nonsingular, there is another matrix [A]−1, called the 
inverse of [A], for which

[A] [A]−1 = [A]−1[A] = [I]  (PT3.3)

Thus, the multiplication of a matrix by the inverse is analogous to division, in the sense 
that a number divided by itself is equal to 1. That is, multiplication of a matrix by its 
inverse leads to the identity matrix (recall Box PT3.1).
 The inverse of a two-dimensional square matrix can be represented simply by

[A]−1 =
1

a11a22 − a12a21
 [

a22 −a12

−a21 a11] (PT3.4)

SUBROUTINE Mmult(a, b, c, m, n, l)
DOFOR i = 1, n
  DOFOR j = 1, l
    sum = 0.
    DOFOR k = 1, m
      sum = sum + a(i,k) · b(k,j)
    END DO
    c(i,j) = sum
  END DO
END DO

FIGURE PT3.4
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Similar formulas for higher-dimensional matrices are much more involved. Sections in 
Chaps. 10 and 11 will be devoted to techniques for using numerical methods and the 
computer to calculate the inverse for such systems.
 Two other matrix manipulations that will have utility in our discussion are the trans-
pose and the trace of a matrix. The transpose of a matrix involves transforming its rows 
into columns and its columns into rows. For example, for the 4 × 4 matrix,

[A] =
[

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44
]

the transpose, designated [A]T, is defined as

[A]T =
[

a11 a21 a31 a41

a12 a22 a32 a42

a13 a23 a33 a43

a14 a24 a34 a44
]

In other words, the element aij of the transpose is equal to the element aji of the original 
matrix.
 The transpose has a variety of functions in matrix algebra. One simple advantage is 
that it allows a column vector to be written as a row. For example, if

{C} =
{

c1

c2

c3

c4
}

then

{C}T = ⌊c1 c2 c3 c4⌋

where the superscript T designates the transpose. For example, this format can save space 
when writing a column vector in a manuscript. In addition, the transpose has numerous 
mathematical applications.
 The trace of a matrix is the sum of the elements on its principal diagonal. It is 
designated as tr [A] and is computed as

tr [A] =∑
n

i=1
aii

The trace will be used in our discussion of eigenvalues in Chap. 27.
 The final matrix manipulation that will have utility in our discussion is augmentation. 
A matrix is augmented by the addition of a column (or columns) to the original matrix. 
For example, suppose we have a matrix of coefficients:

[A] = [
a11 a12 a13

a21 a22 a23

a31 a32 a33
]
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We might wish to augment this matrix [A] with an identity matrix (recall Box PT3.1) to 
yield a 3-by-6-dimensional matrix:

[A] = [
a11 a12 a13

a21 a22 a23

a31 a32 a33

   
1 0 0
0 1 0
0 0 1]

Such an expression has utility when we must perform a set of identical operations on 
two matrices. Thus, we can perform the operations on the single augmented matrix rather 
than on the two individual matrices.

PT3.2.3 Representing Linear Algebraic Equations in Matrix Form
It should be clear that matrices provide a concise notation for representing simultaneous 
linear equations. For example, Eq. (PT3.1) can be expressed as

[A]{X} = {B} (PT3.5)

where [A] is the n by n square matrix of coefficients,

[A] =

[

a11 a12 … a1n

a21 a22 … a2n

. . .

. . .

. . .
an1 an2 … ann

]
{B} is the n by 1 column vector of constants,

{B}T = ⌊b1 b2 … bn⌋

and {X} is the n by 1 column vector of unknowns:

{X}T = ⌊x1 x2 … xn⌋

Recall the definition of matrix multiplication [Eq. (PT3.2) or Box PT3.2] to convince 
yourself that Eqs. (PT3.1) and (PT3.5) are equivalent. Also, realize that Eq. (PT3.5) is 
a valid matrix multiplication because the number of columns, n, of the first matrix [A] 
is equal to the number of rows, n, of the second matrix {X}.
 This part of the book is devoted to solving Eq. (PT3.5) for {X}. A formal way to 
obtain a solution using matrix algebra is to multiply each side of the equation by the 
inverse of [A] to yield

[A]−1[A]{X} = [A]−1{B}

Because [A]−1[A] equals the identity matrix, the equation becomes

{X} = [A]−1{B} (PT3.6)

Therefore, the equation has been solved for {X}. This is another example of how the 
inverse plays a role in matrix algebra that is similar to division. It should be noted that 
this is not a very efficient way to solve a system of equations. Thus, other approaches 
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are  employed in numerical algorithms. However, as discussed in Chap. 10, the matrix 
inverse itself has great value in the engineering analyses of such systems.
 Finally, we will sometimes find it useful to augment [A] with {B}. For example, if 
n = 3, this results in a 3-by-4-dimensional matrix:

[A] = [
a11 a12 a13  b1

a21 a22 a23  b2

a31 a32 a33  b3
]  (PT3.7)

 Expressing the equations in this form is useful because several of the techniques for 
solving linear systems perform identical operations on a row of coefficients and the cor-
responding right-hand-side constant. As expressed in Eq. (PT3.7), we can perform the 
manipulation once on an individual row of the augmented matrix rather than separately 
on the coefficient matrix and the right-hand-side vector.

 PT3.3 ORIENTATION
Before proceeding to the numerical methods, some further orientation might be helpful. 
The following is intended as an overview of the material discussed in Part Three. In 
addition, we have formulated some objectives to help focus your efforts when studying 
the material.

PT3.3.1 Scope and Preview
Figure PT3.5 provides an overview for Part Three. Chapter 9 is devoted to the most 
fundamental technique for solving linear algebraic systems: Gauss elimination. Before 
launching into a detailed discussion of this technique, a preliminary section deals with 
simple methods for solving small systems. These approaches are presented to provide 
you with visual insight and because one of the methods—the elimination of unknowns—
represents the basis for Gauss elimination.
 After the preliminary material, “naive’’ Gauss elimination is discussed. We start 
with this “stripped-down” version because it allows the fundamental technique to be 
elaborated on without complicating details. Then, in subsequent sections, we discuss 
potential problems of the naive approach and present a number of modifications to 
minimize and circumvent these problems. The focus of this discussion will be the process 
of switching rows, or partial pivoting.
 Chapter 10 begins by illustrating how Gauss elimination can be formulated as an 
LU decomposition solution. Such solution techniques are valuable for cases where many 
right-hand-side vectors need to be evaluated. It is shown how this attribute allows 
 efficient calculation of the matrix inverse, which has tremendous utility in engineering 
practice. Finally, the chapter ends with a discussion of matrix condition. The condition 
number is introduced as a measure of the loss of significant digits of accuracy that can 
result when solving ill-conditioned matrices.
 The beginning of Chap. 11 focuses on special types of systems of equations that have 
broad engineering application. In particular, efficient techniques for solving tridiagonal 
systems are presented. Then, the remainder of the chapter focuses on an alternative to 
elimination methods called the Gauss-Seidel method. This technique is similar in spirit to 
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FIGURE PT3.5
Schematic of the organization of the material in Part Three: Linear Algebraic Equations.
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the approximate methods for roots of equations that were discussed in Chap. 6. That is, 
the technique involves guessing a solution and then iterating to obtain a refined estimate. 
The chapter ends with information related to solving linear algebraic equations with 
software packages.
 Chapter 12 demonstrates how the methods can actually be applied for problem solv-
ing. As with other parts of the book, applications are drawn from all fields of engineering.
 Finally, an epilogue is included at the end of Part Three. This review includes dis-
cussion of trade-offs that are relevant to implementation of the methods in engineering 
practice. This section also summarizes the important formulas and advanced methods 
related to linear algebraic equations. As such, it can be used before exams or as a 
 refresher after you have graduated and must return to linear algebraic equations as a 
professional.

PT3.3.2 Goals and Objectives
Study Objectives. After completing Part Three, you should be able to solve problems 
involving linear algebraic equations and appreciate the application of these equations in 
many fields of engineering. You should strive to master several techniques and assess 
their reliability. You should understand the trade-offs involved in selecting the “best” 
method (or methods) for any particular problem. In addition to these general objectives, 
the specific concepts listed in Table PT3.1 should be assimilated and mastered.

Computer Objectives. Your most fundamental computer objectives are to be able to 
solve a system of linear algebraic equations and to evaluate the matrix inverse. You will 

TABLE PT3.1 Specific study objectives for Part Three.

 1. Understand the graphical interpretation of ill-conditioned systems and how it relates to the 
determinant.

 2. Be familiar with terminology: forward elimination, back substitution, pivot equation, and pivot 
coefficient.

 3. Understand the problems of division by zero, round-off error, and ill-conditioning.
 4. Know how to compute the determinant using Gauss elimination.
 5. Understand the advantages of pivoting; realize the difference between partial and complete 

pivoting.
 6. Know the fundamental difference between Gauss elimination and the Gauss-Jordan method and 

which is more efficient.
 7. Recognize how Gauss elimination can be formulated as an LU decomposition.
 8. Know how to incorporate pivoting and matrix inversion into an LU decomposition algorithm.
 9. Know how to interpret the elements of the matrix inverse in evaluating stimulus-response 

computations in engineering.
 10. Realize how to use the inverse and matrix norms to evaluate system condition.
 11. Understand how banded and symmetric systems can be decomposed and solved efficiently.
 12. Understand why the Gauss-Seidel method is particularly well suited for large, sparse systems of 

equations.
 13. Know how to assess diagonal dominance of a system of equations and how diagonal dominance 

relates to whether the system can be solved with the Gauss-Seidel method.
 14.  Understand the rationale behind relaxation; know where underrelaxation and overrelaxation are 

appropriate.
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want to have subprograms developed for LU decomposition of both full and tridiagonal 
matrices. You may also want to have your own software to implement the Gauss-Seidel 
method.
 You should know how to use packages to solve linear algebraic equations and 
find the matrix inverse. You should become familiar with how the same evaluations 
can be implemented on popular software packages such as Excel, MATLAB software, 
and Mathcad.
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C H A P T E R

9
Gauss Elimination

This chapter deals with simultaneous linear algebraic equations that can be represented 
generally as

 a11x1 + a12x2 + … + a1nxn = b1

 a21x1 + a22x2 + … + a2nxn = b2

 . . (9.1)

 . .
 . .
 an1x1 + an2x2 + … + annxn = bn

where the a’s are constant coefficients and the b’s are constants.
 The technique described in this chapter is called Gauss elimination because it involves 
combining equations to eliminate unknowns. Although it is one of the earliest methods 
for solving simultaneous equations, it remains among the most important algorithms in 
use today and is the basis for linear equation solving on many popular software packages.

 9.1 SOLVING SMALL NUMBERS OF EQUATIONS
Before proceeding to the computer methods, we will describe several methods that are 
appropriate for solving small (n ≤ 3) sets of simultaneous equations and that do not 
require a computer. These are the graphical method, Cramer’s rule, and the elimination 
of unknowns.

9.1.1 The Graphical Method
A graphical solution is obtainable for two equations by plotting them on Cartesian co-
ordinates with one axis corresponding to x1 and the other to x2. Because we are dealing 
with linear systems, each equation is a straight line. This can be easily illustrated for the 
general equations

 a11x1 + a12x2 = b1

 a21x1 + a22x2 = b2
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Both equations can be solved for x2:

x2 = −(
a11

a12)x1 +
b1

a12

x2 = −(
a21

a22)x1 +
b2

a22

Thus, the equations are now in the form of straight lines; that is, x2 = (slope)x1 + intercept. 
These lines can be graphed on Cartesian coordinates with x2 as the ordinate and x1 as the 
abscissa. The values of x1 and x2 at the intersection of the lines represent the solution.

 EXAMPLE 9.1 The Graphical Method for Two Equations
Problem Statement. Use the graphical method to solve

 3x1 + 2x2 = 18 (E9.1.1)

 −x1 + 2x2 = 2 (E9.1.2)

Solution. Let x1 be the abscissa. Solve Eq. (E9.1.1) for x2:

x2 = −3
2

 x1 + 9

which, when plotted on Fig. 9.1, is a straight line with an intercept of 9 and a slope of −3∕2.

FIGURE 9.1
Graphical solution of a set of two simultaneous linear algebraic equations. The intersection of 
the lines represents the solution.

0 62 4
0

6

2

4

8

x2

x1

Solution: x1 = 4; x2 = 3

–x 1 +
 2x 2 =

 2

3x
1  + 2x

2  = 18
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 For three simultaneous equations, each equation would be represented by a plane in 
a three-dimensional coordinate system. The point where the three planes intersect would 
represent the solution. Beyond three equations, graphical methods break down and, con-
sequently, have little practical value for solving simultaneous equations. However, they 
sometimes prove useful in visualizing properties of the solutions. For example, Fig. 9.2 
depicts three cases that can pose problems when solving sets of linear equations. Figure 
9.2a shows the case where the two equations represent parallel lines. For such situations, 
there is no solution because the lines never cross. Figure 9.2b depicts the case where the 
two lines are coincident. For such situations there is an infinite number of solutions. Both 
types of systems are said to be singular. In addition, systems that are very close to being 
singular (Fig. 9.2c) can also cause problems. These systems are said to be ill-conditioned. 
Graphically, this corresponds to the fact that it is difficult to identify the exact point at 
which the lines intersect. Ill-conditioned systems will also pose problems when they are 
encountered during the numerical solution of linear equations. This is because they will 
be extremely sensitive to round-off error (recall Sec. 4.2.3).

 Equation (E9.1.2) can also be solved for x2:

x2 =
1
2

 x1 + 1

which is also plotted on Fig. 9.1. The solution is the intersection of the two lines at x1 = 4 
and x2 = 3. This result can be checked by substituting these values into the original 
equations to yield

 3(4) + 2(3) = 18
 −(4) + 2(3) = 2

These results are equivalent to the right-hand sides of the original equations.

FIGURE 9.2
Graphical depiction of singular and ill-conditioned systems: (a) no solution, (b) infinite solutions,  
and (c) ill-conditioned system where the slopes are so close that the point of intersection is  
 difficult to detect visually.
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9.1.2 Determinants and Cramer’s Rule
Cramer’s rule is another solution technique that is best suited to small numbers of equa-
tions. Before describing this method, we will briefly introduce the concept of the deter-
minant, which is used to implement Cramer’s rule. In addition, the determinant has 
relevance to the evaluation of the ill-conditioning of a matrix.

Determinants. The determinant can be illustrated for a set of three equations:

[A]{X} = {B}

where [A] is the coefficient matrix:

[A] = [
a11 a12 a13

a21 a22 a23

a31 a32 a33
]

The determinant D of this system is formed from the coefficients of the equations, as in

D = ∣a11 a12 a13

a21 a22 a23

a31 a32 a33
∣  (9.2)

Although the determinant D and the coefficient matrix [A] are composed of the same 
elements, they are completely different mathematical concepts. That is why they are 
distinguished visually by using brackets to enclose the matrix and straight lines to enclose 
the determinant. In contrast to a matrix, the determinant is a single number. For example, 
the value of the second-order determinant

D = ∣ a11 a12

a21 a22 ∣
is calculated by

D = a11a22 − a12a21 (9.3)

For the third-order case [Eq. (9.2)], a single numerical value for the determinant can be 
computed as

D = a11 ∣ a22 a23

a32 a33 ∣ − a12 ∣ a21 a23

a31 a33 ∣ + a13 ∣ a21 a22

a31 a32 ∣  (9.4)

where the 2 by 2 determinants are called minors.

 EXAMPLE 9.2 Determinants
Problem Statement. Compute values for the determinants of the systems represented 
in Figs. 9.1 and 9.2.

Solution. For Fig. 9.1:

D = ∣ 3 2
−1 2 ∣ = 3(2) − 2(−1) = 8
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 In the foregoing example, the singular systems had zero determinants. Additionally, 
the results suggest that the system that is almost singular (Fig. 9.2c) has a determinant 
that is close to zero. These ideas will be pursued further in our subsequent discussion 
of ill-conditioning (Sec. 9.3.3).

Cramer’s Rule. This rule states that each unknown in a system of linear algebraic equa-
tions may be expressed as a fraction of two determinants with denominator D and with 
the numerator obtained from D by replacing the column of coefficients of the unknown 
in question by the constants b1, b2, . . . , bn. For example, x1 would be computed as

x1 =
∣b1 a12 a13

b2 a22 a23

b3 a32 a33
∣

D
 (9.5)

 EXAMPLE 9.3 Cramer’s Rule
Problem Statement. Use Cramer’s rule to solve

0.3x1 + 0.52x2 + x3 = −0.01
0.5x1 + x2 + 1.9x3 = 0.67
0.1x1 + 0.3x2 + 0.5x3 = −0.44

Solution. The determinant D can be written as [Eq. (9.2)]

D = ∣0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5∣

The minors are [Eq. (9.3)]

A1 = ∣ 1 1.9
0.3 0.5 ∣ = 1(0.5) − 1.9(0.3) = −0.07

A2 = ∣ 0.5 1.9
0.1 0.5 ∣ = 0.5(0.5) − 1.9(0.1) = 0.06

For Fig. 9.2a:

D = ∣ −1∕2 1
−1∕2 1∣ =

−1
2

 (1) − 1(
−1
2 ) = 0

For Fig. 9.2b:

D = ∣−1∕2       1
−1       2

   ∣ =
−1
2

 (2) − 1(−1) = 0

For Fig. 9.2c:

D = ∣ −1∕2 1
−2.3∕5 1 ∣ =

−1
2

 (1) − 1(
−2.3

5 ) = −0.04
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A3 = ∣ 0.5 1
0.1 0.3 ∣ = 0.5(0.3) − 1(0.1) = 0.05

These can be used to evaluate the determinant, as in [Eq. (9.4)]

D = 0.3(−0.07) − 0.52(0.06) + 1(0.05) = −0.0022

Applying Eq. (9.5), the solution is

x1 =
∣ −0.01 0.52 1
 0.67 1 1.9
−0.44 0.3 0.5∣

−0.0022
=

0.03278
−0.0022

= −14.9

x2 =
∣0.3 −0.01 1
0.5  0.67 1.9
0.1 −0.44 0.5∣

−0.0022
=

0.0649
−0.0022

= −29.5

x3 =
∣0.3 0.52 −0.01
0.5 1  0.67
0.1 0.3 −0.44 ∣

−0.0022
=

−0.04356
−0.0022

= 19.8

 For more than three equations, Cramer’s rule becomes impractical because, as the 
number of equations increases, the determinants are time-consuming to evaluate by hand 
(or by computer). Consequently, more efficient alternatives are used. Some of these al-
ternatives are based on the last noncomputer solution technique, covered in the next 
section—the elimination of unknowns.

9.1.3 The Elimination of Unknowns
The elimination of unknowns by combining equations is an algebraic approach that can 
be illustrated for a set of two equations:

a11x1 + a12x2 = b1 (9.6)

a21x1 + a22x2 = b2 (9.7)

The basic strategy is to multiply the equations by constants so that one of the unknowns 
will be eliminated when the two equations are combined. The result is a single equation 
that can be solved for the remaining unknown. This value can then be substituted into 
either of the original equations to compute the other variable.
 For example, Eq. (9.6) might be multiplied by a21 and Eq. (9.7) by a11 to give

 a11a21x1 + a12a21x2 = b1a21 (9.8)

 a21a11x1 + a22a11x2 = b2a11 (9.9)
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Subtracting Eq. (9.8) from Eq. (9.9) will, therefore, eliminate the x1 term from the equa-
tions to yield

a22a11x2 − a12a21x2 = b2a11 − b1a21

which can be solved for

x2 =
a11b2 − a21b1

a11a22 − a12a21
 (9.10)

Equation (9.10) can then be substituted into Eq. (9.6), which can be solved for

x1 =
a22b1 − a12b2

a11a22 − a12a21
 (9.11)

Notice that Eqs. (9.10) and (9.11) follow directly from Cramer’s rule, which states

x1 =
∣ b1 a12

b2 a22
∣

∣ a11 a12

a21 a22
∣

=
b1a22 − a12b2

a11a22 − a12a21

x2 =
∣ a11 b1

a21 b2
∣

∣ a11 a12

a21 a22
∣

=
a11b22 − b1a21

a11a22 − a12a21

 EXAMPLE 9.4 Elimination of Unknowns
Problem Statement. Use the elimination of unknowns to solve (recall Example 9.1)

 3x1 + 2x2 = 18
 −x1 + 2x2 = 2

Solution. Using Eqs. (9.11) and (9.10),

x1 =
2(18) − 2(2)
3(2) − 2(−1)

= 4

x2 =
3(2) − (−1)18
3(2) − 2(−1)

= 3

which is consistent with our graphical solution (Fig. 9.1).

 The elimination of unknowns can be extended to systems with more than two or 
three equations. However, the numerous calculations that are required for larger systems 
make the method extremely tedious to implement by hand. However, as described in the 
next section, the technique can be formalized and readily programmed for the computer.

cha32077_ch09_249-282.indd   255 7/15/19   2:20 PM



256 GAUSS ELIMINATION

 9.2 NAIVE GAUSS ELIMINATION
In the previous section, the elimination of unknowns was used to solve a pair of simul-
taneous equations. The procedure consisted of two steps:

1. The equations were manipulated to eliminate one of the unknowns from the equations. 
The result of this elimination step was that we had one equation with one unknown.

2. Consequently, this equation could be solved directly and the result back-substituted 
into one of the original equations to solve for the remaining unknown.

 This basic approach can be extended to large sets of equations by developing a 
systematic scheme or algorithm to eliminate unknowns and to back-substitute. Gauss 
elimination is the most basic of these schemes.
 This section includes the systematic techniques for forward elimination and back substi-
tution that comprise Gauss elimination. Although these techniques are ideally suited for 
implementation on computers, some modifications will be required to obtain a reliable algo-
rithm. In particular, the computer program must avoid division by zero. The following method 
is called “naive” Gauss elimination because it does not avoid this problem. Subsequent 
sections will deal with the additional features required for an effective computer program.
 The approach is designed to solve a general set of n equations:

a11x1 + a12x2 + a13x3 + … + a1nxn = b1 (9.12a)

a21x1 + a22x2 + a23x3 + … + a2nxn = b2 (9.12b)

 . .
 . .
 . .
an1x1 + an2x2 + an3x3 + … + annxn = bn (9.12c)

As was the case with the solution of two equations, the technique for n equations consists 
of two phases: elimination of unknowns and solution through back substitution.

Forward Elimination of Unknowns. The first phase is designed to reduce the set of 
equations to an upper triangular system (Fig. 9.3). The initial step will be to eliminate 
the first unknown, x1, from the second through the nth equations. To do this, multiply 
Eq. (9.12a) by a21∕a11 to give

a21x1 +
a21

a11
a12x2 + … +

a21

a11
a1nxn =

a21

a11
 b1 (9.13)

Now, this equation can be subtracted from Eq. (9.12b) to give

(a22 −
a21

a11
 a12)

 

x2 + … + (a2n −
a21

a11
 a1n)

  

xn = b2 −
a21

a11
 b1

or

a′22x2 + … + a′2nxn = b′2
where the prime indicates that the elements have been changed from their original values.
 The procedure is then repeated for the remaining equations. For instance, Eq. (9.12a) 
can be multiplied by a31∕a11 and the result subtracted from the third equation.  Repeating 
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the procedure for the remaining equations results in the following modified system:

 a11x1 + a12x2 + a13x3 + … + a1nxn = b1  (9.14a)

 a′22x2 + a′23x3 + … + a′2nxn = b′2 (9.14b)

 a′32x2 + a′33x3 + … + a′3nxn = b′3 (9.14c)

 . .
 . .
 . .

 a′n2x2 + a′n3x3 + … + a′nnxn = b′n (9.14d)

 For the foregoing steps, Eq. (9.12a) is called the pivot equation and a11 is called the 
pivot coefficient or element. Note that the process of multiplying the first row by a21∕a11 
is equivalent to dividing it by a11 and multiplying it by a21. Sometimes the division 
operation is referred to as normalization. We make this distinction because a zero pivot 
element can interfere with normalization by causing a division by zero. We will return 
to this important issue after we complete our description of naive Gauss elimination.
 Now repeat the above to eliminate the second unknown from Eq. (9.14c) through 
(9.14d). To do this multiply Eq. (9.14b) by a′32∕a′22 and subtract the result from Eq. 
(9.14c). Perform a similar elimination for the remaining equations to yield

 a11x1 + a12x2 + a13x3 + … + a1nxn = b1

 a′22x2 + a′23x3 + … + a′2nxn = b′2
 a″33x3 + … + a″3nxn = b″2

 . .
 . .
 . .

 a″n3x3 + … + a″nnxn = b″n
where the double prime indicates that the elements have been modified twice.

FIGURE 9.3
The two phases of Gauss 
 elimination: forward elimination 
and back substitution. The 
primes indicate the number of 
times that the coefficients and 
constants have been modified.

[
a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3
]

 ⇓

[
a11 a12 a13 b1

a′22 a′23 b′2
a″33 b″3

]
 ⇓
	 x3	=	b″3∕a″33

	 x2	=	(b′2	−	a′23×3)∕a′22

	 x1	=	(b1	−	a12×2	−	a13×3)∕a11

Forward 
elimination

Back  
substitution
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 The procedure can be continued using the remaining pivot equations. The final 
manipulation in the sequence is to use the (n − 1)th equation to eliminate the xn−1 term 
from the nth equation. At this point, the system will have been transformed to an upper 
triangular system (recall Box PT3.1):

 a11x1 + a12x2 + a13x3 + … + a1nxn = b1  (9.15a)

 a′22x2 + a′23x3 + … + a′2nxn = b′2 (9.15b)

 a″33x3 + … + a″3nxn = b″3 (9.15c)
 . .
 . .
 . .
  a(n−1)

nn xn = bn
(n−1) (9.15d)

 Pseudocode to implement forward elimination is presented in Fig. 9.4a. Notice that three 
nested loops provide a concise representation of the process. The outer loop moves down the 
matrix from one pivot row to the next. The middle loop moves below the pivot row to each 
of the subsequent rows where elimination is to take place. Finally, the innermost loop pro-
gresses across the columns to eliminate or transform the elements of a particular row.

Back Substitution. Equation (9.15d) can now be solved for xn:

xn =
b(n−1)

n

a(n−1)
nn

 (9.16)

This result can be back-substituted into the (n − l)th equation to solve for xn−1. The procedure, 
which is repeated to evaluate the remaining x’s, can be represented by the following formula:

xi =
b(i−1)

i − ∑
n

j=i+1
a(i−1)

ij xj

a(i−1)
ii

  for i = n − 1, n − 2, … , 1 (9.17)

(a)	 DOFOR	k	=	1,	n	−	1
	 		DOFOR	i	=	k	+	1,	n
	 				factor	=	ai,k	∕	ak,k
	 				DOFOR	j	=	k	+	1	to	n
	 						ai,j	=	ai,j	−	factor	·	ak,j
	 				END	DO
	 				bi	=	bi	−	factor	·	bk
	 		END	DO
	 END	DO
(b)	 xn	=	bn	∕	an,n
	 DOFOR	i	=	n	−	1,	1,	−1
	 		sum	=	bi
	 		DOFOR	j	=	i	+	1,	n
	 				sum	=	sum	−	ai,j	·	xj
	 		END	DO
	 		xi	=	sum	∕	ai,i
	 END	DO

FIGURE 9.4
Pseudocode to perform (a) for-
ward elimination and (b) back 
substitution.
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 Pseudocode to implement Eqs. (9.16) and (9.17) is presented in Fig. 9.4b. Notice 
the similarity between this pseudocode and that in Fig. PT3.4 for matrix multiplication. 
As with Fig. PT3.4, a temporary variable, sum, is used to accumulate the summation 
from Eq. (9.17). This results in a somewhat faster execution time than if the summation 
were accumulated in bi. More importantly, it allows efficient improvement in precision 
if the variable sum is declared in double precision.

 EXAMPLE 9.5 Naive Gauss Elimination
Problem Statement. Use Gauss elimination to solve

3x1 − 0.1x2 − 0.2x3 = 7.85 (E9.5.1)

0.1x1 + 7x2 − 0.3x3 = −19.3 (E9.5.2)

0.3x1 − 0.2x2 + 10x3 = 71.4 (E9.5.3)

Carry six significant figures during the computation.

Solution. The first part of the procedure is forward elimination. Multiply Eq. (E9.5.1) 
by 0.1∕3 and subtract the result from Eq. (E9.5.2) to give

7.00333x2 − 0.293333x3 = −19.5617

Then multiply Eq. (E9.5.1) by 0.3∕3 and subtract it from Eq. (E9.5.3) to eliminate x1. 
After these operations, the set of equations is

3x1 −            0.1x2 −           0.2x3 = 7.85 (E9.5.4)

   7.00333x2 − 0.293333x3 = −19.5617 (E9.5.5)

 − 0.190000x2 +    10.0200x3 = 70.6150 (E9.5.6)

To complete the forward elimination, x2 must be removed from Eq. (E9.5.6). To accom-
plish this, multiply Eq. (E9.5.5) by −0.190000∕7.00333 and subtract the result from   
Eq. (E9.5.6). This eliminates x2 from the third equation and reduces the system to an 
upper triangular form, as in

3x1      −           0.1x2 −            0.2x3 = 7.85  (E9.5.7)

 7.00333x2 − 0.293333x3 = −19.5617 (E9.5.8)

 10.0120x3 = 70.0843  (E9.5.9)

We can now solve these equations by back substitution. First, Eq. (E9.5.9) can be solved 
for

x3 =
70.0843
10.0120

= 7.0000 (E9.5.10)

This result can be back-substituted into Eq. (E9.5.8):

7.00333x2 − 0.293333(7.0000) = −19.5617

which can be solved for

x2 =
−19.5617 + 0.293333(7.0000)

7.00333
= −2.50000 (E9.5.11)
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Finally, Eqs. (E9.5.10) and (E9.5.11) can be substituted into Eq. (E9.5.4):

3x1 − 0.1(−2.50000) − 0.2(7.0000) = 7.85

which can be solved for

x1 =
7.85 + 0.1(−2.50000) + 0.2(7.0000)

3
= 3.00000

The results are identical to the exact solution of x1 = 3, x2 = −2.5, and x3 = 7. This can 
be verified by substituting the results into the original equation set:

3(3) − 0.1(−2.5) − 0.2(7) = 7.85
0.1(3) + 7(−2.5) − 0.3(7) = −19.3
0.3(3) − 0.2(−2.5) + 10(7) = 71.4

9.2.1 Operation Counting
The execution time of Gauss elimination depends on the amount of floating-point 
 operations (or flops) involved in the algorithm. On modern computers using math 
 coprocessors, the time consumed to perform addition/subtraction and multiplication/ 
division is about the same. Therefore, totaling up these operations provides insight into 
which parts of the algorithm are most time-consuming and how computation time 
 increases as the system gets larger.
 Before analyzing naive Gauss elimination, we will first define some quantities that 
facilitate operation counting:

∑
m

i=1
cf (i) = c∑

m

i=1
f(i)  ∑

m

i=1
f(i) + g(i) = ∑

m

i=1
f(i) + ∑

m

i=1
g(i) (9.18a,b)

∑
m

i=1
1 = 1 + 1 + 1 + … + 1 = m ∑

m

i=k

1 = m − k + 1 (9.18c,d)

∑
m

i=1
i = 1 + 2 + 3 + … + m =

m(m + 1)
2

=
m2

2
+ O(m) (9.18e)

∑
m

i=1
i2 = 12 + 22 + 32 + … + m2 =

m(m + 1)(2m + 1)
6

=
m3

3
+ O(m2) (9.18f )

where O(mn) means “terms of order mn and lower.”
 Now let us examine the naive Gauss elimination algorithm (Fig. 9.4a) in detail. We 
will first count the flops in the elimination stage. On the first pass through the outer 
loop, k = 1. Therefore, the limits on the middle loop are from i = 2 to n. According to 
Eq. (9.18d), this means that the number of iterations of the middle loop will be

∑
n

i=2
1 = n − 2 + 1 = n − 1 (9.19)

For every one of these iterations, there is one division to define the factor. The interior loop 
then performs a single multiplication and subtraction for each iteration from j = 2 to n. 
Finally, there is one additional multiplication and subtraction for the right-hand-side value. 
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Thus, for every iteration of the middle loop, the number of multiplications is

1 + [n − 2 + 1] + 1 = 1 + n (9.20)

The total multiplications for the first pass through the outer loop is therefore obtained 
by multiplying Eq. (9.19) by (9.20) to give [n − 1](1 + n). In like fashion, the number 
of subtractions is computed as [n − 1](n).
 Similar reasoning can be used to estimate the flops for the subsequent iterations of 
the outer loop. These can be summarized as

 Outer Loop Middle Loop Addition/Subtraction Multiplication/Division 
 k i Flops Flops

1 2, n (n − 1)(n) (n − 1)(n + 1)
2 3, n (n − 2)(n – 1) (n − 2)(n)
. .
. .
. .
k k + 1, n (n − k)(n + 1 − k) (n − k)(n + 2 − k)
. .
. .
. .

 n − 1 n, n (1)(2) (1)(3)

 Therefore, the total addition/subtraction flops for elimination can be computed as

∑
n−1

k=1
(n − k) (n + 1 − k) = ∑

n−1

k=1
[n(n + 1) − k(2n + 1) + k2]

or

n(n + 1)∑
n−1

k=1
1 − (2n + 1)∑

n−1

k=1
k + ∑

n−1

k=1
k2

Applying some of the relationships from Eq. (9.18) yields

[n3 + O(n) ] − [n3 + O(n2) ] + [
1
3

 n3 + O(n2)] =
n3

3
+ O(n) (9.21)

A similar analysis for the multiplication/division flops yields

[n3 + O(n2) ] − [n3 + O(n) ] + [
1
3

n3 + O(n2)] =
n3

3
+ O(n2) (9.22)

Summing these results gives
2n3

3
+ O(n2)

 Thus, the total number of flops is equal to 2n3∕3 plus an additional component 
proportional to terms of order n2 and lower. The result is written in this way because as 
n gets large, the O(n2) and lower terms become negligible. We are therefore justified in 
concluding that for large n, the effort involved in forward elimination converges on 2n3/3.
 Because only a single loop is used, back substitution is much simpler to evaluate. 
The number of addition/subtraction flops is equal to n(n − 1)∕2. Because of the extra 

cha32077_ch09_249-282.indd   261 7/15/19   2:20 PM



262 GAUSS ELIMINATION

division prior to the loop, the number of multiplication/division flops is n(n + 1)∕2. 
These can be added to arrive at a total of

n2 + O(n)

Thus, the total effort in naive Gauss elimination can be represented as

2n3

3
+ O(n2) + n2 + O(n) ————→as n increases  

2n3

3
+ O(n2) (9.23)

 Forward  Backward 
 elimination substitution

 Two useful general conclusions can be drawn from this analysis:

1. As the system gets larger, the computation time increases greatly. As in Table 9.1, 
the amount of flops increases nearly three orders of magnitude for every order of 
magnitude increase in the dimension.

2. Most of the effort is incurred in the elimination step. Thus, efforts to make the method 
more efficient should probably focus on this step.

 9.3 PITFALLS OF ELIMINATION METHODS
Whereas there are many systems of equations that can be solved with naive Gauss elimina-
tion, there are some pitfalls that must be explored before writing a general computer pro-
gram to implement the method. Although the following material relates directly to naive 
Gauss elimination, the information is relevant for other elimination techniques as well.

9.3.1 Division by Zero
The primary reason that the foregoing technique is called “naive” is that during both the 
elimination and the back-substitution phases, it is possible that a division by zero can 
occur. For example, if we use naive Gauss elimination to solve

 2x2 + 3x3 = 8
 4x1 + 6x2 + 7x3 = −3
 2x1 + x2 + 6x3 = 5

the normalization of the first row would involve division by a11 = 0. Problems also can 
arise when a coefficient is very close to zero. The technique of pivoting has been devel-
oped to partially avoid these problems. It will be described in Sec. 9.4.2.

TABLE 9.1 Number of Flops for Gauss Elimination.

   Back Total  Percent Due 
 n Elimination Substitution Flops 2n3/3 to Elimination

 10 705 100 805 667 87.58%
 100 671550 10000 681550 666667 98.53%
 1000 6.67 × 108 1 × 106 6.68 × 108 6.67 × 108 99.85%
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9.3.2 Round-Off Errors
Even though the solution in Example 9.5 was close to the true answer, there was a slight 
discrepancy in the result for x3 [Eq. (E9.5.10)]. This discrepancy, which amounted to a 
relative error of −0.00043%, was due to our use of six significant figures during the 
computation. If we had used more significant figures, the error in the results would be 
reduced further. If we had used fractions instead of decimals (and consequently avoided 
round-off altogether), the answers would have been exact. However, because computers 
carry only a limited number of significant figures (recall Sec. 3.4.1), round-off errors 
can occur and must be considered when evaluating the results.
 The problem of round-off error can become particularly important when large num-
bers of equations are to be solved. This is due to the fact that every result is dependent 
on previous results. Consequently, an error in the early steps will tend to propagate—that 
is, it will cause errors in subsequent steps.
 Specifying the system size where round-off error becomes significant is complicated 
by the fact that the type of computer and the properties of the equations are determining 
factors. A rough rule of thumb is that round-off error may be important when dealing 
with 100 or more equations. In any event, you should always substitute your answers 
back into the original equations to check whether a substantial error has occurred. How-
ever, as discussed below, the magnitudes of the coefficients themselves can influence 
whether such an error check ensures a reliable result.

9.3.3 Ill-Conditioned Systems
The adequacy of the solution depends on the condition of the system. In Sec. 9.1.1, a graph-
ical depiction of system condition was developed. As discussed in Sec. 4.2.3, well-conditioned 
systems are those where a small change in one or more of the coefficients results in a simi-
lar small change in the solution. Ill-conditioned systems are those where small changes in 
coefficients result in large changes in the solution. An alternative interpretation of ill- 
conditioning is that a wide range of answers can approximately satisfy the equations. Because 
round-off errors can induce small changes in the coefficients, these artificial changes can lead 
to large solution errors for ill-conditioned systems, as illustrated in the following example.

 EXAMPLE 9.6 Ill-Conditioned Systems
Problem Statement. Solve the following system:

x1 + 2x2 = 10 (E9.6.1)
1.1x1 + 2x2 = 10.4 (E9.6.2)

Then, solve it again, but with the coefficient of x1 in the second equation modified 
slightly to 1.05.

Solution. Using Eqs. (9.10) and (9.11), the solution is

x1 =
2(10) − 2(10.4)
1(2) − 2(1.1)

= 4

x2 =
1(10.4) − 1.1(10)

1(2) − 2(1.1)
= 3
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However, with the slight change of the coefficient a21 from 1.1 to 1.05, the result is 
changed dramatically to

x1 =
2(10) − 2(10.4)
1(2) − 2(1.05)

= 8

x2 =
1(10.4) − 1.1(10)

1(2) − 2(1.05)
= 1

 Notice that the primary reason for the discrepancy between the two results is that 
the denominator represents the difference of two almost equal numbers. As illustrated 
previously in Sec. 3.4.2, such differences are highly sensitive to slight variations in the 
numbers being manipulated.
 At this point, you might suggest that substitution of the results into the original 
equations would alert you to the problem. Unfortunately, for ill-conditioned systems this 
is often not the case. Substitution of the erroneous values of x1 = 8 and x2 = 1 into Eqs. 
(E9.6.1) and (E9.6.2) yields

8 + 2(1) = 10 = 10
1.1(8) + 2(1) = 10.8 ≅ 10.4

Therefore, although x1 = 8 and x2 = 1 is not the true solution to the original problem, 
the error check is close enough to possibly mislead you into believing that your solutions 
are adequate.

 As was done previously in the section on graphical methods, a visual representative 
of ill-conditioning can be developed by plotting Eqs. (E9.6.1) and (E9.6.2) (recall Fig. 9.2). 
Because the slopes of the lines are almost equal, it is visually difficult to see exactly where 
they intersect. This visual difficulty is reflected quantitatively in the nebulous results of 
Example 9.6. We can mathematically characterize this situation by writing the two equa-
tions in general form:

a11x1 + a12x2 = b1 (9.24)

a21x1 + a22x2 = b2 (9.25)

Dividing Eq. (9.24) by a12 and Eq. (9.25) by a22 and rearranging yields alternative ver-
sions that are in the format of straight lines [x2 = (slope)x1 + intercept]:

 x2 = −
a11

a12
x1 +

b1

a12

 x2 = −
a21

a22
x1 +

b2

a22

Consequently, if the slopes are nearly equal,

a11

a12
 ≅ 

a21

a22
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or, cross-multiplying,

a11a22 ≅ a12a21

which can be also expressed as

a11a22 − a12a21 ≅ 0 (9.26)

 Now, recalling that a11a22 − a12a2l is the determinant of a two-dimensional system 
[Eq. (9.3)], we arrive at the general conclusion that an ill-conditioned system is one with 
a determinant close to zero. In fact, if the determinant is exactly zero, the two slopes are 
identical, which connotes either no solution or an infinite number of solutions, as is the 
case for the singular systems depicted in Fig. 9.2a and b.
 It is difficult to specify how close to zero the determinant must be to indicate ill-
conditioning. This is complicated by the fact that the determinant can be changed by 
multiplying one or more of the equations by a scale factor without changing the solution. 
Consequently, the determinant is a relative value that is influenced by the magnitude of 
the coefficients.

 EXAMPLE 9.7 Effect of Scale on the Determinant
Problem Statement. Evaluate the determinant of the following systems:

(a) From Example 9.1:

 3x1 + 2x2 = 18 (E9.7.1)

 −x1 + 2x2 = 2  (E9.7.2)

(b) From Example 9.6:

x1 + 2x2 = 10 (E9.7.3)

1.1x1 + 2x2 = 10.4 (E9.7.4)

(c) Repeat (b) but with the equations multiplied by 10.

Solution.

(a) The determinant of Eqs. (E9.7.1) and (E9.7.2), which are well-conditioned, is

D = 3(2) − 2(−1) = 8

(b) The determinant of Eqs. (E9.7.3) and (E9.7.4), which are ill-conditioned, is

D = 1(2) − 2(1.1) = −0.2

(c) The results of (a) and (b) seem to bear out the contention that ill-conditioned systems 
have near-zero determinants. However, suppose that the ill-conditioned system in (b) 
is multiplied by 10 to give

10x1 + 20x2 = 100
11x1 + 20x2 = 104

 The multiplication of an equation by a constant has no effect on its solution. In ad-
dition, it is still ill-conditioned. This can be verified by the fact that multiplying by 
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 As illustrated by the previous example, the magnitude of the coefficients interjects 
a scale effect that complicates the relationship between system condition and determinant 
size. One way to partially circumvent this difficulty is to scale the equations so that the 
maximum element in any row is equal to 1.

 EXAMPLE 9.8 Scaling
Problem Statement. Scale the systems of equations in Example 9.7 to a maximum 
value of 1 and recompute their determinants.

Solution.

(a) For the well-conditioned system, scaling results in

 x1 + 0.667x2 = 6
 −0.5x1 +    x2 = 1

 for which the determinant is

D = 1(1) − 0.667(−0.5) = 1.333

(b) For the ill-conditioned system, scaling gives

 0.5x1 + x2 = 5
 0.55x1 + x2 = 5.2

 for which the determinant is

D = 0.5(1) − 1(0.55) = −0.05

(c) For the last case, scaling changes the system to the same form as in (b) and the 
determinant is also −0.05. Thus, the scale effect is removed.

a constant has no effect on the graphical solution. However, the determinant is 
dramatically affected:

D = 10(20) − 20(11) = −20

 Not only has it been raised two orders of magnitude, but it is now over twice as 
large as the determinant of the well-conditioned system in (a).

 In a previous section (Sec. 9.1.2), we suggested that the determinant is difficult to 
compute for more than three simultaneous equations. Therefore, it might seem that it 
does not provide a practical means for evaluating system condition. However, as de-
scribed in Box 9.1, there is a simple algorithm that results from Gauss elimination that 
can be used to evaluate the determinant.
 Aside from the approach used in the previous example, there are a variety of other 
ways to evaluate system condition. For example, there are alternative methods for nor-
malizing the elements (see Stark 1970). In addition, as described in the next chapter (Sec. 
10.3), the matrix inverse and matrix norms can be employed to evaluate system condition. 
Finally, a simple (but time-consuming) test is to modify the coefficients slightly and 
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repeat the solution. If such modifications lead to drastically different results, the system 
is likely to be ill-conditioned.
 As you might gather from the foregoing discussion, ill-conditioned systems are prob-
lematic. Fortunately, most linear algebraic equations derived from engineering problem 
settings are naturally well-conditioned. In addition, some of the techniques outlined in 
Sec. 9.4 help to alleviate the problem.

9.3.4 Singular Systems
In the previous section, we learned that one way in which a system of equations can be ill-
conditioned is when two or more of the equations are nearly identical. Obviously, it is even 
worse when the equations are identical. In such cases, we would lose one degree of freedom, 
and would be dealing with the impossible case of n − 1 equations with n unknowns. Such 
cases might not be obvious to you, particularly when dealing with large equation sets. Con-
sequently, it would be nice to have some way of automatically detecting singularity.
 The answer to this problem is neatly offered by the fact that the determinant of a 
singular system is zero. This idea can, in turn, be connected to Gauss elimination by 
recognizing that after the elimination step, the determinant can be evaluated as the prod-
uct of the diagonal elements (recall Box 9.1). Thus, a computer algorithm can test to 
discern whether a zero diagonal element is created during the elimination stage. If one 
is discovered, the calculation can be immediately terminated and a message displayed 

 Box 9.1 Determinant Evaluation Using Gauss Elimination

In Sec. 9.1.2, we stated that determinant evaluation by expansion 
of minors was impractical for large sets of equations. Thus, we 
concluded that Cramer’s rule would be applicable only to small 
systems. However, as mentioned in Sec. 9.3.3, the determinant 
has value in assessing system condition. It would, therefore, be 
useful to have a practical method for computing this quantity.
 Fortunately, Gauss elimination provides a simple way to do 
this. The method is based on the fact that the determinant of a 
triangular matrix can be simply computed as the product of its 
diagonal elements:

D = a11a22a33 … ann (B9.1.1)

The validity of this formulation can be illustrated for a 3 by 3 
system:

D = ∣a11 a12 a13

0 a22 a23

0 0 a33
∣

where the determinant can be evaluated as [recall Eq. (9.4)]

D = a11 ∣ a22 a23

0 a33
∣ − a12 ∣ 0 a23

0 a33
∣ + a13 ∣ 0 a22

0 0 ∣
or, by evaluating the minors (that is, the 2 by 2 determinants),

D = a11a22a33 − a12(0) + a13(0) = a11a12a33

 Recall that the forward-elimination step of Gauss elimina-
tion results in an upper triangular system. Because the value of 
the determinant is not changed by the forward-elimination pro-
cess, the determinant can be simply evaluated at the end of this 
step via

D = a11a′22 a″33 … a(n−1)
nn  (B9.1.2)

where the superscripts signify the number of times that the ele-
ments have been modified by the elimination process. Thus, we 
can capitalize on the effort that has already been expended in 
reducing the system to triangular form and, in the bargain, come 
up with a simple estimate of the determinant.
 There is a slight modification to the above approach when 
the program employs partial pivoting (Sec. 9.4.2). For this case, 
the determinant changes sign every time a row is pivoted. One 
way to represent this is to modify Eq. (B9.1.2):

D = a11a′22 
a″33 … a(n−1)

nn (−1)p (B9.1.3)

where p represents the number of times that rows are pivoted. 
This modification can be incorporated simply into a program; 
merely keep track of the number of pivots that take place dur-
ing the course of the computation and then use Eq. (B9.1.3) to 
evaluate the determinant.
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alerting the user. We will show the details of how this is done when we present a full 
algorithm for Gauss elimination later in this chapter.

 9.4 TECHNIQUES FOR IMPROVING SOLUTIONS
The following techniques can be incorporated into the naive Gauss elimination algorithm 
to circumvent some of the pitfalls discussed in the previous section.

9.4.1 Use of More Significant Figures
The simplest remedy for ill-conditioning is to use more significant figures in the compu-
tation. If your application can be extended to handle larger word size, such a feature will 
greatly reduce the problem. However, a price must be paid in the form of the computa-
tional and memory overhead connected with using extended precision (recall Sec. 3.4.1).

9.4.2 Pivoting
As mentioned at the beginning of Sec. 9.3, obvious problems occur when a pivot element 
is zero because the normalization step leads to division by zero. Problems may also arise 
when the pivot element is close to, rather than exactly equal to, zero because if the 
magnitude of the pivot element is small compared to the other elements, then round-off 
errors can be introduced.
 Therefore, before each row is normalized, it is advantageous to determine the largest 
available coefficient in the column below the pivot element. The rows can then be 
switched so that the largest element is the pivot element. This is called partial pivoting. 
If columns as well as rows are searched for the largest element and then switched, the 
procedure is called complete pivoting. Complete pivoting is rarely used because switch-
ing columns changes the order of the x’s and, consequently, adds significant and usually 
unjustified complexity to the computer program. The following example illustrates the 
advantages of partial pivoting. Aside from avoiding division by zero, pivoting also min-
imizes round-off error. As such, it also serves as a partial remedy for ill-conditioning.

 EXAMPLE 9.9 Partial Pivoting
Problem Statement. Use Gauss elimination to solve

 0.0003x1 + 3.0000x2 = 2.0001
 1.0000x1 + 1.0000x2 = 1.0000

Note that in this form the first pivot element, a11 = 0.0003, is very close to zero. Then 
repeat the computation, but partial pivot by reversing the order of the equations. The 
exact solution is x1 = 1∕3 and x2 = 2∕3.

Solution. Multiplying the first equation by 1∕(0.0003) yields

x1 + 10,000x2 = 6667

which can be used to eliminate x1 from the second equation:

−9999x2 = −6666
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which can be solved for

x2 =
2
3

This result can be substituted back into the first equation to evaluate x1:

x1 =
2.0001 − 3(2∕3)

0.0003
 (E9.9.1)

However, due to subtractive cancellation, the result is very sensitive to the number of 
significant figures carried in the computation:

    Absolute Value  
    of Percent  
 Significant   Relative Error  
 Figures x2 x1 for x1

 3 0.667 −3.33 1099
 4 0.6667 0.0000 100
 5 0.66667 0.30000 10
 6 0.666667 0.330000 1
 7 0.6666667 0.3330000 0.1

 Note how the solution for x1 is highly dependent on the number of significant figures. 
This is because in Eq. (E9.9.1), we are subtracting two almost-equal numbers. On the 
other hand, if the equations are solved in reverse order, the row with the larger pivot 
element is normalized. The equations are

1.0000x1 + 1.0000x2 = 1.0000
0.0003x1 + 3.0000x2 = 2.0001

Elimination and substitution yield x2 = 2∕3. For different numbers of significant figures, 
x1 can be computed from the first equation, as in

x1 =
1 − (2∕3)

1
 (E9.9.2)

This case is much less sensitive to the number of significant figures in the computation:

    Absolute Value  
    of Percent  
Significant   Relative Error  
 Figures x2 x1 for x1

 3 0.667 0.333 0.1
 4 0.6667 0.3333 0.01
 5 0.66667 0.33333 0.001
 6 0.666667 0.333333 0.0001
 7 0.6666667 0.3333333 0.00001

Thus, a pivot strategy is much more satisfactory.
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 General-purpose computer programs must include a pivot strategy. Figure 9.5 pro-
vides a simple algorithm to implement such a strategy. Notice that the algorithm consists 
of two major loops. After storing the current pivot element and its row number as the 
variables, big and p, the first loop compares the pivot element with the elements below 
it to check whether any of these is larger than the pivot element. If so, the new largest 
element and its row number are stored in big and p. Then, the second loop switches 
the original pivot row with the one with the largest element so that the latter becomes 
the new pivot row. This pseudocode can be integrated into a program based on the other 
elements of Gauss elimination outlined in Fig. 9.4. The best way to do this is to employ 
a modular approach and write Fig. 9.5 as a subroutine (or procedure) that would be called 
directly after the beginning of the first loop in Fig. 9.4a.
 Note that the second IF/THEN construct in Fig. 9.5 physically interchanges the rows. 
For large matrices, this can become quite time-consuming. Consequently, most codes do 
not actually exchange rows but rather keep track of the pivot rows by storing the ap-
propriate subscripts in a vector. This vector then provides a basis for specifying the 
proper row ordering during the forward-elimination and back-substitution operations. 
Thus, the operations are said to be implemented in place.

9.4.3 Scaling
In Sec. 9.3.3, we proposed that scaling had value in standardizing the size of the deter-
minant. Beyond this application, it has utility in minimizing round-off errors for those 
cases where some of the equations in a system have much larger coefficients than others. 
Such situations are frequently encountered in engineering practice when widely different 
units are used in the development of simultaneous equations. For instance, in electric-
circuit problems, the unknown voltages can be expressed in units ranging from microvolts 
to kilovolts. Similar examples can arise in all fields of engineering. As long as each 
equation is consistent, the system will be technically correct and solvable. However, the 
use of widely differing units can lead to coefficients of widely differing magnitudes. 
This, in turn, can have an impact on round-off error as it affects pivoting, as illustrated 
by the following example.

 EXAMPLE 9.10 Effect of Scaling on Pivoting and Round-Off
Problem Statement.

(a) Solve the following set of equations using Gauss elimination and a pivoting strategy:

 2x1 + 100,000x2 = 100,000
 x1 +    x2 = 2

(b) Repeat the solution after scaling the equations so that the maximum coefficient in 
each row is 1.

(c) Finally, use the scaled coefficients to determine whether pivoting is necessary. How-
ever, actually solve the equations with the original coefficient values. For all cases, 
retain only three significant figures. Note that the correct answers are x1 = 1.00002 
and x2 = 0.99998 or, for three significant figures, x1 = x2 = 1.00.

		p	=	k
		big	=	|ak,k|
		DOFOR	ii	=	k+1,	n
				dummy	=	|aii,k|
				IF	(dummy	>	big)
						big	=	dummy
						p	=	ii
			END	IF
	END	DO
	IF	(p	≠	k)
			DOFOR	jj	=	k,	n
						dummy	=	ap,jj
						ap,jj	=	ak,jj
						ak,jj	=	dummy
			END	DO
			dummy	=	bp
			bp	=	bk
			bk	=	dummy
	END	IF

FIGURE 9.5
Pseudocode to implement 
 partial pivoting.
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Solution. 

(a) Without scaling, forward elimination is applied to give

 2x1 + 100,000x2 = 100,000
 −50,000x2 = −50,000

 which can be solved by back substitution for

 x2 = 1.00
 x1 = 0.00

 Although x2 is correct, x1 is 100% in error because of round-off.
(b) Scaling transforms the original equations to

 0.00002x1 + x2 = 1
 x1 + x2 = 2

 Therefore, the rows should be pivoted to put the greatest value on the diagonal.

 x1 + x2 = 2
 0.00002x1 + x2 = 1

 Forward elimination yields

 x1 + x2 = 2
 x2 = 1.00

 which can be solved for

x1 = x2 = 1

 Thus, scaling leads to the correct answer.
(c) The scaled coefficients indicate that pivoting is necessary. We therefore pivot but 

retain the original coefficients to give

 x1 +  x2 = 2
 2x1 + 100,000x2 = 100,000

 Forward elimination yields

x1 +    x2 = 2
  100,000x2 = 100,000

 which can be solved for the correct answer: x1 = x2 = 1. Thus, scaling was useful 
in determining whether pivoting was necessary, but the equations themselves did not 
require scaling to arrive at a correct result.
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 As in the previous example, scaling has utility in minimizing round-off. However, it 
should be noted that scaling itself also leads to round-off. For example, given the equation

2x1 + 300,000x2 = 1

and using three significant figures, scaling leads to

0.00000667x1 + x2 = 0.00000333

Thus, scaling introduces a round-off error to the first coefficient and the right-hand-side 
constant. For this reason, it is sometimes suggested that scaling should be employed only 
as in part (c) of the preceding example. That is, it is used to calculate scaled values for 
the coefficients solely as a criterion for pivoting, but the original coefficient values are 
retained for the actual elimination and substitution computations. This involves a trade-
off if the determinant is being calculated as part of the program. That is, the resulting 
determinant will be unscaled. However, because many applications of Gauss elimination 
do not require determinant evaluation, it is the most common approach and will be used 
in the algorithm in the next section.

9.4.4 Computer Algorithm for Gauss Elimination
The algorithms from Figs. 9.4 and 9.5 can now be combined into a larger algorithm to 
implement the entire Gauss elimination algorithm. Figure 9.6 shows an algorithm for a 
general subroutine to implement Gauss elimination.
 Note that the program includes modules for the three primary operations of the 
Gauss elimination algorithm: forward elimination, back substitution, and pivoting. In 
addition, there are several aspects of the code that differ and represent improvements 
over the pseudocodes from Figs. 9.4 and 9.5. These are

 The equations are not scaled, but scaled values of the elements are used to determine 
whether pivoting is to be implemented.

 The diagonal term is monitored during the pivoting phase to detect near-zero occurrences 
in order to flag singular systems. If it passes back a value of er = −1, a singular 
matrix has been detected and the computation should be terminated. A parameter tol 
is set by the user to a small number in order to detect near-zero occurrences.

 EXAMPLE 9.11 Solution of Linear Algebraic Equations Using the Computer
Problem Statement. A computer program to solve linear algebraic equations such 
as one based on Fig. 9.6 can be used to solve a problem associated with the falling 
parachutist example discussed in Chap. 1. Suppose that a team of three parachutists 
is connected by a weightless cord while free-falling at a velocity of 5 m/s (Fig. 9.7). 
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FIGURE 9.6
Pseudocode to implement Gauss elimination with partial pivoting.

SUB	Gauss(a,	b,	n,	x,	tol,	er)
	 DIMENSION	s(n)
	 er	=	0
	 DOFOR	i	=	1,	n
	 	 si	=	ABS(ai,1)
	 	 DOFOR	j	=	2,	n
	 	 	 IF	ABS(ai,j)>si	THEN	si	=	ABS(ai,j)
	 	 END	DO
	 END	DO
	 CALL	Eliminate(a,	s,	n,	b,	tol,	er)
	 IF	er	≠	−1	THEN
	 	 	 CALL	Substitute(a,	n,	b,	x)
	 END	IF
END	Gauss

SUB	Eliminate(a,	s,	n,	b,	tol,	er)
	 DOFOR	k	=	1,	n	−	1
	 	 CALL	Pivot	(a,	b,	s,	n,	k)
	 	 IF	ABS	(ak,k/sk)	<	tol	THEN
	 	 	 er	=	−1
	 	 	 EXIT	DO
	 	 END	IF
	 	 DOFOR	i	=	k	+	1,	n
	 	 	 factor	=	ai,k/ak,k
	 	 	 DOFOR	j	=	k	+	1,	n
	 	 	 	 ai,j	=	ai,j	−	factor*ak,j
	 	 	 END	DO
	 	 	 bi	=	bi	−	factor	*	bk
	 	 END	DO
	 END	DO
	 IF	ABS(an,n/sn)	<	to1	THEN	er	=	−1
END	Eliminate

SUB	Pivot(a,	b,	s,	n,	k)
	 p	=	k
	 big	=	ABS(ak,k/sk)
	 DOFOR	ii	=	k	+	1,	n
	 	 dummy	=	ABS(aii,k/sii)
	 	 IF	dummy	>	big	THEN
	 	 	 								big	=	dummy
	 	 	 								p	=	ii
	 	 END	IF
	 END	DO
	 IF	p	≠	k	THEN
	 	 	DOFOR	jj	=	k,	n
	 	 	 	dummy	=	ap,jj
	 	 	 	ap,jj	=	ak,jj
	 	 	 	ak,jj	=	dummy
	 	 	END	DO
	 	 	dummy	=	bp
	 	 	bp	=	bk
	 	 	bk	=	dummy
	 	 	dummy	=	sp
	 	 	sp	=	sk
	 	 	sk	=	dummy
	 END	IF
END	pivot

SUB	Substitute(a,	n,	b,	x)
	 xn	=	bn/an,n
	 DOFOR	i	=	n	−	1,	1,	−1
	 	 sum	=	0
	 	 DOFOR	j	=	i	+	1,	n
	 	 	 sum	=	sum	+	ai,j	*	xj
	 	 END	DO
	 	 xn	=	(bn	−	sum)	/	an,n
	 END	DO
END	Substitute
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Solution. Free-body diagrams for each of the parachutists are depicted in Fig. 9.8. 
Summing the forces in the vertical direction and using Newton’s second law gives a set 
of three simultaneous linear equations:

m1g − T − c1υ   = m1a

m2g + T − c2υ − R = m2a

m3g  − c3υ + R = m3a

These equations have three unknowns: a, T, and R. After substituting the known values, 
the equations can be expressed in matrix form as (g = 9.81 m/s2),

[
70  1  0
60 −1  1
40  0 −1] {

a

T

R} = {
636.7
518.6
307.4}

This system can be solved using your own software. The result is a = 8.6041 m/s2;  
T = 34.4118 N; and R = 36.7647 N.

FIGURE 9.7
Three parachutists free-falling 
while connected by weightless 
cords.

R

T

1

2

3

a

T

m3g

R

TR m2g m1g

c3v c2v c1v

3 2 1

FIGURE 9.8
Free-body diagrams for each of the three falling parachutists.

Parachutist Mass, kg Drag Coefficient, kg/s

 1 70 10
 2 60 14
 3 40 17

Calculate the tension in each section of cord and the acceleration of the team, given 
the following:
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 9.5 COMPLEX SYSTEMS
In some problems, it is possible to obtain a complex system of equations

[C]{Z} = {W} (9.27)

where

 [C] = [A] + i[B]
 {Z} = {X} + i{Y}
 {W} = {U} + i{V} (9.28)

and i = √−1.
 The most straightforward way to solve such a system is to employ one of the algo-
rithms described in this part of the book, but replace all real operations with complex 
ones. Of course, this is only possible for those languages, such as Fortran, that allow 
complex variables.
 For languages that do not permit the declaration of complex variables, it is possible 
to write a code to convert real to complex operations. However, this is not a trivial task. 
An alternative is to convert the complex system into an equivalent one dealing with real 
variables. This can be done by substituting Eq. (9.28) into Eq. (9.27) and equating real 
and complex parts of the resulting equation to yield

[A]{X} − [B]{Y} = {U} (9.29)

and

[B]{X} + [A]{Y} = {V} (9.30)

 Thus, the system of n complex equations is converted to a set of 2n real ones. This 
means that storage and execution time will be increased significantly. Consequently, a 
trade-off exists regarding this option. If you evaluate complex systems infrequently, it is 
preferable to use Eqs. (9.29) and (9.30) because of their convenience. However, if you 
use them often and desire to employ a language that does not allow complex data types, 
it may be worth the up-front programming effort to write a customized equation solver 
that converts real to complex operations.

 9.6 NONLINEAR SYSTEMS OF EQUATIONS
Recall that at the end of Chap. 6 we presented an approach for solving two nonlinear 
equations with two unknowns. This approach can be extended to the general case of 
solving n simultaneous nonlinear equations.

 f1(x1, x2, … , xn) = 0
 f2(x1, x2, … , xn) = 0
 . .
 . . (9.31)
 . .
 fn(x1, x2, … , xn) = 0
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The solution of this system consists of the set of x values that simultaneously result in 
all the equations equaling zero.
 As described in Sec. 6.6.2, one approach to solving such systems is based on a 
multiequation version of the Newton-Raphson method. Thus, a Taylor series expansion 
is written for each equation. For example, for the kth equation,

fk,i+1 = fk,i + (x1,i+1 − x1,i)
∂fk,i

∂x1
+ (x2,i+1 − x2,i)

∂fk,i

∂x2
+ … + (xn,i+1 − xn,i)

∂fk,i

∂xn

  

(9.32)

where the first subscript, k, represents the equation or unknown and the second subscript 
denotes whether the value or function in question is at the present value (i) or at the next 
value (i + 1).
 Equations of the form of (9.32) are written for each of the original nonlinear equa-
tions. Then, as was done in deriving Eq. (6.21) from (6.20), all fk,i+1 terms are set to zero, 
as would be the case at the root, and Eq. (9.32) can be written as

−fk,i + x1,i 
∂fk,i

∂x1
+ x2,i 

∂fk,i

∂x2
+ … + xn,i 

∂fk,i

∂xn

= x1,i+1
∂fk,i

∂x1
+ x2,i+1

∂fk,i

∂x2
+ … + xn,i+1

∂fk,i

∂xn

 (9.33)

Notice that the only unknowns in Eq. (9.33) are the xk,i+1 terms on the right-hand side. 
All other quantities are located at the present value (i) and, thus, are known at any 
 iteration. Consequently, the set of equations generally represented by Eq. (9.33) (that is, 
with k = 1, 2, . . . , n) constitutes a set of linear simultaneous equations that can be 
solved by methods elaborated in this part of the book.
 Matrix notation can be employed to express Eq. (9.33) concisely. The partial 
 derivatives can be expressed as

[Z] = [

∂f1,i

∂x1

∂f1,i

∂x2
… ∂f1,i

∂xn

∂f2,i

∂x1

∂f2,i

∂x2
… ∂f2,i

∂xn

. . .

. . .

. . .
∂fn,i

∂x1

∂fn,i

∂x2
…

∂fn,i

∂xn

] (9.34)

The initial and final values can be expressed in vector form as

{Xi}T =⌊x1,i x2,i …   xn,i⌋

and

{Xi+1}T =⌊x1,i+1 x2,i+1 … xn,i+1⌋
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Finally, the function values at i can be expressed as

{Fi}T = ⌊  f1,i  f2,i … fn,i⌋

Using these relationships, Eq. (9.33) can be represented concisely as

[Z]{Xi+1} = −{Fi} + [Z]{Xi} (9.35)

Equation (9.35) can be solved using a technique such as Gauss elimination. This process 
can be repeated iteratively to obtain refined estimates in a fashion similar to the two-
equation case in Sec. 6.6.2.
 It should be noted that there are two major shortcomings to the foregoing approach. 
First, Eq. (9.34) is often inconvenient to evaluate. Therefore, variations of the Newton-
Raphson approach have been developed to circumvent this dilemma. As might be ex-
pected, most are based on using finite-difference approximations for the partial derivatives 
that comprise [Z].
 The second shortcoming of the multiequation Newton-Raphson method is that excel-
lent initial guesses are usually required to ensure convergence. Because these are often 
difficult to obtain, alternative approaches that are slower than Newton-Raphson but which 
have better convergence behavior have been developed. One common approach is to 
reformulate the nonlinear system as a single function

F(x) =∑
n

i=1
[ fi(x1, x2, … , xn) ]2 (9.36)

where fi(xl, x2, . . . , xn) is the ith member of the original system of Eq. (9.31). The values 
of x that minimize this function also represent the solution of the nonlinear system. As 
we will see in Chap. 17, this reformulation is used for a class of problems called nonlin-
ear regression. As such, it can be approached with a number of optimization techniques 
such as the ones described later in this text (Part Four and specifically Chap. 14).

 9.7 GAUSS-JORDAN
The Gauss-Jordan method is a variation of Gauss elimination. The major difference is that 
when an unknown is eliminated in the Gauss-Jordan method, it is eliminated from all other 
equations rather than just the subsequent ones. In addition, all rows are normalized by 
dividing them by their pivot elements. Thus, the elimination step results in an identity 
matrix rather than a triangular matrix (Fig. 9.9). Consequently, it is not necessary to employ 
back substitution to obtain the solution. The method is best illustrated by an example.

 EXAMPLE 9.12 Gauss-Jordan Method
Problem Statement. Use the Gauss-Jordan technique to solve the same system as in 
Example 9.5:

3x1 − 0.1x2 − 0.2x3 = 7.85
0.1x1 + 7x2 − 0.3x3 = −19.3
0.3x1 − 0.2x2 + 10x3 = 71.4

[
a11  a12  a13 b1

a21  a22  a23 b2

a31  a32  a33 b3
]

↓

[
1  0  0  b(n)

1

0  1  0  b(n)
2

0  0  1  b(n)
3

] 

↓
x1     =    b(n)

1

   x2     =    b(n)
2

   x3     =    b(n)
3

FIGURE 9.9
Graphical depiction of the 
Gauss-Jordan method. Com-
pare with Fig. 9.3 to under-
stand the differences between 
this technique and Gauss elim-
ination. The superscript (n) 
means that the elements of 
the right-hand-side vector 
have been modified n times 
(for this case, n = 3).
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Solution. First, express the coefficients and the constants on the right-hand side as an 
augmented matrix:

[
3 −0.1 −0.2    7.85

0.1 7 −0.3 −19.3
0.3 −0.2    10    71.4]

Then normalize the first row by dividing it by the pivot element, 3, to yield

[
1 −0.0333333 −0.066667 2.61667

0.1 7 −0.3 −19.3
0.3 −0.2 10 71.4 ]

The x1 term can be eliminated from the second row by subtracting 0.1 times the first row 
from the second row. Similarly, subtracting 0.3 times the first row from the third row will 
eliminate the x1 term from the third row:

[
1 −0.0333333 −0.066667     2.61667
0 7.00333 −0.293333 −19.5617
0 −0.190000 10.0200     70.6150]

Next, normalize the second row by dividing it by 7.00333:

[
1 −0.0333333 −0.066667    2.61667
0 1 −0.0418848 −2.79320
0 −0.190000 10.0200    70.6150]

Reduction of the x2 terms from the first and third equations gives

[
1 0 −0.0680629    2.52356
0 1 −0.0418848 −2.79320
0 0 10.01200    70.0843]

The third row is then normalized by dividing it by 10.0120:

[
1 0 −0.0680629    2.52356
0 1 −0.0418848 −2.79320
0 0 1   7.0000 ]

Finally, the x3 terms can be reduced from the first and the second equations to give

[
1 0 0    3.0000
0 1 0 −2.5000
0 0 1    7.0000]

Thus, as depicted in Fig. 9.9, the coefficient matrix has been transformed to the identity 
matrix, and the solution is obtained in the right-hand-side vector. Notice that no back 
substitution was required to obtain the solution.
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 All the material in this chapter regarding the pitfalls and improvements in Gauss 
elimination also applies to the Gauss-Jordan method. For example, a similar pivoting 
strategy can be used to avoid division by zero and to reduce round-off error.
 An algorithm to implement Gauss-Jordan for an augmented matrix (i.e., with the 
right-hand-side constants appended as an additional column to the coefficient matrix) 
without partial pivoting is displayed in Fig. 9.10. Although the Gauss-Jordan technique 
and Gauss elimination might appear almost identical, the former requires more work. 
Using a similar approach to Sec. 9.2.1, it can be determined that the number of flops 
involved in naive Gauss-Jordan is

n3 + 3n2 − 2n ————→as n increases
n3 + O(n2) (9.37)

Thus, Gauss-Jordan involves approximately 50 percent more operations than Gauss elim-
ination [compare with Eq. (9.23)]. Therefore, Gauss elimination is the simple elimination 
method of preference for obtaining solutions of linear algebraic equations. One of the 
primary reasons that we have introduced the Gauss-Jordan, however, is that it is still used 
in engineering as well as in some numerical algorithms.

SUB GaussJordan(aug, m, n, x)
DOFOR k = 1, m
 d = aug(k, k)
 DOFOR j = 1, n
  aug(k, j) = aug(k, j)/d
 END DO
 DOFOR i = 1, m
   IF i ≠ k THEN
     d = aug(i, k)
     DOFOR j = k, n
              aug(i, j) = aug(i, j) − d*aug(k, j)
            END DO
                  END IF
 END DO
END DO
DOFOR k = 1, m
 x(k) = aug(k, n)
END DO
END GaussJordan

FIGURE 9.10
Pseudocode to implement the 
Gauss-Jordan algorithm with-
out partial pivoting.

 9.8 SUMMARY
In summary, we have devoted most of this chapter to Gauss elimination, the most fun-
damental method for solving simultaneous linear algebraic equations. Although it is one 
of the earliest techniques developed for this purpose, it is nevertheless an extremely ef-
fective algorithm for obtaining solutions for many engineering problems. Aside from this 
practical utility, focusing on this method also provided a context for our discussion of 
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PROBLEMS

9.1
(a) Write the following set of equations in matrix form:

40 = 5x3 + 2x1

10 − x2 = x3

4x2 + 8xl = 21

(b) Multiply the matrix of coefficients by its transpose; i.e., [A][A]T.
9.2 A number of matrices are defined as

[A] = [
4 5
1 2
5 6]  [B] = [

4 3 7
1 2 6
2 0 4]

{C} = {
3
5
1}  [D] = [

9 4 3 −6
2 −1 6 5 ]

[E] = [
1 5 9
7 2 3
4 0 6]

[F] = [
2 0 1
1 7 3]  ⌊G⌋ = ⌊7 5 4⌋

Answer the following questions regarding these matrices:
(a) What are the dimensions of the matrices?
(b) Identify the square, column, and row matrices.
(c) What are the values of the elements: a12, b23, d32, e22, f12, g12?
(d) Perform the following operations:

(1) [E] + [B] (7) [B] × [A]
(2) [A] × [F] (8) [D]T

(3) [B] − [E]  (9) [A] × {C}
(4) 8 × [B] (10) [I] × [B]
(5) [A] × [B] (11) [E]T[E]
(6) {C}T  (12) {C}T{C}

9.3 Three matrices are defined as

[A] = [
1 5
3 10

−4 3 ] [B] = [
4 3

0.5 2] [C] = [
2 −2

−3 5 ]

(a) Perform all possible multiplications that can be computed 
 between pairs of these matrices.

(b) Use the method in Box PT3.2 to justify why the remaining 
pairs cannot be multiplied.

(c) Use the results of (a) to illustrate why the order of multiplica-
tion is important.

9.4 Use the graphical method to solve

2x1 − 6x2 = −18
−x1 + 8x2 = 40

Check your results by substituting them back into the equations.
9.5 Given the system of equations

0.77x1 + x2 = 14.25
1.2x1 + 1.7x2 = 20

(a) Solve graphically and check your results by substituting them 
back into the equations.

(b) On the basis of the graphical solution, what do you expect 
 regarding the condition of the system?

(c) Compute the determinant.
(d) Solve by the elimination of unknowns.
9.6 For the set of equations

2x2 + 5x3 = 1
2x1 + x2 + x3 = 1
3x1 + x2 = 2

(a) Compute the determinant.
(b) Use Cramer’s rule to solve for the x’s.
(c) Substitute your results back into the original equations to check 

your results.

general issues such as round-off, scaling, and conditioning. In addition, we briefly pre-
sented material on the Gauss-Jordan method, as well as complex and nonlinear systems.
 Answers obtained using Gauss elimination may be checked by substituting them into 
the original equations. However, this does not always represent a reliable check for 
 ill-conditioned systems. Therefore, some measure of condition, such as the determinant 
of the scaled system, should be computed if round-off error is suspected. Using partial 
pivoting and more significant figures in the computation are two options for mitigating 
round-off error. In the next chapter, we will return to the topic of system condition when 
we discuss the matrix inverse.
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9.12 Use Gauss-Jordan elimination to solve:

2x1 + x2 − x3 = 2

5x1 + 2x2 + 2x3 = 9

3x1 + x2 + x3 = 5

Do not employ pivoting. Check your answers by substituting them 
into the original equations.
9.13 Solve:

x1 + x2 − x3 = −3

6x1 + 2x2 + 2x3 = 2

−3x1 + 4x2 + x3 = 1

with (a) naive Gauss elimination, (b) Gauss elimination with par-
tial pivoting, and (c) Gauss-Jordan without partial pivoting.
9.14  Perform the same computation as in Example 9.11, but use 
five parachutists with the following characteristics:

Parachutist Mass, kg Drag Coefficient, kg/s

 1 60 10
 2 75 12
 3 60 15
 4 75 16
 5 90 10

The parachutists have a velocity of 9 m/s.
9.15 Solve

[
3 + 2i 4
− i 1]{

z1

z2}
= {

2 + i

3 }

9.16 Develop, debug, and test a program in either a high-level lan-
guage or a macro language of your choice to multiply two 
 matrices—that is, [X] = [Y][Z], where [Y] is m by n and [Z] is n by 
p. Test the program using the matrices from Prob. 9.3.
9.17 Develop, debug, and test a program in either a high-level lan-
guage or a macro language of your choice to generate the transpose 
of a matrix. Test it on the matrices from Prob. 9.3.
9.18 Develop, debug, and test a program in either a high-level lan-
guage or a macro language of your choice to solve a system of 
equations with Gauss elimination with partial pivoting. Base the 
program on the pseudocode from Fig. 9.6. Test the program using 
the following system (which has an answer of x1 = x2 = x3 = 2),

x1 + 2x2 − x3 = 4

5x1 + 2x2 + 2x3 = 18

−3x1 + 5x2 − x3 = 2

9.19 Three masses are suspended vertically by a series of identi-
cal springs where mass 1 is at the top and mass 3 is at the bottom. 

9.7 Given the equations

0.5x1 − x2 = −9.5

1.02x1 − 2x2 = −18.8

(a) Solve graphically.
(b) Compute the determinant.
(c) On the basis of (a) and (b), what would you expect regarding 

the system’s condition?
(d) Solve by the elimination of unknowns.
(e) Solve again, but with a11 modified slightly to 0.52. Interpret 

your results.
9.8 Given the equations

10x1 + 2x2 − x3 = 27

−3x1 − 6x2 + 2x3 = −61.5

x1 + x2 + 5x3 = −21.5

(a) Solve by naive Gauss elimination. Show all steps of the compu-
tation.

(b) Substitute your results into the original equations to check your 
answers.

9.9 Use Gauss elimination to solve:

8x1 + 2x2 − 2x3 = 8

10x1 + 2x2 + 4x3 = 16

12x1 + 2x2 + 2x3 = 16

Employ partial pivoting, and check your answers by substituting 
them into the original equations.
9.10 Given the system of equations

−3x2 + 7x3 = 2

x1 + 2x2 − x3 = 3

5x1 − 2x2 = 2

(a) Compute the determinant.
(b) Use Cramer’s rule to solve for the x’s.
(c) Use Gauss elimination with partial pivoting to solve for the x’s.
(d) Substitute your results back into the original equations to check 

your solution.
9.11 Given the equations

2x1 − 6x2 − x3 = −38

−3x1 − x2 + 7x3 = −34

−8x1 + x2 − 2x3 = −20

(a) Solve by Gauss elimination with partial pivoting. Show all 
steps of the computation.

(b) Substitute your results into the original equations to check your 
answers.
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 program using the same system as in Prob. 9.18. Compute the total 
number of flops in your algorithm to verify Eq. 9.37.
9.23 Suppose we want to add a number of vectors multiplied by 
scalars. For example,

{
y1

y2

y3
} = 2{

6
−8
−1} + 7{

−3
2
5 } − 6{

4
2
1} + 3{

−2
−8
9 }

or for the more general case where there can be m additions and the 
vectors can be any length, n,

{y} = c1{x}1 + c2{x}2 + ··· + cm{x}m

Develop, debug, and test a program in either a high-level language 
or a macro language of your choice to perform this calculation us-
ing nested loops and subscripted variables. Test the program using 
the first equation above. Derive a simple formula to compute the 
number of flops as a function of m and n.

If g = 9.81 m/s2, m1 = 2 kg, m2 = 3 kg, m3 = 2.5 kg, and the  
k’s = 10 kg/s2, solve for the displacements x.
9.20 Develop, debug, and test a program in either a high-level lan-
guage or a macro language of your choice to solve a system of n 
simultaneous nonlinear equations based on Sec. 9.6. Test the pro-
gram by solving Prob. 7.13.
9.21 Recall from Sec. 8.2 that determining the chemistry of water 
exposed to atmospheric CO2 can be determined by solving five 
nonlinear equations (Eqs. 8.6 through 8.10) for five unknowns: cT, 
[HCO3

−], [CO3
2−], [H+], and [OH−]. Employing the parameters from 

Sec. 8.2 and the program developed in Prob. 9.20, solve this system 
for conditions in 1958 when the partial pressure of CO2 was 
315 ppm. Use your results to compute the pH.
9.22 Develop, debug, and test a program in either a high-level lan-
guage or a macro language of your choice to solve a system of 
equations with Gauss-Jordan elimination without partial pivoting. 
Base the program on the pseudocode from Fig. 9.10. Test the 
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C H A P T E R

10
LU Decomposition and  
Matrix Inversion

This chapter deals with a class of elimination methods called LU decomposition tech-
niques, where the “LU” stands for “Lower Upper.” The primary appeal of LU decompo-
sition is that the time-consuming elimination step can be formulated so that it involves 
only operations on the matrix of coefficients, [A]. Thus, it is well suited for those situ-
ations where many right-hand-side vectors {B} must be evaluated for a single value of 
[A]. Although there are a variety of ways in which this is done, we will focus on show-
ing how the Gauss elimination method can be implemented as an LU decomposition.
 One motive for introducing LU decomposition is that it provides an efficient means 
to compute the matrix inverse. The inverse has a number of valuable applications in 
engineering practice. It also provides a means for evaluating system condition.

 10.1 LU DECOMPOSITION
As described in Chap. 9, Gauss elimination is designed to solve systems of linear alge-
braic equations,

[A]{X} = {B} (10.1)

Although it certainly represents a sound way to solve such systems, it becomes inefficient 
when solving equations with the same coefficients [A], but with different right-hand-side 
constants (the b’s).
 Recall that Gauss elimination involves two steps: forward elimination and back 
 substitution (Fig. 9.3). Of these, the forward-elimination step comprises the bulk of the 
computational effort (recall Table 9.1). This is particularly true for large systems of 
equations.
 LU decomposition methods separate the time-consuming elimination of the matrix 
[A] from the manipulations of the right-hand side {B}. Thus, once [A] has been “decom-
posed,” multiple right-hand-side vectors can be evaluated in an efficient manner.
 Interestingly, Gauss elimination itself can be expressed as an LU decomposition. 
Before showing how this can be done, let us first provide a mathematical overview of 
the decomposition strategy.
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10.1.1 Overview of LU Decomposition
Just as was the case with Gauss elimination, LU decomposition requires pivoting to avoid 
division by zero. However, to simplify the following description, we will defer the issue 
of pivoting until after the fundamental approach is elaborated. In addition, the following 
explanation is limited to a set of three simultaneous equations. The results can be directly 
extended to n-dimensional systems.
 Equation (10.1) can be rearranged to give

[A]{X} − {B} = 0 (10.2)

Suppose that Eq. (10.2) could be expressed as an upper triangular system:

[
u11 u12 u13

0 u22 u23

0 0 u33
]   {

x1

x2

x3
} = {

d1

d2

d3
}  (10.3)

Recognize that this is similar to the manipulation that occurs in the first step of Gauss 
elimination. That is, elimination is used to reduce the system to upper triangular form. 
Equation (10.3) can also be expressed in matrix notation and rearranged to give

[U]{X} − {D} = 0 (10.4)

 Now, assume that there is a lower diagonal matrix with 1’s on the diagonal,

[L] = [
1 0 0
l21 1 0
l31 l32 1]  (10.5)

that has the property that when Eq. (10.4) is premultiplied by it, Eq. (10.2) is the result. 
That is,

[L]{[U]{X} − {D}} = [A]{X} − {B} (10.6)

If this equation holds, it follows from the rules for matrix multiplication that

[L] [U] = [A] (10.7)

and

[L]{D} 5 {B} (10.8)

 A two-step strategy (see Fig. 10.1) for obtaining solutions can be based on Eqs. (10.4), 
(10.7), and (10.8):

1.  LU decomposition step. [A] is factored, or “decomposed,” into lower [L] and upper 
[U] triangular matrices.

2.  Substitution step. [L] and [U] are used to determine a solution {X} for the right-
hand-side {B}. This step itself consists of two steps. First, Eq. (10.8) is used to 
generate an intermediate vector {D} by forward substitution. Then, the result is 
substituted into Eq. (10.4), which can be solved by back substitution for {X}.

 Now, let us show how Gauss elimination can be implemented in this way.
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10.1.2 LU Decomposition Version of Gauss Elimination
Although it might appear at face value to be unrelated to LU decomposition, Gauss 
elimination can be used to decompose [A] into [L] and [U]. This can be easily seen for 
[U], which is a direct product of the forward elimination. Recall that the forward-
elimination step is intended to reduce the original coefficient matrix [A] to the form

[U] = [
a11 a12 a13

0 a′22 a′23

0 0 a″33
]  (10.9)

which is in the desired upper triangular format.
 Though it might not be as apparent, the matrix [L] is also produced during the step. 
This can be readily illustrated for a three-equation system,

[
a11 a12 a13

a21 a22 a23

a31 a32 a33
] {

x1

x2

x3
} = {

b1

b2

b3
}

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.13)]

f 21 =
a21

a11

and subtract the result from the second row to eliminate a21. Similarly, row 1 is multiplied by

f 31 =
a31

a11

FIGURE 10.1
The steps in LU decomposition.

A X

X

X

B

B

D

D

DU

L

LU

=

=

Substitution

=

(b) Forward

(c) Backward

(a) Decomposition
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and the result is subtracted from the third row to eliminate a31. The final step is to mul-
tiply the modified second row by

f 32 =
a′32

a′22

and subtract the result from the third row to eliminate a′32.
 Now suppose that we merely perform all these manipulations on the matrix [A]. 
Clearly, if we do not want to change the equation, we also have to do the same to the 
right-hand side, {B}. But there is absolutely no reason that we have to perform the ma-
nipulations simultaneously. Thus, we could save the f’s and manipulate {B} later.
 Where do we store the factors f21, f31, and f32? Recall that the whole idea behind the 
elimination was to create zeros in a21, a31, and a32. Thus, we can store f21 in a21, f31 in 
a31, and f32 in a32. After elimination, the [A] matrix can therefore be written as

[   

a11 a12 a13

f21 a′22 a′23

f31 f32 a″33
]  (10.10)

This matrix, in fact, represents an efficient storage of the LU decomposition of [A],

[A] → [L] [U] (10.11)

where

[U] = [
a11 a12 a13

0 a′22 a′23

0 0 a″33
]

and

[L] = [   

1 0 0
f 21 1 0
f 31 f 32 1]

The following example confirms that [A] = [L][U].

 EXAMPLE 10.1 LU Decomposition with Gauss Elimination
Problem Statement. Derive an LU decomposition based on the Gauss elimination 
performed in Example 9.5.

Solution. In Example 9.5, we solved the matrix

[A] = [
3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10 ]

After forward elimination, the following upper triangular matrix was obtained:

[U] = [
3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120 ]
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 The factors employed to obtain the upper triangular matrix can be assembled into a 
lower triangular matrix. The elements a21 and a31 were eliminated by using the factors

f 21 =
0.1
3

= 0.03333333  f 31 =
0.3
3

= 0.1000000

and the element a′32 was eliminated by using the factor

f 32 =
−0.19

7.00333
= −0.0271300

Thus, the lower triangular matrix is

[L] = [
1 0 0

0.0333333 1 0
0.100000 −0.0271300 1]

Consequently, the LU decomposition is

[A] = [L] [U] = [
1 0 0

0.0333333 1 0
0.100000 −0.0271300 1][

3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120 ]

This result can be verified by performing the multiplication [L][U] to give

[L] [U] = [
3 −0.1 −0.2

0.0999999 7 −0.3
0.3 −0.2 9.99996]

where the minor discrepancies are due to round-off.

 The following is pseudocode for a subroutine to implement the decomposition phase:

SUB Decompose(a, n)
 DOFOR k = 1, n − 1
  DOFOR i = k + 1, n
   factor = ai,k/ak,k
   ai,k = factor
   DOFOR j = k + 1, n
    ai,j = ai,j − factor * ak,j
   END DO
  END DO
 END DO
END Decompose

Notice that this algorithm is “naive” in the sense that pivoting is not included. This 
feature will be added later when we develop the full algorithm for LU decomposition.
 After the matrix is decomposed, a solution can be generated for a particular right-
hand-side vector {B}. This is done in two steps. First, a forward-substitution step is 
executed by solving Eq. (10.8) for {D}. It is important to recognize that this merely 
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amounts to performing the elimination manipulations on {B}. Thus, at the end of this 
step, the right-hand side will be in the same state that it would have been had we per-
formed forward manipulation on [A] and {B} simultaneously.
 The forward-substitution step can be represented concisely as

di = bi −∑
i−1

j=1
ai jdj   for i = 2, 3, … , n (10.12)

 The second step then merely amounts to implementing back substitution, as in Eq. 
(10.4). Again, it is important to recognize that this is identical to the back-substitution 
phase of conventional Gauss elimination. Thus, in a fashion similar to Eqs. (9.16) and 
(9.17), the back-substitution step can be represented concisely as

xn = dn∕ann (10.13)

xi =
di − ∑

n

j=i+1
ai j xj

aii
   for i = n − 1, n − 2, … , 1 (10.14)

 EXAMPLE 10.2 The Substitution Steps
Problem Statement. Complete the problem initiated in Example 10.1 by generating 
the final solution with forward and back substitution.

Solution. As stated above, the intent of forward substitution is to impose the elimination 
manipulations, which we had formerly applied to [A], on the right-hand-side vector {B}. 
Recall that the system being solved in Example 9.5 was

[
3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10 ] {

x1

x2

x3
} = {

7.85
−19.3
71.4 }

and that the forward-elimination phase of conventional Gauss elimination resulted in

[
3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120 ] {

x1

x2

x3
} = {

7.85
−19.5617
70.0843 }  (E10.2.1)

 The forward-substitution phase is implemented by applying Eq. (10.7) to this case,

[
1 0 0

0.0333333 1 0
0.100000 −0.0271300 1] {

d1

d2

d3
} = {

7.85
−19.3
71.4 }

or, multiplying out the left-hand side,

                 d1  = 7.85
0.0333333d1 +     d2  = −19.3
       0.1d1 − 0.02713d2 + d3 = 71.4

cha32077_ch10_283-304.indd   288 7/24/19   12:58 PM



 10.1 LU DECOMPOSITION 289

We can solve the first equation for d1,
d1 = 7.85

which can be substituted into the second equation to solve for
d2 = −19.3 − 0.0333333(7.85) = −19.5617

Both d1 and d2 can be substituted into the third equation to give
d3 = 71.4 − 0.1(7.85) + 0.02713(−19.5617) = 70.0843

Thus,

{D} = {
7.85

−19.5617
70.0843 }

which is identical to the right-hand side of Eq. (E10.2.1).
 This result can then be substituted into Eq. (10.4), [U]{X} = {D}, to give

[
3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120 ] {

x1

x2

x3
} = {

7.85
−19.5617
70.0843 }

which can be solved by back substitution (see Example 9.5 for details) to obtain the final 
solution,

{X} = {
3

−2.5
7.00003}

 The following is pseudocode for a subroutine to implement both substitution phases:

SUB Substitute(a, n, b, x)
 'forward substitution
 DOFOR i = 2, n
  sum = bi
  DOFOR j = 1, i − 1
   sum = sum − ai,j * bj
  END DO
  bi = sum
 END DO
 'back substitution
 xn = bn/an,n
 DOFOR i = n − 1, 1, −1
  sum = 0
  DOFOR j = i + 1, n
   sum = sum + ai,j * xj
  END DO
  xi = (bi − sum)/ai,i
 END DO
END Substitute
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290 LU DECOMPOSITION AND MATRIX INVERSION

 The LU decomposition algorithm requires the same total number of multiply/divide flops 
as for Gauss elimination. The only difference is that a little less effort is expended in the 
decomposition phase since the operations are not applied to the right-hand side. Thus, the 
number of multiply/divide flops involved in the decomposition phase can be calculated as

n3

3
−

n

3
 ————→as n increases

 

n3

3
+ O(n) (10.15)

 Conversely, the substitution phase takes a little more effort. Thus, the number of 
flops for forward and back substitution is n2. The total effort is therefore identical to that 
involved in Gauss elimination

n3

3
−

n

3
+ n2

 ————→as n increases
 

n3

3
+ O(n2) (10.16)

10.1.3 LU Decomposition Algorithm
An algorithm to implement an LU decomposition version of Gauss elimination is listed 
in Fig. 10.2. Four features of this algorithm bear mention:

 The factors generated during the elimination phase are stored in the lower part of the 
matrix. This can be done because these are converted to zeros anyway and are 
unnecessary for the final solution. This storage saves space.

 This algorithm keeps track of pivoting by using an order vector o. This greatly speeds 
up the algorithm because only the order vector (as opposed to the whole row) is 
pivoted.

 The equations are not scaled, but scaled values of the elements are used to determine 
whether pivoting is to be implemented.

 The diagonal term is monitored during the pivoting phase to detect near-zero 
occurrences in order to flag singular systems. If the monitoring passes back a value 
of er = −1, a singular matrix has been detected and the computation should be 
terminated. A parameter tol is set by the user to a small number in order to detect 
near-zero occurrences.

10.1.4 Crout Decomposition
Notice that for the LU decomposition implementation of Gauss elimination, the [L] matrix 
has 1’s on the diagonal. This approach is formally referred to as a Doolittle decomposition, 
or factorization. An alternative approach involves a [U] matrix with 1’s on the diagonal. 
This is called Crout decomposition. Although there are some differences between the ap-
proaches (Atkinson 1978; Ralston and Rabinowitz 1978), their performance is comparable.
 The Crout decomposition generates [U] and [L] by sweeping through the matrix by 
columns and rows, as depicted in Fig. 10.3. It can be implemented by the following 
concise series of formulas:

 li, 1 = ai, 1    for i = 1, 2, … , n (10.17)

 u1j =
a1j

l11
   for j = 2, 3, … , n (10.18)
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For j = 2, 3, . . . , n − 1

li j = ai j −∑
j−1

k=1
likukj for i = j, j + 1, … , n (10.19)

u j k =
a j k −∑

j−1

i=1
ljiuik

lj j

 for k = j + 1, j + 2, … , n (10.20)

SUB Ludecomp(a, b, n, tol, x, er)
  DIM on, sn
  er = 0
  CALL Decompose(a, n, tol, o, s, er)
  IF er <> −1 THEN
     CALL Substitute(a, o, n, b, x)
  END IF
END Ludecomp

SUB Decompose (a, n, tol, o, s, er)
  DOFOR i = 1, n
    oi = i
    si = ABS(ai,1)
    DOFOR j = 2, n
      IF ABS(ai,j)>si THEN si = ABS(ai,j)
    END DO
  END DO
  DOFOR k = 1, n − 1
    CALL Pivot(a, o, s, n, k)
    IF ABS(ao(k),k∕so(k)) < tol THEN
       er = −1
       PRINT ao(k),k∕so(k)
       EXIT DO
    END IF
    DOFOR i = k + 1, n
       factor = ao(i),k∕ao(k),k
       ao(i),k = factor
       DOFOR j = k + 1, n
        ao(i),j = ao(i),j − factor * ao(k),j
       END DO
    END DO
  END DO
  IF ABS(ao(k),k∕so(k)) < tol THEN
     er = −1
     PRINT ao(k),k∕so(k)

FIGURE 10.2
Pseudocode for an LU decomposition algorithm.

  END IF
END Decompose

SUB Pivot(a, o, s, n, k)
  p = k
  big = ABS(ao(k),k∕so(k))
  DOFOR ii = k + 1, n
    dummy = ABS(ao(ii),k∕so(ii))
    IF dummy > big THEN
       big = dummy
       p = ii
    END IF
  END DO
  dummy = op
  op = ok
  ok = dummy
END Pivot

SUB Substitute(a, o, n, b, x)
  DOFOR i = 2, n
    sum = bo(i)
    DOFOR j = 1, i − 1
      sum = sum − ao(i),j * bo(j)
    END DO
    bo(i) = sum
  END DO
  xn = bo(n)∕ao(n),n
  DOFOR i = n − 1, 1, −1
    sum = 0
    DOFOR j = i + 1, n
      sum = sum + ao(i),j * xj
    END DO
    xi = (bo(i) − sum)∕ao(i),i
  END DO
END Substitute

FIGURE 10.3
A schematic depicting the  
evaluations involved in Crout  
decomposition.

(a)

(b)

(c)

(d)
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292 LU DECOMPOSITION AND MATRIX INVERSION

and

lnn = ann −∑
n−1

k=1
lnkukn (10.21)

 Aside from the fact that it consists of a few concise loops, the foregoing approach also 
has the benefit that storage space can be economized. There is no need to store the 1’s on 
the diagonal of [U] or the 0’s for [L] or [U] because they are givens in the method. Con-
sequently, the values of [U] can be stored in the zero space of [L]. Further, close examina-
tion of the foregoing derivation makes it clear that after each element of [A] is employed 
once, it is never used again. Therefore, as each element of [L] and [U] is computed, it can 
be substituted for the corresponding element (as designated by its subscripts) of [A].
 Pseudocode to accomplish this is presented in Fig. 10.4. Notice that Eq. (10.17) is 
not included in the pseudocode because the first column of [L] is already stored in [A]. 
Otherwise, the algorithm directly follows from Eqs. (10.18) through (10.21).

 10.2 THE MATRIX INVERSE
In our discussion of matrix operations (Sec. PT3.2.2), we introduced the notion that if 
a matrix [A] is square, there is another matrix, [A]−1, called the inverse of [A], for which 
[Eq. (PT3.3)]

[A] [A−1] = [A]−1[A] = [I]

DOFOR j = 2, n
  a1,j = a1,j/a1,1
END DO
DOFOR j = 2, n − 1
  DOFOR i = j, n
    sum = 0
    DOFOR k = 1, j − 1
      sum = sum + ai,k · ak,j
    END DO
    ai,j = ai,j − sum
  END DO
  DOFOR k = j + 1, n
    sum = 0
    DOFOR i = 1, j − 1
      sum = sum + aj,i · ai,k
    END DO
    aj,k = (aj,k − sum)/aj,j
  END DO
END DO
sum = 0
DOFOR k = 1, n − 1
  sum = sum + an,k · ak,n
END DO
an,n = an,n − sum

FIGURE 10.4
Pseudocode for Crout’s LU  
decomposition algorithm.
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Now we will focus on how the inverse can be computed numerically. Then we will 
explore how it can be used for engineering analysis.

10.2.1 Calculating the Inverse
The inverse can be computed in a column-by-column fashion by generating solutions 
with unit vectors as the right-hand-side constants. For example, if the right-hand-side 
constant has a 1 in the first position and zeros elsewhere,

{b} = {
1
0
0}

the resulting solution will be the first column of the matrix inverse. Similarly, if a unit 
vector with a 1 in the second row,

{b} = {
0
1
0}

is used, the result will be the second column of the matrix inverse.
 The best way to implement such a calculation is with the LU decomposition algorithm 
described earlier in this chapter. Recall that one of the great strengths of LU decomposi-
tion is that it provides a very efficient means to evaluate multiple right-hand-side 
vectors. Thus, it is ideal for evaluating the multiple unit vectors needed to compute 
the inverse.

 EXAMPLE 10.3 Matrix Inversion
Problem Statement. Employ LU decomposition to determine the matrix inverse for 
the system from Example 10.2.

[A] = [
3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10 ]

Recall that the decomposition resulted in the following lower and upper triangular matrices:

[U] = [
3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120 ] [L] = [

1 0 0
0.0333333 1 0
0.100000 −0.0271300 1]

Solution. The first column of the matrix inverse can be determined by performing the 
forward-substitution procedure with a unit vector (with 1 in the first row) as the right-
hand-side vector. Thus, Eq. (10.8), the lower-triangular system, can be set up as

[
1 0 0

0.0333333 1 0
0.100000 −0.0271300 1]  {

d1

d2

d3
} = {

1
0
0}
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294 LU DECOMPOSITION AND MATRIX INVERSION

and solved with forward substitution for {D}T =⌊1 −0.03333 −0.1009⌋. This vector 
can then be used as the right-hand side of Eq. (10.3),

[
3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120 ] {

x1

x2

x3
} = {

1
−0.03333
−0.1009}

which can be solved by back substitution for {X}T = ⌊0.33249 −0.00518 −0.01008⌋, 
thus providing the first column of the matrix,

[A]−1 = [
   0.33249 0 0
−0.00518 0 0
−0.01008 0 0]

To determine the second column, Eq. (10.8) is formulated as

[
1 0 0

0.0333333 1 0
0.100000 −0.0271300 1] {

d1

d2

d3
} = {

0
1
0}

This can be solved for {D}, and the results are used with Eq. (10.3) to determine 
{X}T =⌊0.004944 0.142903 0.00271⌋,  which is the second column of the matrix,

[A]−1 = [
0.33249 0.004944 0

−0.00518 0.142903 0
−0.01008 0.00271 0]

Finally, the forward- and back-substitution procedures can be implemented with 
{B}T =⌊0 0 1⌋ to solve for {X}T =⌊0.006798 0.004183 0.09988⌋, which is the 
final column of the matrix,

[A]−1 = [
0.33249 0.004944 0.006798

−0.00518 0.142903 0.004183
−0.01008 0.00271 0.09988 ]

The validity of this result can be checked by verifying that [A][A]−1 = [I].

 Pseudocode to generate the matrix inverse is shown in Fig. 10.5. Notice how the 
decomposition subroutine from Fig. 10.2 is called to perform the decomposition and then 
generates the inverse by repeatedly calling the substitution algorithm with unit vectors.
 The effort required for this algorithm is simply computed as

n3

3
−

n

3
    +   n(n2)  =

4n3

3
−

n

4
 (10.22)

decomposition + n × substitutions

where from Sec. 10.1.2, the decomposition is defined by Eq. (10.15) and the effort in-
volved with every right-hand-side evaluation involves n2 multiply/divide flops.
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10.2.2 Stimulus-Response Computations
As discussed in Sec. PT3.1.2, many of the linear systems of equations confronted in engi-
neering practice are derived from conservation laws. The mathematical expression of these 
laws is some form of balance equation to ensure that a particular property—mass, force, 
heat, momentum, or other—is conserved. For a force balance on a structure, the properties 
might be horizontal or vertical components of the forces acting on each node of the structure 
(see Sec. 12.2). For a mass balance, the properties might be the mass in each reactor of a 
chemical process (see Sec. 12.1). Other fields of engineering would yield similar examples.
 A single balance equation can be written for each part of the system, resulting in a 
set of equations defining the behavior of the property for the entire system. These equa-
tions are interrelated, or coupled, in that each equation may include one or more of the 
variables from the other equations. For many cases, these systems are linear and, there-
fore, of the exact form dealt with in this chapter:

[A]{X} = {B} (10.23)

 Now, for balance equations, the terms of Eq. (10.23) have a definite physical interpreta-
tion. For example, the elements of {X} are the levels of the property being balanced for each 
part of the system. In a force balance of a structure, they represent the horizontal and vertical 
forces in each member. For the mass balance, they are the mass of chemical in each reactor. 
In either case, they represent the system’s state, or response, which we are trying to determine.
 The right-hand-side vector {B} contains those elements of the balance that are in-
dependent of behavior of the system—that is, they are constants. As such, they often 
represent the external forces or stimuli that drive the system.

FIGURE 10.5
Driver program that uses some of the subprograms from Fig. 10.2 to generate a matrix inverse.

CALL Decompose(a, n, tol, o, s, er)
IF er = 0 THEN
  DOFOR i = 1, n
    DOFOR j = 1, n
      IF i = j THEN
        b(j) = 1
      ELSE
        b(j) = 0
      END IF
    END DO
    CALL Substitute(a, o, n, b, x)
    DOFOR j = 1, n
      ai(j, i) = x(j)
    END DO
  END DO
  Output ai, if desired
ELSE
  PRINT "ill-conditioned system"
END IF

 10.2 THE MATRIX INVERSE 295
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296 LU DECOMPOSITION AND MATRIX INVERSION

 Finally, the matrix of coefficients [A] usually contains the parameters that express 
how the parts of the system interact or are coupled. Consequently, Eq. (10.23) might be 
re-expressed as

[Interactions]{response} = {stimuli}

Thus, Eq. (10.23) can be seen as an expression of the fundamental mathematical model 
that we formulated previously as a single equation in Chap. 1 [recall Eq. (1.1)]. We can 
now see that Eq. (10.23) represents a version that is designed for coupled systems involv-
ing several dependent variables {X}.
 As we know from this chapter and Chap. 9, there are a variety of ways to solve 
Eq. (10.23). However, using the matrix inverse yields a particularly interesting result. 
The formal solution can be expressed as

{X} = [A]−1{B}

or (recalling our definition of matrix multiplication from Box PT3.2)

x1 = a−1
11 b1 + a−1

12 b2 + a−1
13 b3

x2 = a−1
21 b1 + a−1

22 b2 + a−1
23 b3

x3 = a−1
31 b1 + a−1

32 b2 + a−1
33 b3

Thus, we find that the inverted matrix itself, aside from providing a solution, has ex-
tremely useful properties. That is, each of its elements represents the response of a 
single part of the system to a unit stimulus of any other part of the system.
 Notice that these formulations are linear and, therefore, superposition and propor-
tionality hold. Superposition means that if a system is subject to several different stimuli 
(the b’s), the responses can be computed individually and the results summed to obtain 
a total response. Proportionality means that multiplying the stimuli by a quantity results 
in the response to those stimuli being multiplied by the same quantity. Thus, the coef-
ficient a−1

11  is a proportionality constant that gives the value of x1 due to a unit level of 
b1. This result is independent of the effects of b2 and b3 on x1, which are reflected in the 
coefficients a−1

12  and a−1
13 , respectively. Therefore, we can draw the general conclusion 

that the element a−1
ij  of the inverted matrix represents the value of xi due to a unit quan-

tity of bj. Using the example of the structure, element a−1
ij of the matrix inverse would 

represent the force in member i due to a unit external force at node j. Even for small 
systems, such behavior of individual stimulus-response interactions would not be intui-
tively obvious. As such, the matrix inverse provides a powerful technique for understand-
ing the interrelationships of component parts of complicated systems. This power will 
be demonstrated in Secs. 12.1 and 12.2.

 10.3 ERROR ANALYSIS AND SYSTEM CONDITION
Aside from its engineering applications, the matrix inverse also provides a means to 
discern whether systems are ill-conditioned. Three methods are available for this purpose:

1. Scale the matrix of coefficients [A] so that the largest element in each row is 1. Invert 
the scaled matrix and if there are elements of [A]−1 that are several orders of magnitude 
greater than 1, it is likely that the system is ill-conditioned (see Box 10.1).
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2. Multiply the inverse by the original coefficient matrix and assess whether the result 
is close to the identity matrix. If not, this indicates ill-conditioning.

3. Invert the inverted matrix and assess whether the result is sufficiently close to the 
original coefficient matrix. If not, this also indicates that the system is ill-conditioned.

 Although these methods can indicate ill-conditioning, it would be preferable to ob-
tain a single number (such as the condition number from Sec. 4.2.3) that could serve as 
an indicator of the problem. Attempts to formulate such a matrix condition number are 
based on the mathematical concept of the norm.

10.3.1 Vector and Matrix Norms
A norm is a real-valued function that provides a measure of the size or “length” of 
multicomponent mathematical entities such as vectors and matrices (see Box 10.2).
 A simple example is a vector in three-dimensional Euclidean space (Fig. 10.6) that 
can be represented as

⌊F⌋ = ⌊a b c⌋

where a, b, and c are the distances along the x, y, and z axes, respectively. The length 
of this vector—that is, the distance from the coordinate (0, 0, 0) to (a, b, c)—can be 
simply computed as

∥F∥e = √a2 + b2 + c2

where the nomenclature ∥F∥e indicates that this length is referred to as the Euclidean 
norm of [F].

 Box 10.1  Interpreting the Elements of the Matrix Inverse as a Measure  
of Ill-Conditioning

One method for assessing a system’s condition is to scale [A] so 
that the largest element in each row is 1 and then compute [A]−1. 
If elements of [A]−1 are several orders of magnitude greater than 
the elements of the original scaled matrix, it is likely that the 
system is ill-conditioned.
 Insight into this approach can be gained by recalling that a 
way to check whether an approximate solution {X} is acceptable 
is to substitute it into the original equations and see whether the 
original right-hand-side constants result. This is equivalent to

{R} = {B} − [A]{X
∼
} (B10.1.1)

where {R} is the residual between the right-hand-side constants 
and the values computed with the solution {X

∼
}. If {R} is small, we 

might conclude that the {X
∼

} values are adequate. However, sup-
pose that {X} is the exact solution that yields a zero residual, as in

{0} = {B} − [A]{X} (B10.1.2)

Subtracting Eq. (B10.1.2) from (B10.1.1) yields

{R} = [A] {{X} − {X
∼

}}
Multiplying both sides of this equation by [A]−1 gives

{X} − {X
∼

} = [A]−1{R}

This result indicates why checking a solution by substitution 
can be misleading. For cases where elements of [A]−1 are 
large, a small discrepancy in the right-hand-side residual {R} 
could correspond to a large error {X} − {X

∼
} in the calculated 

value of the unknowns. In other words, a small residual does 
not guarantee an accurate solution. However, we can conclude 
that if the largest element of [A]−1 is on the order of magnitude 
of unity, the system can be considered to be well-conditioned. 
Conversely, if [A]−1 includes elements much larger than unity, 
we conclude that the system is ill-conditioned.
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298 LU DECOMPOSITION AND MATRIX INVERSION

 Box 10.2 Matrix Norms

As developed in this section, Euclidean norms can be employed 
to quantify the size of a vector,

∥  X ∥e = √∑
n

i=1
x2

i

or matrix,

∥  A∥e = √∑
n

i=1
∑

n

j=1
a2

i, j

 For vectors, there are alternatives called p norms that can be 
represented generally by

∥  X∥p = (∑
n

i=1
∣xi∣ 

p

)
1∕p

We can also see that the Euclidean norm and the 2 norm, ∥X∥2, 
are identical for vectors.
 Other important examples are

∥X∥1 =∑
n

i=1
∣xi∣

which represents the norm as the sum of the absolute values of 
the elements. Another is the maximum-magnitude norm, or 
 uniform-vector norm,

∥X∥∞ = max
1≤i≤n

 ∣xi∣     

which defines the norm as the element with the largest absolute 
value.
 Using a similar approach, norms can be developed for matri-
ces. For example,

∥A∥1 = max
1≤j≤n
∑

n

i=1
∣aij∣

That is, a summation of the absolute values of the coefficients is 
performed for each column, and the largest of these summations 
is taken as the norm. This is called the column-sum norm.
 A similar determination can be made for the rows, resulting 
in a uniform-matrix norm, or row-sum norm,

∥A∥∞ = max
1≤i≤n
∑

n

j=1
∣aij∣

 It should be noted that, in contrast to the norms for vectors, the 
2 norm and the Euclidean norm for a matrix are not the same. 
Whereas the Euclidean norm ∥A∥e can be easily determined by 
Eq. (10.24), the matrix 2 norm ∥A∥2 is calculated as

∥A∥2 = (μmax)1∕2

where μmax is the largest eigenvalue of [A]T [A]. In Chap. 27, we 
will learn more about eigenvalues. For the time being, the im-
portant point is that the ∥A∥2, or spectral, norm is the minimum 
norm and, therefore, provides the tightest measure of size 
(Ortega 1972).

FIGURE 10.6
Graphical depiction of a vector 
⌊F⌋ = ⌊a b c⌋  in Euclid-
ean space.
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 Similarly, for an n-dimensional vector ⌊X⌋ = ⌊x1 x2 … xn⌋, a Euclidean norm 
would be computed as

∥  X∥e = √∑
n

i=1
x2

i

The concept can be extended to a matrix [A], as in

∥ A∥e = √∑
n

i=1
∑

n

j=1
a2

i, j (10.24)

which is given a special name—the Frobenius norm. However, as with the other vector 
norms, it provides a single value to quantify the “size” of [A].
 It should be noted that there are alternatives to the Euclidean and Frobenius norms 
(see Box 10.2). For example, a uniform-vector norm is defined as

∥  X∥∞ = max
1≤i≤n

∣xi∣

That is, the element with the largest absolute value is taken as the measure of the vector’s 
size. Similarly, a uniform-matrix norm, or row-sum norm, is defined as

∥ A∥∞ = max
1≤i≤n
∑

n

j=1
∣aij∣ (10.25)

In this case, the sum of the absolute value of the elements is computed for each row, 
and the largest of these is taken as the norm.
 Although there are theoretical benefits to using certain of the norms, the choice is 
sometimes influenced by practical considerations. For example, the uniform-row norm 
is widely used because of the ease with which it can be calculated and the fact that it 
usually provides an adequate measure of matrix size.

10.3.2 Matrix Condition Number
Now that we have introduced the concept of the norm, we can use it to define

Cond [A] = ∥ A∥ ·∥A−1∥  (10.26)

where Cond [A] is called the matrix condition number. Note that for a matrix [A], this 
number will be greater than or equal to 1. It can be shown (Ralston and Rabinowitz 
1978; Gerald and Wheatley 2004) that

∥ΔX∥
∥X∥

≤ Cond [A] 

∥ΔA∥
∥A∥

That is, the relative error of the norm of the computed solution can be as large as the 
relative error of the norm of the coefficients of [A] multiplied by the condition number. 
For example, if the coefficients of [A] are known to t-digit precision (that is, rounding 
errors are on the order of 10−t) and Cond [A] = 10c, the solution [X] may be valid to 
only t − c digits (rounding errors of ∼10c−t).
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 EXAMPLE 10.4 Matrix Condition Evaluation
Problem Statement. The Hilbert matrix, which is notoriously ill-conditioned, can be 
represented generally as

[

1 1∕2 1∕3 … 1∕n

1∕2 1∕3 1∕4 … 1∕(n + 1)
. . . .
. . . .
. . . .

1∕n 1∕(n + 1) 1∕(n + 2) … 1∕(2n − 1)
]

Use the row-sum norm to estimate the matrix condition number for the 3 × 3 Hilbert 
matrix

[A] = [
1 1∕2 1∕3

1∕2 1∕3 1∕4
1∕3 1∕4 1∕5]

Solution. First, the matrix can be normalized so that the maximum element in each 
row is 1,

[A] = [
1 1∕2 1∕3
1 2∕3 1∕2
1 3∕4 3∕5]

Summing each of the rows gives 1.833, 2.1667, and 2.35. Thus, the third row has the 
largest sum and the row-sum norm is

∥A∥∞ = 1 +
3
4

+
3
5

= 2.35

 The inverse of the scaled matrix can be computed as

[A]−1 = [
9 −18 10

−36 96 −60
30 −90 60]

Note that the elements of this matrix are larger than those of the original matrix. This 
is also reflected in its row-sum norm, which is computed as

∥A−1∥∞ = ∣−36∣ + ∣96∣ + ∣−60∣ = 192

 Thus, the condition number can be calculated as

Cond [A] = 2.35(192) = 451.2

 The fact that the condition number is considerably greater than unity suggests that 
the system is ill-conditioned. The extent of the ill-conditioning can be quantified by 
calculating c = log 451.2 = 2.65. Computers using IEEE floating-point representation 
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have approximately t = log 2−24 = 7.2 significant base-10 digits (recall Sec. 3.4.1). 
Therefore, the solution could exhibit rounding errors of up to 10(2.65-7.2) = 3 × 10−5. Note 
that such estimates almost always overpredict the actual error. However, they are useful 
in alerting you to the possibility that round-off errors may be significant.

 Practically speaking, the problem with implementing Eq. (10.26) is the computa-
tional price required to obtain ∥A−1∥. Rice (1983) outlines some possible strategies to 
mitigate this problem. Further, he suggests an alternative way to assess system condi-
tion: Run the same solution on two different compilers. Because the resulting codes will 
likely implement the arithmetic differently, the effect of ill-conditioning should be evi-
dent from such an experiment. Finally, it should be mentioned that software packages 
such as MATLAB software and Mathcad have the capability to conveniently compute 
matrix condition. We will cover these capabilities when we review such packages at the 
end of Chap. 11.

10.3.3 Iterative Refinement
In some cases, round-off errors can be reduced by the following procedure. Suppose that 
we are solving the following set of equations:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2 (10.27)

a31x1 + a32x2 + a33x3 = b3

For conciseness, we will limit the following discussion to this small (3 × 3) system. 
However, the approach is generally applicable to larger sets of linear equations.
 Suppose an approximate solution vector is given by {X

∼
}T = ⌊x∼1 x∼2 x∼3⌋. This solution 

can be substituted into Eq. (10.27) to give

a11x∼1 + a12x∼2 + a13x∼3 = b
∼

1

a21x∼1 + a22x∼2 + a23x∼3 = b
∼

2 (10.28)

a31x∼1 + a32x∼2 + a33x∼3 = b
∼

3

Now, suppose that the exact solution {X} is expressed as a function of the approximate 
solution and a vector of correction factors {ΔX}, where

x1 = x∼1 + Δx1

x2 = x∼2 + Δx2 (10.29)

x3 = x∼3 + Δx3

If these results are substituted into Eq. (10.27), the following system results:

a11(x∼1 + Δx1) + a12(x∼2 + Δx2) + a13(x∼3 + Δx3) = b1

a21(x∼1 + Δx1) + a22(x∼2 + Δx2) + a23(x∼3 + Δx3) = b2 (10.30)

a31(x∼1 + Δx1) + a32(x∼2 + Δx2) + a33(x∼3 + Δx3) = b3

 10.3 ERROR ANALYSIS AND SYSTEM CONDITION 301
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302 LU DECOMPOSITION AND MATRIX INVERSION

Now, Eq. (10.28) can be subtracted from Eq. (10.30) to yield

a11Δx1 + a12Δx2 + a13Δx3 = b1 − b
∼

1 = E1

a21Δx1 + a22Δx2 + a23Δx3 = b2 − b
∼

2 = E2 (10.31)

a31Δx1 + a32Δx2 + a33Δx3 = b3 − b
∼

3 = E3

This system itself is a set of simultaneous linear equations that can be solved to obtain 
the correction factors. The factors can then be applied to improve the solution, as specified 
by Eq. (10.29).
 It is relatively straightforward to integrate an iterative refinement procedure into com-
puter programs for elimination methods. It is especially effective for the LU decomposition 
approaches described earlier, which are designed to evaluate different right-hand-side vec-
tors efficiently. Note that to be effective for correcting ill-conditioned systems, the E’s in 
Eq. (10.31) must be expressed in double precision.

PROBLEMS

10.1 Use the rules of matrix multiplication to prove that Eqs. (10.7) 
and (10.8) follow from Eq. (10.6).
10.2 (a) Use naive Gauss elimination to decompose the following 
system according to the description in Sec. 10.1.2.

 7x1 + 2x2 − 3x3 = −12
 2x1 + 5x2 − 3x3 = −20

 x1 − x2 − 6x3 = −26

Then, multiply the resulting [L] and [U] matrices to determine that 
[A] is produced. (b) Use LU decomposition to solve the system. 
Show all the steps in the computation. (c) Also solve the system for 
an alternative right-hand-side vector: {B}T = ⌊12  18  −6⌋ .
10.3 
(a) Solve the following system of equations by LU decomposition 

without pivoting:

 15x1 + 7x2 − 4x3 = −51
 4x1 − 4x2 + 9x3 = 62
 12x1 − x2 + 3x3 = 8

(b) Determine the matrix inverse. Check your results by verifying 
that [A][A]−1 = [I].

10.4 Solve the following system of equations using LU decomposi-
tion with partial pivoting:

 2x1 − 6x2 − x3 = −38
 −3x1 − x2 + 7x3 = −34
 −8x1 + x2 − 2x3 = −20

10.5 Determine the total flops as a function of the number of 
equations n for the (a) decomposition, (b) forward-substitution, 

and (c) back-substitution phases of the LU decomposition version 
of Gauss elimination.
10.6 Use LU decomposition to determine the matrix inverse for the 
same system as in Prob. 10.2. Do not use a pivoting strategy, and 
check your results by verifying that [A][A]−1 = [I].
10.7 Perform Crout decomposition on

 2x1 − 5x2 + x3 = 12
 −x1 + 3x2 − x3 = −8

 3x1 − 4x2 + 2x3 = 16

Then, multiply the resulting [L] and [U] matrices to determine that 
[A] is produced.
10.8 The following system of equations is designed to determine 
concentrations (the c’s in g∕m3) in a series of coupled reactors as a 
function of the amount of mass input to each reactor (the right-hand 
sides are in g∕day),

 15c1 − 3c2 − c3 = 3300
 −3c1 + 18c2 − 6c3 = 1200
 −4c1 − c2 + 12c3 = 2400

(a) Determine the matrix inverse.
(b) Use the inverse to determine the solution.
(c) Determine how much the rate of mass input to reactor 3 must 

be increased to induce a 10 g/m3 rise in the concentration of 
reactor 1.

(d) How much will the concentration in reactor 3 be reduced if the 
rate of mass input to reactors 1 and 2 is reduced by 700 and 
350 g/day, respectively?

cha32077_ch10_283-304.indd   302 7/24/19   12:59 PM



 PROBLEMS 303

How many digits of precision will be lost due to ill-conditioning? 
(b) Repeat part (a), but scale the matrix by making the maximum 
element in each row equal to 1.
10.16 Determine the condition number based on the row-sum 
norm for the normalized 4 × 4 Hilbert matrix. How many signifi-
cant digits of precision will be lost due to ill-conditioning?
10.17 Besides the Hilbert matrix, there are other matrices that are 
inherently ill-conditioned. One such case is the Vandermonde 
 matrix, which has the following form:

[
x2

1 x1 1
x2

2 x2 1
x2

3 x3 1]

(a) Determine the condition number based on the row-sum norm 
for the case where x1 = 4, x2 = 2, and x3 = 7.

(b) Use MATLAB or Mathcad software to compute the spectral 
and Frobenius condition numbers.

10.18 Develop a user-friendly program for LU decomposition 
based on the pseudocode from Fig. 10.2.
10.19 Develop a user-friendly program for LU decomposition, in-
cluding the capability to evaluate the matrix inverse. Base the pro-
gram on Figs. 10.2 and 10.5.
10.20 Use iterative refinement techniques to improve x1 = 2,  
x2 = −3, and x3 = 8, which are approximate solutions of

 2x1 + 5x2 + x3 = −5

 5x1 + 2x2 + x3 = 12

 x1 + 2x2 + x3 = 3

10.21 Consider these vectors:

 A
→

= 2i
→

− 3 j
→

+ ak
→

 B
→

= bi
→

+ j
→

− 4k
→

 C
→

= 3i
→

+ c j
→

+ 2k
→

Vector A
→

 is perpendicular to B
→

 as well as to C
→

. It is also known that 
B
→  

· C
→

= 2. Use any method presented in this chapter to solve for 
the three unknowns, a, b, and c.
10.22 Consider the following vectors:

 A
→

= a i
→

+ b j
→

+ ck
→

 B
→

= −2 i
→

+ j
→

− 4k
→

 C
→

= i
→

+ 3 j
→

+ 2k
→

where A
→

 is an unknown vector. If

(A
→

× B
→

) + (A
→

× C
→

) = (5a + 6) i
→

+ (3b − 2) j
→

+ (−4c + 1) k
→

use any method covered in this chapter to solve for the three un-
knowns, a, b, and c.

10.9 Solve the following set of equations with LU decomposition:

3x1 − 2x2 + x3 = −10
2x1 + 6x2 − 4x3 = 44
−x1 − 2x2 + 5x3 = −26

10.10 (a) Determine the LU decomposition without pivoting by 
hand for the following matrix, and check your results by validating 
that [L][U] = [A].

[
9 2 −1
3 7 2
2 3 8 ]

(b) Employ the result of (a) to compute the determinant.
(c) Repeat (a) and (b) using MATLAB.
10.11 Use the following LU decomposition to (a) compute the de-
terminant and (b) solve [A]{x} = {b} with {b}T = ⌊−10 44 −26⌉.

[A] = [L] [U] = [
   1
  0.6667    1
−0.3333  −0.3636  1] [

3 −2     1
 7.3333  −4.6667
             3.6364]

10.12 Determine ∥A∥e, ∥A∥1, and ∥A∥∞ for

[A] = [
−6 −2 5

8 1.1 −2.5
−3 −1 10.3]

Scale the matrix by making the maximum element in each row 
equal to 1.
10.13 Determine the Frobenius and the row-sum norms for the 
systems in Probs. 10.3 and 10.4. Scale the matrices by making the 
maximum element in each row equal to 1.
10.14 A matrix [A] is defined as

[A] =
[

0.125 0.25 0.5 1
0.015625 0.625 0.25 1
0.00463 0.02777 0.16667 1

0.001953 0.015625 0.125 1 ]
Using the column-sum norm, compute the condition number and 
the number of suspect digits generated by this matrix.
10.15 (a) Determine the condition number for the following  system 
using the row-sum norm. Do not normalize the system.

[

1 4 9 16 25
4 9 16 25 36
9 16 25 36 49
16 25 36 49 64
25 36 49 64 81

]
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Use sufficient precision in displaying results to allow you to 
detect imprecision.

(b) Repeat part (a) using a 7 × 7 Hilbert matrix.
(c) Repeat part (a) using a 10 × 10 Hilbert matrix.
10.25 Polynomial interpolation consists of determining the unique 
(n − 1)th-order polynomial that fits n data points. Such polynomi-
als have the general form,

f (x) = p1x
n−1 + p2xn−2 + … + pn−1 x + pn (P10.25)

where the p’s are constant coefficients. A straightforward way for 
computing the coefficients is to generate n linear algebraic equa-
tions that we can solve simultaneously for the coefficients. Suppose 
that we want to determine the coefficients of the fourth-order poly-
nomial f (x) = p1x4 + p2x3 + p3x2 + p4x + p5 that passes through 
the following five points: (200, 0.746), (250, 0.675), (300, 0.616), 
(400, 0.525), and (500, 0.457). Each of these pairs can be substituted 
into Eq. (P10.25) to yield a system of five equations with five un-
knowns (the p’s). Use this approach to solve for the coefficients. In 
addition, determine and interpret the condition number.

10.23 Let a function be defined on the interval [0, 2] as follows:

f (x) = {
ax + b, 0 ≤ x ≤ 1
cx + d, 1 ≤ x ≤ 2}

Determine the constants a, b, c, and d so that the function f satisfies 
the following:

 f(0) = f(2) = 1.
 f is continuous on the entire interval.
 a + b = 4.

Derive and solve a system of linear algebraic equations with a ma-
trix form identical to Eq. (10.1).
10.24 
(a) Create a 3 × 3 Hilbert matrix. This will be matrix [A]. Multiply 

the matrix by the column vector {x} = [1, 1, 1]T. The solution 
of [A]{x} will be another column vector {b}. Using any 
 numerical package and Gauss elimination, find the  solution to 
[A]{x} = {b} using the Hilbert matrix and the vector {b} that 
you calculated. Compare the result to the known {x} vector. 
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C H A P T E R

11
Special Matrices and  
Gauss-Seidel

Certain matrices have a particular structure that can be exploited to develop efficient 
solution schemes. The first part of this chapter is devoted to two such systems: banded 
and symmetric matrices. Efficient elimination methods are described for both.
 The second part of the chapter turns to an alternative to elimination methods, that 
is, approximate iterative methods. The focus is on the Gauss-Seidel method, which em-
ploys initial guesses and then iterates to obtain refined estimates of the solution. The 
Gauss-Seidel method is particularly well suited for large numbers of equations. In these 
cases, elimination methods can be subject to round-off errors. Because the error of the 
Gauss-Seidel method is controlled by the number of iterations, round-off error is not an 
issue of concern with this method. However, there are certain instances where the Gauss-
Seidel technique will not converge on the correct answer. These and other trade-offs 
between elimination and iterative methods will be discussed in subsequent pages.

 11.1 SPECIAL MATRICES
As mentioned in Box PT3.1, a banded matrix is a square matrix that has all elements 
equal to zero, with the exception of a band centered on the main diagonal. Banded sys-
tems are frequently encountered in engineering and scientific practice. For example, they 
typically occur in the solution of differential equations. In addition, other numerical 
methods such as cubic splines (Sec. 18.6) involve the solution of banded systems.
 The dimensions of a banded system can be quantified by two parameters: the band-
width BW and the half-bandwidth HBW (Fig. 11.1). These two values are related by BW 
= 2HBW + 1. In general, then, a banded system is one for which aij = 0 if ∣ i − j ∣ > HBW.
 Although Gauss elimination or conventional LU decomposition can be employed to 
solve banded systems, they are inefficient, because if pivoting is unnecessary none of 
the elements outside the band would change from their original values of zero. Thus, 
unnecessary space and time would be expended on the storage and manipulation of these 
useless zeros. If it is known beforehand that pivoting is unnecessary, very efficient al-
gorithms can be developed that do not involve the zero elements outside the band. Be-
cause many problems involving banded systems do not require pivoting, these alternative 
algorithms, as described next, are the methods of choice.
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11.1.1 Tridiagonal Systems
A tridiagonal system—that is, one with a bandwidth of 3—can be expressed generally as

[

f1 g1
e2 f2 g2

e3 f3 g3
. . .

. . .
. . .

en−1 fn−1 gn−1
en fn

]{

x1

x2

x3

.

.

.
xn−1

xn

}
=

{

r1

r2

r3

.

.

.
rn−1

rn

}
 (11.1)

Notice that we have changed our notation for the coefficients from a’s and b’s to e’s, 
f’s, g’s, and r’s. This was done to avoid storing large numbers of useless zeros in the 
square matrix of a’s. This space-saving modification is advantageous because the result-
ing algorithm requires less computer memory.
 Figure 11.2 shows pseudocode for an efficient method, called the Thomas algorithm, 
to solve Eq. (11.1). As with conventional LU decomposition, the algorithm consists of 
three steps: decomposition and forward and back substitution. Thus, all the advantages 
of LU decomposition, such as convenient evaluation of multiple right-hand-side vectors 
and the matrix inverse, can be accomplished by proper application of this algorithm.

 EXAMPLE 11.1 Tridiagonal Solution with the Thomas Algorithm
Problem Statement. Solve the following tridiagonal system with the Thomas algorithm.

[

2.04 −1
−1 2.04 −1

−1 2.04 −1
−1 2.04 ]{

T1

T2

T3

T4
}

=
{

40.8
0.8
0.8

200.8}

HBW + 1

HBW

BW

Diagonal

FIGURE 11.1
Parameters used to quantify the dimensions of a banded system. BW and HBW designate 
the bandwidth and the half-bandwidth, respectively.

(a) Decomposition

DOFOR k = 2, n
 ek = ek ∕fk−1

 fk = fk − ek · gk−1

END DO

(b) Forward substitution

DOFOR k = 2, n
 rk = rk − ek · rk−1

END DO

(c) Back substitution

xn = rn ∕fn
DOFOR k = n −1, 1, −1
 xk = (rk − gk · xk+1)∕fk
END DO

FIGURE 11.2
Pseudocode to implement the 
Thomas algorithm, an LU 
 decomposition method for tri-
diagonal systems.
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Solution. First, the decomposition is implemented as

 e2 = −1∕2.04 = −0.49
 f2 = 2.04 − (−0.49)(−1) = 1.550
 e3 = −1∕1.550 = −0.645
 f3 = 2.04 − (−0.645)(−1) = 1.395
 e4 = −1∕1.395 = −0.717
 f4 = 2.04 − (−0.717)(−1) = 1.323

Thus, the matrix has been transformed to

[

2.04 −1
−0.49 1.550 −1

−0.645 1.395 −1
−0.717 1.323 ]

and the LU decomposition is

[A] = [L] [U] =
[

1
−0.49 1

−0.645 1
−0.717 1 ] [

2.04 −1
1.550 −1

1.395 −1
1.323 ]

You can verify that this is correct by multiplying [L][U] to yield [A].
 The forward substitution is implemented as

r2 = 0.8 − (−0.49)40.8 = 20.8
r3 = 0.8 − (−0.645)20.8 = 14.221
r4 = 200.8 − (−0.717)14.221 = 210.996

Thus, the right-hand-side vector has been modified to

{

40.8
20.8

14.221
210.996}

which then can be used in conjunction with the [U] matrix to perform back substitution 
and obtain the solution

T4 = 210.996∕1.323 = 159.480
T3 = [14.221 − (−1)159.48]∕1.395 = 124.538
T2 = [20.800 − (−1)124.538]∕1.550 = 93.778
T1 = [40.800 − (−1)93.778]∕2.040 = 65.970

11.1.2 Cholesky Decomposition
Recall from Box PT3.1 that a symmetric matrix is one where aij = aji for all i and j. In 
other words, [A] = [A]T. Such systems occur commonly in both mathematical and 
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 engineering problem contexts. They offer computational advantages because only half 
the storage is needed and, in most cases, only half the computation time is required for 
their solution.
 One of the most popular approaches involves Cholesky decomposition. This algo-
rithm is based on the fact that a symmetric matrix can be decomposed, as in

[A] = [L] [L]T (11.2)

That is, the resulting triangular factors are the transposes of each other.
 The terms of Eq. (11.2) can be multiplied out and set equal to each other. The result 
can be expressed simply by recurrence relations. For the kth row,

lki =
aki −∑

i−1

j=1
lij lkj

lii

  for i = 1, 2, … , k − 1 (11.3)

and

lkk = √akk −∑
k−1

j=1
l2
kj  (11.4)

 EXAMPLE 11.2 Cholesky Decomposition
Problem Statement. Apply Cholesky decomposition to the symmetric matrix

[A] = [
6 15 55
15 55 225
55 225 979]

Solution. For the first row (k = 1), Eq. (11.3) is skipped and Eq. (11.4) is employed 
to compute

l11 = √a11 = √6 = 2.4495

For the second row (k = 2), Eq. (11.3) gives

l21 =
a21

l11
=

15
2.4495

= 6.1237

and Eq. (11.4) yields

l22 = √a22 − l2
21 = √55 − (6.1237)2 = 4.1833

For the third row (k = 3), Eq. (11.3) gives (i = 1)

l31 =
a31

l11
=

55
2.4495

= 22.454

and (i = 2)

l32 =
a32 − l21l31

l22
=

225 − 6.1237(22.454)
4.1833

= 20.917
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 Figure 11.3 presents pseudocode for implementing the Cholesky decomposition al-
gorithm. It should be noted that the algorithm in Fig. 11.3 could result in an execution 
error if the evaluation of akk involves taking the square root of a negative number. How-
ever, for cases where the matrix is positive definite,1 this will never occur. Because many 
symmetric matrices dealt with in engineering are, in fact, positive definite, the Cholesky 
algorithm has wide application. Another benefit of dealing with positive definite sym-
metric matrices is that pivoting is not required to avoid division by zero. Thus, we can 
implement the algorithm in Fig. 11.3 without the complication of pivoting.

 11.2 GAUSS-SEIDEL
Iterative or approximate methods provide an alternative to the elimination methods de-
scribed to this point. Such approaches are similar to the techniques we developed to 
obtain the roots of a single equation in Chap. 6. Those approaches consisted of guessing 
a value and then using a systematic method to obtain a refined estimate of the root. 
Because the present part of the book deals with a similar problem—obtaining the values 
that simultaneously satisfy a set of equations—we might suspect that such approximate 
methods could be useful in this context.
 The Gauss-Seidel method is the most commonly used iterative method. Assume that 
we are given a set of n equations:

[A]{X} = {B}

Suppose that for conciseness we limit ourselves to a 3 × 3 set of equations. If the di-
agonal elements are all nonzero, the first equation can be solved for x1, the second for 
x2, and the third for x3 to yield

x1 =
b1 − a12x2 − a13x3

a11
 (11.5a)

1A positive definite matrix is one for which the product {X}T[A]{X} is greater than zero for all nonzero  
vectors {X}.

and Eq. (11.4) yields

l33 = √a33 − l2
31 − l2

32 = √979 − (22.454)2 − (20.917)2 = 6.1101

Thus, the Cholesky decomposition yields

[L] = [
2.4495
6.1237 4.1833
22.454 20.917 6.1101]

 The validity of this decomposition can be verified by substituting it and its transpose 
into Eq. (11.2) to see if their product yields the original matrix [A]. This is left for an 
exercise.

FIGURE 11.3
Pseudocode for the Cholesky 
 decomposition algorithm.

DOFOR k = 1, n
 DOFOR i = 1, k − 1
  sum = 0.
  DOFOR j = 1, i − 1
   sum = sum + aij · akj
  END DO
  aki = (aki − sum)∕aii
 END DO
 sum = 0.
 DOFOR j = 1, k − 1
  sum = sum + a2kj
 END DO
 akk = √akk − sum
END DO

cha32077_ch11_305-324.indd   309 7/26/19   5:33 PM



310 SPECIAL MATRICES AND GAUSS-SEIDEL

x2 =
b2 − a21x1 − a23x3

a22
 (11.5b)

x3 =
b3 − a31x1 − a32x2

a33
 (11.5c)

 Now, we can start the solution process by choosing guesses for the x’s. A simple 
way to obtain initial guesses is to assume that they are all zero. These zeros can be 
substituted into Eq. (11.5a), which can be used to calculate a new value for x1 = b1∕a11. 
Then, we substitute this new value of x1 along with the previous guess of zero for x3 
into Eq. (11.5b) to compute a new value for x2. The process is repeated for Eq. (11.5c) 
to calculate a new estimate for x3. Then we return to the first equation and repeat the 
entire procedure until our solution converges closely enough to the true values. Conver-
gence can be checked using the criterion [recall Eq. (3.5)]

∣εa,i∣ = ∣ x 

j
i − x 

j−1
i

x j
i

∣ 100% < εs (11.6)

for all i, where j and j − 1 are the present and previous iterations.

 EXAMPLE 11.3 Gauss-Seidel Method
Problem Statement. Use the Gauss-Seidel method to obtain the solution of the same 
system used in Example 10.2:

 3x1 − 0.1x2 − 0.2x3 =  7.85
 0.1x1 +  7x2 − 0.3x3  = −19.3
 0.3x1 − 0.2x2 + 10x3  =  71.4

Recall that the true solution is x1 = 3, x2 = −2.5, and x3 = 7.

Solution. First, solve each of the equations for its unknown on the diagonal.

 x1 =
7.85 + 0.1x2 + 0.2x3

3
 (E11.3.1)

 x2 =
−19.3 − 0.1x1 + 0.3x3

7
 (E11.3.2)

 x3 =
71.4 − 0.3x1 + 0.2x2

10
 (E11.3.3)

By assuming that x2 and x3 are zero, Eq. (E11.3.1) can be used to compute

x1 =
7.85 + 0 + 0

3
= 2.616667

This value, along with the assumed value of x3 = 0, can be substituted into Eq. (E11.3.2) 
to calculate

x2 =
−19.3 − 0.1(2.616667) + 0

7
= −2.794524
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The first iteration is completed by substituting the calculated values for x1 and x2 into 
Eq. (E11.3.3) to yield

x3 =
71.4 − 0.3(2.616667) + 0.2(−2.794524)

10
= 7.005610

 For the second iteration, the same process is repeated to compute

 x1 =
7.85 + 0.1(−2.794524) + 0.2(7.005610)

3
= 2.990557   ∣εt∣ = 0.31%

 x2 =
−19.3 − 0.1(2.990557) + 0.3(7.005610)

7
= −2.499625   ∣εt∣ = 0.015%

 x3 =
71.4 − 0.3(2.990557) + 0.2(−2.499625)

10
= 7.000291    ∣εt∣ = 0.0042%

 The method is, therefore, converging on the true solution. Additional iterations could 
be applied to improve the answers. However, in an actual problem, we would not know 
the true answer a priori. Consequently, Eq. (11.6) provides a means to estimate the error. 
For example, for x1,

∣εa,1∣ = ∣ 2.990557 − 2.616667
2.990557 ∣ 100% = 12.5%

For x2 and x3, the error estimates are ∣ εa,2 ∣ = 11.8% and ∣ εa,3 ∣ = 0.076%. Note that, as 
was the case when determining roots of a single equation, formulations such as Eq. (11.6) 
usually provide a conservative appraisal of convergence. Thus, when they are met, they 
ensure that the result is known to at least the tolerance specified by εs.

 As each new x value is computed in the Gauss-Seidel method, it is immediately used 
in the next equation to determine another x value. Thus, if the solution is converging, 
the best available estimates will be employed. An alternative approach, called Jacobi 
iteration, utilizes a somewhat different tactic. Rather than using the latest available x’s, 
this technique uses Eq. (11.5) to compute a set of new x’s on the basis of a set of old 
x’s. Thus, as new values are generated, they are not immediately used but rather are 
retained for the next iteration.
 The difference between the Gauss-Seidel method and Jacobi iteration is depicted in 
Fig. 11.4. Although there are certain cases where the Jacobi method is useful, Gauss-
Seidel’s utilization of the best available estimates usually makes it the method of preference.

11.2.1 Convergence Criterion for the Gauss-Seidel Method
Note that the Gauss-Seidel method is similar in spirit to the technique of simple fixed-
point iteration that was used in Sec. 6.1 to solve for the roots of a single equation. Recall 
that simple fixed-point iteration had two fundamental problems: (1) it was sometimes 
nonconvergent and (2) when it converged, it often did so very slowly. The Gauss-Seidel 
method can also exhibit these shortcomings.
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 Convergence criteria can be developed by recalling from Sec. 6.6.1 that sufficient 
conditions for convergence of two nonlinear equations, u(x, y) and υ(x, y), are

∣ ∂u

∂x ∣ + ∣ ∂u

∂y ∣ < 1 (11.7a)

and

∣ ∂υ

∂x ∣ + ∣ ∂υ

∂y ∣ < 1 (11.7b)

 These criteria also apply to linear equations of the sort we are solving with the 
Gauss-Seidel method. For example, in the case of two simultaneous equations, the Gauss-
Seidel algorithm [Eq. (11.5)] can be expressed as

u(x1, x2) =
b1

a11
−

a12

a11
 x2 (11.8a)

and

υ(x1, x2) =
b2

a22
−

a21

a22
 x1 (11.8b)

The partial derivatives of these equations can be evaluated with respect to each of the 
unknowns as

∂u

∂x1
= 0  

∂u

∂x2
= −

a12

a11

FIGURE 11.4
Graphical depiction of the difference between (a) the Gauss-Seidel and (b) the Jacobi itera-
tive methods for solving simultaneous linear algebraic equations.

First Iteration

x1 = (b1 − a12x2 − a13x3)∕a11 x1 = (b1 − a12x2 − a13x3)∕a11

x2 = (b2 − a21x1 − a23x3)∕a22 x2 = (b2 − a21x1 − a23x3)∕a22

x3 = (b3 − a31x1 − a32x2)∕a33 x3 = (b3 − a31x1 − a32x2)∕a33

Second Interation

x1 = (b1 − a12x2 − a13x3)∕a11 x1 = (b1 − a12x2 − a13x3)∕a11

x2 = (b2 − a21x1 − a23x3)∕a22 x2 = (b2 − a21x1 − a23x3)∕a22

x3 = (b3 − a31x1 − a32x2)∕a33 x3 = (b3 − a31x1 − a32x2)∕a33

 (a) (b)

↓

↓

↓

↓

↓

↓             
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and

∂υ

∂x1
= −

a21

a22
  

∂υ

∂x2
= 0

which can be substituted into Eq. (11.7) to give

∣ a12

a11
∣ < 1 (11.9a)

and

∣ a21

a22
∣ < 1 (11.9b)

 In other words, the absolute values of the slopes of Eq. (11.8) must be less than 
unity to ensure convergence. This is displayed graphically in Fig. 11.5. Equation (11.9) 
can also be reformulated as

∣a11∣ > ∣a12∣

and

∣a22∣ > ∣a21∣

That is, the diagonal element must be greater than the off-diagonal element for each row.
 The extension of the above to n equations is straightforward and can be expressed as

∣aii∣ >∑
n

j=1
j≠ i

∣aij∣ (11.10)

FIGURE 11.5
Iteration cobwebs illustrating (a) convergence and (b) divergence of the Gauss-Seidel method. 
Notice that the same functions are plotted in both cases (u: 11x1 + 13x2 = 286; v: 11x1 − 9x2 = 99). 
Thus, the order in which the equations are implemented (as depicted by the direction of the first 
arrow from the origin) dictates whether the computation converges.

x2

x1

v

u

(a)

x2

x1

v

u

(b)
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That is, the diagonal coefficient in each of the equations must be larger than the sum of 
the absolute values of the other coefficients in the equation. This criterion is sufficient 
but not necessary for convergence. That is, although the method may sometimes work if 
Eq. (11.10) does not hold, convergence is guaranteed if the condition is satisfied. Systems 
where Eq. (11.10) holds are called diagonally dominant. Fortunately, many engineering 
problems of practical importance fulfill this requirement.

11.2.2 Improvement of Convergence Using Relaxation
Relaxation represents a slight modification of the Gauss-Seidel method and is designed 
to enhance convergence. After each new value of x is computed using Eq. (11.5), that 
value is modified by a weighted average of the results of the previous and the present 
iterations:

xnew
i = λxnew

i + (1 − λ)xold
i  (11.11)

where λ is a weighting factor that is assigned a value between 0 and 2.
 If λ = 1, (1 − λ) is equal to 0 and the result is unmodified. However, if λ is set at a 
value between 0 and 1, the result is a weighted average of the present and the previous 
results. This type of modification is called underrelaxation. It is typically employed to make 
a nonconvergent system converge or to hasten convergence by dampening out oscillations.
 For values of λ from 1 to 2, extra weight is placed on the present value. In this instance, 
there is an implicit assumption that the new value is moving in the correct direction toward 
the true solution but at too slow a rate. Thus, the added weight of λ is intended to improve 
the estimate by pushing it closer to the truth. Hence, this type of modification, which is 
called overrelaxation, is designed to accelerate the convergence of an already convergent 
system. The approach is also called successive or simultaneous overrelaxation, or SOR.
 The choice of a proper value for λ is highly problem-specific and is often determined 
empirically. For a single solution of a set of equations, it is often unnecessary. However, 
if the system under study is to be solved repeatedly, the efficiency introduced by a wise 
choice of λ can be extremely important. Good examples are the very large systems of 
partial differential equations that often arise when modeling continuous variations of 
variables (recall the distributed system depicted in Fig. PT3.1b). We will return to this 
topic in Part Eight.

11.2.3 Algorithm for Gauss-Seidel
An algorithm for the Gauss-Seidel method, with relaxation, is depicted in Fig. 11.6. Note 
that this algorithm is not guaranteed to converge if the equations are not input in a 
 diagonally dominant form.
 The pseudocode has two features that bear mentioning. First, there is an initial set of 
nested loops to divide each equation by its diagonal element. This reduces the total number 
of operations in the algorithm. Second, notice that the error check is designated by a vari-
able called sentinel. If any of the equations has an approximate error greater than the 
stopping criterion (es), then the iterations are allowed to continue. The use of sentinel 
allows us to circumvent unnecessary calculations of error estimates once one of the equa-
tions exceeds the criterion.
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11.2.4 Problem Contexts for the Gauss-Seidel Method
Aside from circumventing the round-off dilemma, the Gauss-Seidel technique has a num-
ber of other advantages that make it particularly attractive in the context of certain en-
gineering problems. For example, when the matrix in question is very large and very 
sparse (that is, most of the elements are zero), elimination methods waste large amounts 
of computer memory by storing zeros.
 At the beginning of this chapter, we saw how this shortcoming could be circum-
vented if the coefficient matrix is banded. For nonbanded systems, there is usually no 
simple way to avoid large memory requirements when using elimination methods. 

FIGURE 11.6
Pseudocode for Gauss-Seidel 
with relaxation.

SUBROUTINE Gseid(a,b,n,x,imax,es,lambda)
  DOFOR i = 1,n
    dummy = ai,i
    DOFOR j = 1,n
      ai,j = ai,j/dummy
    END DO
    bi = bi/dummy
  END DO
  DOFOR i = 1, n
    sum = bi
    DOFOR j = 1, n
      IF i ≠ j THEN sum = sum − ai,j*xj
    END DO
    xi=sum
  END DO
  iter=1
  DO
    sentinel = 1
    DOFOR i = 1,n
      old = xi
      sum = bi
      DOFOR j = 1,n
        IF i ≠ j THEN sum = sum − ai,j*xj
      END DO
      xi = lambda*sum +(1.−lambda)*old
      IF sentinel = 1 AND xi ≠ 0. THEN
        ea = ABS((xi − old)/xi)*100.
        IF ea > es THEN sentinel = 0
      END IF
    END DO
    iter = iter + 1
    IF sentinel = 1 OR (iter ≥ imax) EXIT
  END DO
END Gseid
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 Because all computers have a finite amount of memory, this inefficiency can place a 
constraint on the size of systems for which elimination methods are practical.
 Although a general algorithm such as the one in Fig. 11.6 is prone to the same 
constraint, the structure of the Gauss-Seidel equations [Eq. (11.5)] permits concise pro-
grams to be developed for specific systems. Because only nonzero coefficients need be 
included in Eq. (11.5), large savings of computer memory are possible. Although this 
entails more up-front investment in software development, the long-term advantages are 
substantial when dealing with large systems for which many simulations are to be per-
formed. Both lumped- and distributed-variable systems can result in large, sparse matri-
ces for which the Gauss-Seidel method has utility.

 11.3 LINEAR ALGEBRAIC EQUATIONS WITH SOFTWARE 
PACKAGES
Software packages have great capabilities for solving systems of linear algebraic equa-
tions. Before describing these tools, we should mention that the approaches described in 
Chap. 7 for solving nonlinear systems can be applied to linear systems. However, in this 
section, we will focus on the approaches that are expressly designed for linear equations.

11.3.1 Excel
There are two ways to solve linear algebraic equations with Excel: (1) using the Solver 
tool or (2) using matrix inversion and multiplication functions.
 Recall that one way to determine the solution of linear algebraic equations is

{X} = [A]−1{B} (11.12)

Excel has built-in functions for both matrix inversion and multiplication that can be used 
to implement this formula.

 EXAMPLE 11.4 Using Excel to Solve Linear Systems
Problem Statement. Recall that in Chap. 10 we introduced the Hilbert matrix. The 
following system is based on the Hilbert matrix. Note that it is scaled, as was done 
previously in Example 10.3, so that the maximum coefficient in each row is unity.

[
1 1∕2 1∕3
1 2∕3 1∕2
1 3∕4 3∕5] {

x1

x2

x3
} = {

1.833333
2.166667

2.35 }
The solution to this system is {X}T =⌊1 1 1⌋. Use Excel to obtain this solution.

Solution. The spreadsheet to solve this problem is displayed in Fig. 11.7. First, the 
matrix [A] and the right-hand-side constants {B} are entered into the spreadsheet cells. 
Then, a set of cells of the proper dimensions (in our example 3 × 3) is highlighted by 
either clicking and dragging the mouse or by using the arrow keys while depressing the 
shift key. As in Fig. 11.7, we highlight the range: B5. .D7.

S
O

F
T

W
A

R
E
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 Next, a formula invoking the matrix inverse function is entered,

=minverse(B1..D3)

Note that the argument is the range holding the elements of [A]. The Ctrl and Shift keys 
are held down while the Enter key is depressed. The resulting inverse of [A] will be 
calculated by Excel and displayed in the range B5. .D7 as shown in Fig. 11.7.
 A similar approach is used to multiply the inverse by the right-hand-side vector. For 
this case, the range F5. .F7 is highlighted and the following formula is entered

=mmult(B5..D7,F1..F3)

where the first range is the first matrix to be multiplied, [A]−1, and the second range is 
the second matrix to be multiplied, {B}. When the Ctrl-Shift-Enter combination is used 
again, the solution {X} will be calculated by Excel and displayed in the range F5. .F7, 
as shown in Fig. 11.7. As can be seen, the correct answer results.

FIGURE 11.7

 Notice that we deliberately reformatted the results in Example 11.4 to show 15 
digits. We did this because Excel uses double-precision to store numerical values. Thus, 
we see that round-off error occurs in the last two digits. This implies a condition number 
on the order of 100, which agrees with the result of 451.2 originally calculated in 
 Example 10.3. Excel does not have the capability to calculate a condition number. In 
most cases, particularly because it employs double-precision numbers, this does not rep-
resent a problem. However, for cases where you suspect that the system is ill-conditioned, 
determination of the condition number is useful. MATLAB and Mathcad software are 
capable of computing this quantity.

11.3.2 MATLAB
As the name implies, MATLAB (short for MATrix LABoratory) was designed to fa-
cilitate matrix manipulations. Thus, as might be expected, its capabilities in this area are 
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excellent. Some of the key MATLAB functions related to matrix operations are listed in 
Table 11.1. The following example illustrates a few of these capabilities.

 EXAMPLE 11.5 Using MATLAB to Manipulate Linear Algebraic Equations
Problem Statement. Explore how MATLAB can be employed to solve and analyze 
linear algebraic equations. Use the same system as in Example 11.4.

Solution. First, we can enter the [A] matrix and the {B} vector,

>> A = [ 1  1/2  1/3 ; 1  2/3  1/2 ; 1  3/4  3/5 ]

A =
1.0000 0.5000 0.3333
1.0000 0.6667 0.5000
1.0000 0.7500 0.6000

>> B = [1+1/2+1/3;1+2/3+2/4;1+3/4+3/5]

B =
1.8333
2.1667
2.3500

Next, we can determine the condition number for [A], as in

>> cond(A)

ans =
  366.3503

TABLE 11.1 MATLAB functions to implement matrix analysis and numerical linear algebra.

 Matrix Analysis Linear Equations

Function Description Function Description

cond Matrix condition number \ and / Linear equation solution; use “help slash”
norm Matrix or vector norm chol Cholesky factorization
rcond LINPACK reciprocal condition estimator lu Factors from Gauss elimination
rank Number of linearly independent inv Matrix inverse 
  rows or columns
det Determinant qr Orthogonal-triangular decomposition
trace Sum of diagonal elements qrdelete Delete a column from the QR 
    factorization
null Null space qrinsert Insert a column in the QR factorization
orth Orthogonalization nnls Nonnegative least squares
rref Reduced row echelon form pinv Pseudoinverse
  lscov  Least squares in the presence of known  

 covariance
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This result is based on the spectral, or ∥A∥2, norm discussed in Box 10.2. Note that it 
is of the same order of magnitude as the condition number 451.2 that was obtained based 
on the row-sum norm in Example 10.3. Both results imply that between two and three 
digits of precision could be lost.
 Now we can solve the system of equations in two different ways. The most direct 
and efficient way is to employ backslash division, or “left division”:

>> X=A\B

X =
1.0000
1.0000
1.0000

For cases such as ours, MATLAB uses Gauss elimination to solve such systems.
 As an alternative, we can implement Eq. (PT3.6) directly, as in

>> X=inv(A)*B

X =
1.0000
1.0000
1.0000

This approach actually determines the matrix inverse first and then performs the 
matrix multiplication. Hence, it is more time-consuming than using the backslash 
approach.

11.3.3 Mathcad
Mathcad contains many special functions that manipulate vectors and matrices. These 
include common operations such as the dot product, matrix transpose, matrix addition, 
and matrix multiplication. In addition, it allows calculation of the matrix inverse, deter-
minant, trace, various types of norms, and condition numbers based on different norms. 
It also has several functions that decompose matrices.
 Systems of linear equations can be solved in two ways by Mathcad. First, it is pos-
sible to use matrix inversion and subsequent multiplication by the right-hand-side vector 
as discussed in Chap. 10. In addition, Mathcad has a special function called lsolve(A,b) 
that is specifically designed to solve linear equations. You can use other built-in functions 
to evaluate the condition of A to determine if A is nearly singular and thus possibly 
subject to round-off errors.
 As an example, let’s use lsolve to solve a system of linear equations. As shown in 
Fig. 11.8, the first step is to enter the coefficients of the A matrix using the definition 
symbol and the Insert/Matrix pull-down menu. This gives a box that allows you to 
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specify the dimensions of the matrix. For our case, we will select a dimension of 4×4, 
and Mathcad places a blank 4-by-4-size matrix on the screen. Now, simply click in each 
cell location and enter values. Repeat similar operations to create the right-hand-side b 
vector. Now the vector x is defined as lsolve(A,b) and the value of x is displayed with 
the equal sign.
 We can also solve the same system using the matrix inverse. The inverse can be 
simply computed by merely raising A to the exponent −1. The result is shown on the 
right side of Fig. 11.8. The solution is then generated as the product of the inverse 
times b.
 Next, let’s use Mathcad to find the inverse and the condition number of the Hilbert 
matrix. As in Fig. 11.9, the scaled matrix can be entered using the definition symbol 
and the Insert/Matrix pull-down menu. The inverse can again be computed by simply 
raising H to the exponent −1. The result is shown in Fig. 11.9. We can then use some 
other Mathcad functions to determine condition numbers by using the definition symbol 
to define variables c1, c2, ce, and ci as the condition number based on the column-sum 
(cond1), spectral (cond2), the Euclidean (conde), and the row-sum (condi) norms, re-
spectively. The resulting values are shown at the bottom of Fig. 11.9. As expected, the 
spectral norm provides the result with the smallest magnitude.

FIGURE 11.8
Mathcad screen showing how to solve a system of linear algebraic equations.
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FIGURE 11.9
Mathcad screen showing how to determine the matrix inverse and condition numbers of a 
scaled 3×3  Hilbert matrix.

PROBLEMS

11.1 Perform the same calculations as in (a) Example 11.1 and  
(b) Example 11.3 but for the tridiagonal system

[
0.8 −0.4

−0.4 0.8 −0.4
−0.4 0.8 ] {

x1

x2

x3
} = {

41
25
105}

11.2 Determine the matrix inverse for Example 11.1 based on the 
LU decomposition and unit vectors.
11.3 The following tridiagonal system must be solved as part of a 
larger algorithm (Crank-Nicolson) for solving partial differential 
equations:

[

2.01475 −0.020875
−0.020875 2.01475 −0.020875

−0.020875 2.01475 −0.020875
−0.020875 2.01475

]

×
{

T1

T2

T3

T4
}

=
{

4.175
0
0

2.0875
}

Use the Thomas algorithm to obtain a solution.
11.4 Confirm the validity of the Cholesky decomposition of 
Example 11.2 by substituting the results into Eq. (11.2) to see 
if the product of [L] and [L]T yields [A].

 PROBLEMS 321
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tolerance of εs = 5%. If necessary, rearrange the equations to 
achieve convergence.

 2x1 − 6x2 − x3 = −38

 −3x1 − x2 + 7x3 = −34

 −8x1 + x2 − 2x3 = −20

11.14 Redraw Fig. 11.5 for the case where the slopes of the equa-
tions are 1 and −1. What is the result of applying Gauss-Seidel to 
such a system?
11.15 Of the following three sets of linear equations, identify the 
set(s) that you could not solve using an iterative method such as 
Gauss-Seidel. Use the number of iterations that are necessary to 
show that your solution does not converge. Clearly state your con-
vergence criteria (how you know it is not converging).

 Set One Set Two Set Three

 9x + 3y + z = 13 x + y + 6z = 8 −3x + 4y + 5z = 6
 −6x + 8z = 8 x + 5y − z = 5 −2x + 2y − 4z = −3
 2x + 5y − z = 6 4x + 2y − 2z = 4 2y − z = 1

11.16 Use the software package of your choice to obtain a solution, 
calculate the inverse, and determine the condition number (without 
scaling) based on the row-sum norm for
(a)

[
1 4 9
4 9 16
9 16 25]{

x1

x2

x3
} = {

14
29
50}

(b)

[

1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

]{

x1

x2

x3

x4
}

=
{

30
54
86
126

}
In both cases, the answers for all the x’s should be 1.
11.17 Given the pair of nonlinear simultaneous equations:

f(x, y) 5 4 2 y 2 2x2

g(x, y) 5 8 2 y2 2 4x

(a) Use the Excel Solver to determine the two pairs of values of x 
and y that satisfy these equations.

(b) Using a range of initial guesses (x = −6 to 6 and y = −6 to 6), 
determine which initial guesses yield each of the solutions.

11.18 An electronics company produces transistors, resistors, and 
computer chips. Each transistor requires four units of copper, one 
unit of zinc, and two units of glass. Each resistor requires three, 

11.5 Perform the same calculations as in Example 11.2, but for the 
symmetric system

[
6 15 55
15 55 225
55 225 979]  {

a0

a1

a2
} = {

152.6
585.6
2488.8}

In addition to performing the Cholesky decomposition, employ it to 
solve for the a’s.
11.6 Perform a Cholesky decomposition and then use the result to 
solve the following symmetric system by hand:

[
8 20 15
20 80 50
15 50 60]  {

x1

x2

x3
} = {

100
250
100}

11.7 Compute the Cholesky decomposition of

[A] = [
100 0 0
0 25 0
0 0 16]

Do your results make sense in terms of Eqs. (11.3) and (11.4)?
11.8 Use the Gauss-Seidel method to solve the tridiagonal system 
from Prob. 11.1 (εs = 5%). Use overrelaxation with λ = 1.2.
11.9 Recall from Prob. 10.8, that the following system of equations 
is designed to determine concentrations (the c’s in g/m3) in a series 
of coupled reactors as a function of amount of mass input to each 
reactor (the right-hand sides are in g/day):

 15c1 − 3c2 − c3 = 3300

 −3c1 + 18c2 − 6c3 = 1200

 −4c1 − c2 + 12c3 = 2400

Solve this problem with the Gauss-Seidel method to εs = 5%.
11.10 Repeat Prob. 11.9, but use Jacobi iteration.
11.11 Use the Gauss-Seidel method to solve the following system 
until the percent relative error falls below εs = 5%:

 10x1 + 2x2 − x3 = 22

 −3x1 − 6x2 + 2x3 = −14

 x1 + x2 + 5x3 = 14

11.12 Use the Gauss-Seidel method (a) without relaxation and 
(b) with relaxation (λ = 0.95) to solve the following system to a 
tolerance of εs = 5%. If necessary, rearrange the equations to 
achieve convergence.

 −3x1 + x2 + 15x3 = 44

 6x1 − 2x2 + x3 = 5

 5x1 + 10x2 + x3 = 28

11.13 Use the Gauss-Seidel method (a) without relaxation and 
(b) with relaxation (λ = 1.2) to solve the following system to a 
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on Fig. 11.3. Test your program by duplicating the results of 
 Example 11.2.
11.26 Develop a user-friendly program in either a high-level or a 
macro language of your choice for the Gauss-Seidel method based 
on Fig. 11.6. Test your program by duplicating the results of 
 Example 11.3.
11.27 As described in Sec. PT3.1.2, linear algebraic equations can 
arise in the solution of differential equations. For example, the 
 following differential equation results from a steady-state mass 
 balance for a chemical in a one-dimensional canal:

0 = D 
d2c

dx2 − U 
dc

dx
− kc

where c = concentration, x = distance, D = diffusion coefficient, 
U = fluid velocity, and k = a first-order decay rate. Convert this 
differential equation to an equivalent system of simultaneous alge-
braic equations. Given D = 2.5, U = 0.75, k = 0.15, c(0) = 75 and 
c(10) = 25, solve these equations from x = 0 to 10 with Δx = 2, and 
develop a plot of concentration versus distance.
11.28 A pentadiagonal system with a bandwidth of five can be 
expressed generally as

Develop a program to efficiently solve such systems without 
 pivoting in a similar fashion to the algorithm used for tridiagonal 
matrices in Sec. 11.1.1. Test your program for the following case:

[

8 −2 −1 0 0
−2 9 −4 −1 0
−1 −3 7 −1 −2

0 −4 −2 12 −5
0 0 −7 −3 15

] {

x1

x2

x3

x4

x5

}
=

{

5
2
0
1
5

}
11.29 Besides solving simultaneous equations, linear algebra has 
many other applications in engineering and science. An example 
from computer graphics involves rotating an object in Euclidean 
space. The following rotation matrix can be employed to rotate a 
group of points counter clockwise through an angle θ about the 
origin of a Cartesian coordinate system:

R = [
cos θ −sin θ
sin θ cos θ ]

[

f1 g1 h1

e2 f2 g2 h2

d3 e3 f3 g3 h3

. . .
. . .

. . .
dn−1 en−1 fn−1 gn−1

dn en fn

]
 

{

x1

x2

x3

.

.

.
xn−1

xn

}
=

{

r1

r2

r3

.

.

.
rn−1

rn

}

three, and one units of the three materials, respectively, and each 
computer chip requires two, one, and three units of these materials, 
respectively. Putting this information into table form, we get:

Component Copper Zinc Glass

Transistors 4 1 2
Resistors 3 3 1
Computer chips 2 1 3

Supplies of these materials vary from week to week, so the com-
pany needs to determine a different production run each week. For 
example, one week the total amounts of materials available are 960 
units of copper, 510 units of zinc, and 610 units of glass. Set up the 
system of equations modeling the production run, and use Excel, 
MATLAB, or Mathcad to solve for the number of transistors, resis-
tors, and computer chips to be manufactured this week.
11.19 Use MATLAB or Mathcad software to determine the spectral 
condition number for a 10-dimensional Hilbert matrix. How many 
digits of precision are expected to be lost due to ill-conditioning? 
Determine the solution for this system for the case where each ele-
ment of the right-hand-side vector {b} consists of the summation of 
the coefficients in its row. In other words, solve for the case where 
all the unknowns should be exactly 1. Compare the resulting  errors 
with those expected based on the condition number.
11.20 Repeat Prob. 11.19, but for the case of a six-dimensional 
Vandermonde matrix (see Prob. 10.17) where x1 = 4, x2 = 2, x3 = 7, 
x4 = 10, x5 = 3, and x6 = 5.
11.21 Given a square matrix [A], write a single-line MATLAB 
command that will create a new matrix [Aug] that consists of the 
original matrix [A] augmented by an identity matrix [I].
11.22 Write the following set of equations in matrix form:

55 = 5x3 − 7x2

4x2 + 6x3 + 30 = 0

x1 − 7x3 = 40 − 2x2 + 5x1

Use Excel, MATLAB, or Mathcad to solve for the unknowns. In 
addition, compute the transpose and the inverse of the coefficient 
matrix.
11.23 In Sec. 9.2.1, we determined the number of operations re-
quired for Gauss elimination without partial pivoting. Make a simi-
lar determination for the Thomas algorithm (Fig. 11.2). Develop a 
plot of operations versus n (from 2 to 20) for both techniques.
11.24 Develop a user-friendly program in either a high-level or a 
macro language of your choice to obtain a solution for a tridiagonal 
system with the Thomas algorithm (Fig. 11.2). Test your program 
by duplicating the results of Example 11.1.
11.25 Develop a user-friendly program in either a high-level or a 
macro language of your choice for Cholesky decomposition based 
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324 SPECIAL MATRICES AND GAUSS-SEIDEL

To do this, each point’s position must be represented by a column 
vector v, containing the coordinates of the point. For example, here 
are vectors for the x and y coordinates of the rectangle in Fig. P11.29

x = [1 4 4 1]; y = [1 1 4 4];

The rotated vector is then generated with matrix multiplication: 
[R]{v}. Develop a MATLAB function to perform this operation 
and display the initial and the rotated points as filled shapes on the 
same graph. Here is a script to test your function:

clc;clf;format compact
x = [1 4 4 1]; y = [1 1 4 4];
[xt, yt] = Rotate2D(45, x, y);

and here is a skeleton of the function:

y

x

(1, 4)

(1, 1) (4, 1)

(4, 4)

FIGURE P11.29

function [xr, yr] = Rotate2D(thetad, x, y)
% two-dimensional rotation 2D rotate Cartesian
% [xr, yr] = rot2d(thetad, x, y)
% Rotation of a two-dimensional object the Cartesian coordinates
% of which are contained in the vectors x and y.
% input:
% thetad = angle of rotation (degrees)
% x = vector containing objects x coordinates
% y = vector containing objects y coordinates
% output:
% xr = vector containing objects rotated x coordinates
% yr = vector containing objects rotated y coordinates

% convert angle to radians and set up rotation matrix
  ∙
  ∙
  ∙
% close shape
  ∙
  ∙
  ∙
% plot original object
hold on, grid on
  ∙
  ∙
  ∙
% rotate shape
  ∙
  ∙
  ∙
% plot rotated object
  ∙
  ∙
  ∙
hold off
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325

C H A P T E R

12
Case Studies: Linear  
Algebraic Equations

The purpose of this chapter is to use the numerical procedures discussed in Chaps. 9, 10, 
and 11 to solve systems of linear algebraic equations for some engineering case studies. 
These systematic numerical techniques have practical significance because engineers fre-
quently encounter problems involving systems of equations that are too large to solve by 
hand. The numerical algorithms in these applications are particularly convenient to imple-
ment on personal computers.
 Section 12.1 shows how a mass balance can be employed to model a system of 
reactors. Section 12.2 places special emphasis on the use of the matrix inverse to 
determine the complex cause-effect interactions between forces in the members of a 
truss. Section 12.3 presents an example of the use of Kirchhoff’s laws to compute the 
currents and voltages in a resistor circuit. Finally, Sec. 12.4 provides an illustration 
of how linear equations are employed to determine the steady-state configuration of 
a mass-spring system.

 12.1 STEADY-STATE ANALYSIS OF A SYSTEM OF REACTORS 
(CHEMICAL/BIO ENGINEERING)

Background. One of the most important organizing principles in chemical engineering 
is the conservation of mass (recall Table 1.1). In quantitative terms, the principle is 
expressed as a mass balance that accounts for all mass sources and sinks that pass in 
and out of a volume (Fig. 12.1). Over a finite period of time, this can be  expressed as

Accumulation = inputs − outputs (12.1)

 The mass balance represents a bookkeeping exercise for the particular substance 
being modeled. For the period of the computation, if the inputs are greater than the 
outputs, the mass of the substance within the volume increases. If the outputs are greater 
than the inputs, the mass decreases. If inputs are equal to the outputs, accumulation is 
zero and mass remains constant. For this stable condition, or steady state, Eq. (12.1) can 
be expressed as

Inputs = outputs (12.2)
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326 CASE STUDIES: LINEAR ALGEBRAIC EQUATIONS

Employ the conservation of mass to determine the steady-state concentrations of a system 
of coupled reactors.

Solution. The mass balance can be used for engineering problem solving by expressing 
the inputs and outputs in terms of measurable variables and parameters. For example, if 
we were performing a mass balance for a conservative substance (that is, one that does 
not increase or decrease due to chemical transformations) in a reactor (Fig. 12.2), we 
would have to quantify the rates at which mass flows into the reactor through the two 
inflow pipes and out of the reactor through the outflow pipe. This can be done by taking 
the product of the flow rate Q (in cubic meters per minute) and the concentration c (in 
milligrams per cubic meter) for each pipe. For example, for pipe 1 in Fig. 12.2, Q1 = 
2 m3/min and c1 = 25 mg/m3; therefore, the rate at which mass flows into the reactor 
through pipe 1 is Q1c1 = (2 m3/min)(25 mg/m3) = 50 mg/min. Thus, 50 mg of chemical 
flows into the reactor through this pipe each minute. Similarly, for pipe 2 the mass inflow 
rate can be calculated as Q2c2 = (1.5 m3/min)(10 mg/m3) = 15 mg/min.
 Notice that the concentration out of the reactor through pipe 3 is not specified by 
Fig. 12.2. This is because we already have sufficient information to calculate it on the 
basis of the conservation of mass. Because the reactor is at steady state, Eq. (12.2) holds 
and the inputs should be in balance with the outputs, as in

Q1c1 + Q2c2 = Q3c3

Substituting the given values into this equation yields

50 + 15 = 3.5c3

which can be solved for c3 = 18.6 mg/m3. Thus, we have determined the concentration 
in the third pipe. However, the computation yields an additional bonus. Because the 
reactor is well mixed (as represented by the propeller in Fig. 12.2), the concentration 
will be uniform, or homogeneous, throughout the tank. Therefore the concentration in 
pipe 3 should be identical to the concentration throughout the reactor. Consequently, the 
mass balance has allowed us to compute both the concentration in the reactor and in the 
outflow pipe. Such information is of great utility to chemical and petroleum engineers 
who must design reactors to yield mixtures of a specified concentration.

Input Output

Accumulation

Volume

FIGURE 12.1
A schematic representation of mass balance.
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 12.1 STEADY-STATE ANALYSIS OF A SYSTEM OF REACTORS 327

 Because simple algebra was used to determine the concentration for the single reac-
tor in Fig. 12.2, it might not be obvious how computers figure in mass-balance calcula-
tions. Figure 12.3 shows a problem setting where computers are not only useful but are 
a practical necessity. Because there are five interconnected, or coupled, reactors, five 
 simultaneous mass-balance equations are needed to characterize the system. For reactor 1, 
the rate of mass flow in is

5(10) + Q31c3

and the rate of mass flow out is

Q12c1 + Q15c1

FIGURE 12.2
A steady-state, completely 
mixed reactor with two inflow 
pipes and one outflow pipe. 
The flows Q are in cubic me-
ters per minute, and the con-
centrations c are in milligrams 
per  cubic meter.

Q3 = 3.5 m3/min
 c3 = ?

Q1 = 2 m3/min
 c1 = 25 mg/m3

Q2 = 1.5 m3/min
 c2 = 10 mg/m3

Q24 = 1

Q54 = 2

Q55 = 2Q15 = 3

Q44 = 11Q12 = 3

Q31 = 1
Q03 = 8

c03 = 20

Q23 = 1

Q25 = 1

Q34 = 8

Q01 = 5

c01 = 10

c3

c5

c1 c2 c4

FIGURE 12.3
Five reactors linked by pipes.
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328 CASE STUDIES: LINEAR ALGEBRAIC EQUATIONS

Because the system is at steady-state, the inflows and outflows must be equal:

5(10) + Q31c3 = Q12c1 + Q15c1

or, substituting the values for flow from Fig. 12.3,

6c1 − c3 = 50

Similar equations can be developed for the other reactors:

−3c1 + 3c2 = 0
−c2 + 9c3 = 160
−c2 − 8c3 + 11c4 − 2c5 = 0
−3c1 − c2 + 4c5 = 0

 A numerical method can be used to solve these five equations for the five unknown 
concentrations:

{C}T = ⌊11.51 11.51 19.06 17.00 11.51⌋

 In addition, the matrix inverse can be computed as

[A]−1 =

[

0.16981 0.00629 0.01887 0 0
0.16981 0.33962 0.01887 0 0
0.01887 0.03774 0.11321 0 0
0.06003 0.07461 0.08748 0.09091 0.04545
0.16981 0.08962 0.01887 0 0.25000

]
Each of the elements aij signifies the change in concentration of reactor i due to a unit 
change in loading to reactor j. Thus, the zeros in column 4 indicate that a loading to 
reactor 4 will have no impact on reactors 1, 2, 3, and 5. This is consistent with the 
system configuration (Fig. 12.3), which indicates that flow out of reactor 4 does not feed 
back into any of the other reactors. In contrast, loadings to any of the first three reactors 
will affect the entire system as indicated by the lack of zeros in the first three columns. 
Such information is of great utility to engineers who design and manage such systems.

 12.2 ANALYSIS OF A STATICALLY DETERMINATE TRUSS  
(CIVIL/ENVIRONMENTAL ENGINEERING)
Background. An important problem in structural engineering is that of finding the 
forces and reactions associated with a statically determinate truss. Figure 12.4 shows an 
example of such a truss.
 The forces (F ) represent either tension or compression on the members of the truss. 
External reactions (H2, V2, and V3) are forces that characterize how the truss interacts 
with the supporting surface. The hinge at node 2 can transmit both horizontal and verti-
cal forces to the surface, whereas the roller at node 3 transmits only vertical forces. It is 
observed that the effect of the external loading of 1000 lb is distributed among the 
various members of the truss.

cha32077_ch12_325-346.indd   328 8/6/19   12:34 PM



 12.2 ANALYSIS OF A STATICALLY DETERMINATE TRUSS 329

Solution. This type of structure can be described as a system of coupled linear alge-
braic equations. Free-body force diagrams are shown for all three nodes in Fig. 12.5. 
The sum of the forces in both horizontal and vertical directions must be zero at each 
node, because the system is at rest. Therefore, for node 1,

ΣFH = 0 = −F1 cos 30° + F3 cos 60° + F1, h (12.3)

ΣFV = 0 = −F1 sin 30° − F3 sin 60° + F1, υ (12.4)

for node 2,

ΣFH = 0 = F2 + F1 cos 30° + F2, h + H2 (12.5)

ΣFV = 0 = F1 sin 30° + F2, υ + V2 (12.6)

FIGURE 12.4
Forces on a statically determi-
nate truss.

1000 lb

2
3

1

30°
60°

90° F3
F1

F2

H2

V2 V3

FIGURE 12.5
Free-body force diagrams for 
the nodes of a statically  
determinate truss.

2 F3,h

F1,v

F1,h

F2

F2,h

F1
F2,v

H2

V2

F3
F1

F3,v

F3

F2

V3

1

30°

30°

60°

60°

3
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330 CASE STUDIES: LINEAR ALGEBRAIC EQUATIONS

for node 3,
ΣFH = 0 = −F2 − F3 cos 60° + F3,  h (12.7)
ΣFV = 0 = F3 sin 60° + F3, υ + V3 (12.8)

where Fi, h is the external horizontal force applied to node i (where a positive force is 
from left to right) and Fi, υ is the external vertical force applied to node i (where a 
positive force is upward). Thus, in this problem, the 1000-lb downward force on node 1 
corresponds to F1, υ = −1000. For this case all other Fi, υ’s and Fi, h’s are zero. Note that 
the directions of the internal forces and reactions are unknown. Proper application of 
Newton’s laws requires only consistent assumptions regarding direction. Solutions are 
negative if the directions are assumed incorrectly. Also note that in this problem, the 
forces in all members are assumed to be tension forces acting to pull adjoining nodes 
together. A negative solution therefore corresponds to compression. This problem can be 
represented as the following system of six equations and six unknowns:

[

0.866    0 −0.5    0    0    0
0.5    0 0.866    0    0    0

−0.866 −1 0 −1    0    0
−0.5    0 0    0 −1    0

0    1 0.5    0    0    0
0    0 −0.866    0    0 −1

]{

F1

F2

F3

H2

V2

V3

}
=

{

0
−1000

0
0
0
0

}
 (12.9)

 Notice that, as the system is formulated in Eq. (12.9), partial pivoting is required to 
avoid division by zero diagonal elements. Employing a pivot strategy, the system can be 
solved using any of the elimination techniques discussed in Chap. 9 or 10. However, 
because this problem is an ideal case study for demonstrating the utility of the matrix 
inverse, the LU decomposition can be used to compute

 F1 = −500   F2 = 433   F3 = −866
 H2 = 0  V2 = 250  V3 = 750

and the matrix inverse is

[A]−1 =

[

0.866 0.5
0.25 −0.433
−0.5 0.866
−1 0

−0.433 −0.25
0.433 −0.75

  

0 0 0 0
0 0 1 0
0 0 0 0

−1 0 −1 0
0 −1 0 0
0 0 0 −1

]
Now, realize that the right-hand-side vector represents the externally applied horizontal 
and vertical forces on each node, as in

{F}T = ⌊F1, h F1, υ F2, h F2, υ F3, h F3, υ⌋  (12.10)

 Because the external forces have no effect on the LU decomposition, the method need 
not be implemented over and over again to study the effect of different external forces on 
the truss. Rather, all that we have to do is perform the forward- and backward-substitution 
steps for each right-hand-side vector to efficiently obtain alternative solutions. For  example, 
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 12.2 ANALYSIS OF A STATICALLY DETERMINATE TRUSS 331

we might want to study the effect of horizontal forces induced by a wind blowing from 
left to right. If the wind force can be idealized as two point forces of 1000 lb on nodes 
1 and 2 (Fig. 12.6a), the right-hand-side vector is

{F}T = ⌊−1000 0 1000 0 0 0⌋

which can be used to compute

 F1 = 866   F2 = 250   F3 = −500
 H2 = −2000   V2 = −433   V3 = 433

For a wind from the right (Fig. 12.6b), F1, h = −1000, F3, h = −1000, and all other ex-
ternal forces are zero, with the result that

 F1 = −866   F2 = −1250   F3 = 500
 H2 = 2000   V2 = 433   V3 = −433

The results indicate that the winds have markedly different effects on the structure. Both 
cases are depicted in Fig. 12.6.
 The individual elements of the inverted matrix also have direct utility in elucidating 
stimulus-response interactions for the structure. Each element represents the change of 
one of the unknown variables to a unit change of one of the external stimuli. For ex-
ample, element a−1

32  indicates that the third unknown (F3) will change 0.866 due to a unit 
change of the second external stimulus (F1, υ). Thus, if the vertical load at the first node 
were increased by 1, F3 would increase by 0.866. The fact that elements are 0 indicates 
that certain unknowns are unaffected by some of the external stimuli. For instance 
a−1

13 = 0 means that F1 is unaffected by changes in F2, h. This ability to isolate interactions 
has a number of engineering applications, including the identification of those compo-
nents that are most sensitive to external stimuli and, as a consequence, most prone to 
failure. In addition, it can be used to determine components that may be unnecessary 
(see Prob. 12.20).

FIGURE 12.6
Two test cases showing (a) wind from the left and (b) wind from the right.

(a) (b)

866

2000 1000

1000

250

500

433 433

866

2000 1000

1000

1250

500

433 433
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332 CASE STUDIES: LINEAR ALGEBRAIC EQUATIONS

 The foregoing approach becomes particularly useful when applied to large complex 
structures. In engineering practice, it may be necessary to solve trusses with hundreds 
or even thousands of structural members. Linear equations provide one powerful ap-
proach for gaining insight into the behavior of these structures.

 12.3 CURRENTS AND VOLTAGES IN RESISTOR CIRCUITS  
(ELECTRICAL ENGINEERING)

Background. A common problem in electrical engineering involves determining the 
currents and voltages at various locations in resistor circuits. These problems are solved 
using Kirchhoff’s current and voltage rules. The current (or point) rule states that the 
algebraic sum of all currents entering a node must be zero (see Fig. 12.7a), or

Σi = 0 (12.11)

where all current entering the node is considered positive in sign. The current rule is an 
application of the principle of conservation of charge (recall Table 1.1).
 The voltage (or loop) rule specifies that the algebraic sum of the potential differences 
(that is, voltage changes) in any loop must equal zero. For a resistor circuit, this is ex-
pressed as

Σξ − Σi R = 0 (12.12)

where ξ is the emf (electromotive force) of the voltage sources and R is the resistance of 
any resistors in the loop. Note that the second term derives from Ohm’s law (Fig. 12.7b), 
which states that the voltage drop across an ideal resistor is equal to the product of the 
current and the resistance. Kirchhoff’s voltage rule is an expression of the conservation 
of energy.

Solution. Application of these rules results in systems of simultaneous linear algebraic 
equations because the various loops within a circuit are coupled. For example, consider 
the circuit shown in Fig. 12.8. The currents associated with this circuit are unknown both 
in magnitude and direction. This presents no great difficulty because one simply assumes 
a direction for each current. If the resultant solution from Kirchhoff’s laws is negative, 
then the assumed direction was incorrect. For example, Fig. 12.9 shows some assumed 
currents.

FIGURE 12.7
Schematic representations of  
(a) Kirchhoff’s current rule and  
(b) Ohm’s law.

i1 i3

i2

Vi Vj
Rij

iij

(a)

(b)

FIGURE 12.8
A resistor circuit to be solved using simultaneous linear algebraic equations.

R = 5 Ω R = 10 Ω

R = 10 Ω3 2 1

4 5 6
R = 15 Ω

R = 5 Ω
V1 = 200 V

V6 = 0 V
R = 20 Ω
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 12.3 CURRENTS AND VOLTAGES IN RESISTOR CIRCUITS 333

 Given these assumptions, Kirchhoff’s current rule is applied at each node to yield

i12 + i52 + i32 = 0
i65 − i52 − i54 = 0
i43 − i32 = 0
i54 − i43 = 0

Application of the voltage rule to each of the two loops gives

−i54 
R54 − i43 

R43 − i32 
R32 + i52 R52 = 0

−i65 
R65 − i52 

R52 − i12 
R12 − 200 = 0

or, substituting the resistances from Fig. 12.8 and bringing constants to the right-hand side,

−15i54 − 5i43 − 10i32 + 10i52 = 0
−20i65 − 10i52 + 5i12 = 200

Therefore, the problem amounts to solving the following set of six equations with six 
unknown currents:

[
 

1 1 1 0 0 0
0 −1 0 1 −1 0
0 0 −1 0 0 1
0 0 0 0 1 −1
0 10 −10 0 −15 −5
5 −10 0 −20 0 0

]
 

{

i12

i52

i32

i65

i54

i43

}
=

{

0
0
0
0
0

200
}

Although impractical to solve by hand, this system is easily handled using an elimination 
method. Proceeding in this manner, the solution is

 i12 = 6.1538   i52 = −4.6154   i32 = −1.5385
 i65 = −6.1538   i54 = −1.5385   i43 = −1.5385

Thus, with proper interpretation of the signs of the result, the circuit currents and volt-
ages are as shown in Fig. 12.10. The advantages of using numerical algorithms and 
computers for problems of this type should be evident.

FIGURE 12.9
Assumed currents.

3 2 1

4 5 6

i12

i65
i52

i32

i54
i43
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 12.4 SPRING-MASS SYSTEMS (MECHANICAL/AEROSPACE 
ENGINEERING)

Background. Idealized spring-mass systems play an important role in mechanical and 
other engineering problems. Figure 12.11 shows such a system. After they are released, 
the masses are pulled downward by the force of gravity. Notice that the resulting dis-
placement of each spring in Fig. 12.11b is measured along local coordinates referenced 
to its initial position in Fig. 12.11a.
 As introduced in Chap. 1, Newton’s second law can be employed in conjunction 
with force balances to develop a mathematical model of the system. For each mass, the 
second law can be expressed as

m 

d 2x

d t2 = FD − FU (12.13)

To simplify the analysis, we will assume that all the springs are identical and follow 
Hooke’s law. A free-body diagram for the first mass is depicted in Fig. 12.12a. The 
upward force is merely a direct expression of Hooke’s law:

FU = k x1 (12.14)

The downward component consists of the two spring forces along with the action of 
gravity on the mass,

FD = k(x2 − x1) + k(x2 − x1) = m1 
g (12.15)

Note how the force component of the two springs is proportional to the displacement of 
the second mass, x2, corrected for the displacement of the first mass, x1.
 Equations (12.14) and (12.15) can be substituted into Eq. (12.13) to give

m1
d 2x1

d t2 = 2k(x2 − x1) + m1 
g − k x1 (12.16)

Thus, we have derived a second-order ordinary differential equation to describe the dis-
placement of the first mass with respect to time. However, notice that the solution  cannot 
be obtained because the model includes a second dependent variable, x2. Consequently, 
free-body diagrams must be developed for the second and the third masses (Fig. 12.12b 

FIGURE 12.10
The solution for currents and voltages obtained using an elimination method.

V = 153.85 V = 169.23

i = 1.5385

V = 146.15 V = 123.08
V = 0

V = 200

i = 6.1538
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and c) that can be employed to derive

m2 
d2x2

dt2 = k(x3 − x2) + m2g − 2k(x2 − x1) (12.17)

and

m3 
d2x3

dt2 = m3 
g − k(x3 − x2) (12.18)

m1

m3

m2

m1

m3

0

0

0

x1

x2

x3

kk

k

k

(b)(a)

m2

FIGURE 12.11
A system composed of three masses suspended vertically by a series of springs. (a) The sys-
tem before release, that is, prior to extension or compression of the springs. (b) The system 
after  release. Note that the positions of the masses are referenced to local coordinates with 
origins at their position before release.

FIGURE 12.12
Free-body diagrams for the three masses from Fig. 12.11.

k(x2 – x1)m1g

m1

k(x2 – x1)

kx1 k(x2 – x1) k(x2 – x1) k(x3 – x2)

k(x3 – x2)m2g m3g

(a) (b) (c)

m2 m3
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 Equations (12.16), (12.17), and (12.18) form a system of three differential equations 
with three unknowns. With the appropriate initial conditions, they could be used to solve 
for the displacements of the masses as a function of time (that is, their oscillations). We 
will discuss numerical methods for obtaining such solutions in Part Seven. For the pres-
ent, we can obtain the displacements that occur when the system eventually comes to 
rest, that is, to the steady state. To do this, the derivatives in Eqs. (12.16), (12.17), and 
(12.18) are set to zero to give

 3k x1 − 2k x2 = m1 
g

−2k x1 + 3k x2 − k x3 = m2 
g

−   k x2 + k x3 = m3 
g

or, in matrix form,

[K]{X} = {W}

where [K], called the stiffness matrix, is

[K] = [
3k −2k

−2k 3k −k

−k k ]

and {X} and {W} are the column vectors of the unknowns x and the weights mg, 
 respectively.

Solution. At this point, numerical methods can be employed to obtain a solution. If m1 = 
2 kg, m2 = 3 kg, m3 = 2.5 kg, and the k’s = 10 kg/s2, use LU decomposition to solve 
for the displacements and generate the inverse of [K].
 Substituting the model parameters with g = 9.81 gives

[K] = [
30 −20

−20 30 −10
−10 10 ]  {W} = {

19.62
29.43
24.525}

LU decomposition can be employed to solve for x1 = 7.36, x2 = 10.06, and x3 = 12.51. 
These displacements were used to construct Fig. 12.11b. The inverse of the stiffness 
matrix is computed as

[K]−1 = [
0.1 0.1 0.1
0.1 0.15 0.15
0.1 0.15 0.25]

 Each element of this matrix k−1
ji  tells us the displacement of mass i due to a unit 

force imposed on mass j. Thus, the values of 0.1 in column 1 tell us that a downward 
unit load to the first mass will displace all of the masses 0.1 m downward. The other 
elements can be interpreted in a similar fashion. Therefore, the inverse of the stiffness 
matrix provides a fundamental summary of how the system’s components respond to 
externally applied forces.
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PROBLEMS

Chemical/Bio Engineering
12.1 Perform the same computation as in Sec. 12.1, but change c01 
to 20 and c03 to 6. Also change the following flows: Q01 = 6, Q12 = 4, 
Q24 = 2, and Q44 = 12.
12.2 If the input to reactor 3 in Sec. 12.1 is decreased 25 percent, 
use the matrix inverse to compute the percent change in the concen-
tration of reactors 2 and 4.
12.3 Because the system shown in Fig. 12.3 is at steady state, what 
can be said regarding the four flows: Q01, Q03, Q44, and Q55?
12.4 Recompute the concentrations for the five reactors shown in 
Fig. 12.3, if the flows are changed to

Q01 = 5  Q31 = 2  Q25 = 3  Q23 = 1

Q15 = 3  Q55 = 4  Q54 = 2  Q34 = 9

Q12 = 4  Q03 = 10  Q24 = 0  Q44 = 11

12.5 Solve the same system as specified in Prob. 12.4, but set  
Q15 = 5, Q25 = 1, Q23 = 2, Q24 = 1, Q01 = 6, Q03 = 7, Q44 = 9, and 
Q55 = 4. Use conservation of flow to recompute the values for the 
other flows. Employ the matrix inverse to determine the change in 
concentration for the fifth reactor if the inflow concentrations to the 
first and third reactors are doubled.
12.6 Figure P12.6 shows three reactors linked by pipes. As indicated, 
the rate of transfer of chemicals through each pipe is equal to a flow 
rate (Q, with units of cubic meters per second) multiplied by the con-
centration of the reactor from which the flow originates (c, with units 
of milligrams per cubic meter). If the system is at steady state, the 
transfer into each reactor will balance the transfer out. Develop mass-
balance equations for the reactors, and solve the three simultaneous 
linear algebraic equations for their concentrations.
12.7 Employing the same basic approach as in Sec. 12.1, deter-
mine the concentration of chloride in each of the Great Lakes using 

the information shown in Fig. P12.7. Compute the matrix inverse, 
and use it to determine the percent reduction of the concentration in 
Lake Ontario due to a 50% reduction of the loadings to Lake 
 Superior and Lake Michigan.
12.8 The Lower Colorado River consists of a series of four reser-
voirs as shown in Fig. P12.8. Mass balances can be written for each 
reservoir and the following set of simultaneous linear algebraic 
equations results:

[

13.442 0 0 0
−13.442 12.252 0 0

0 −12.252 12.377 0
0 0 −12.377 11.797

]{

c1

c2

c3

c4
}

=
{

750.5
300
102
30

}
where the right-hand-side vector consists of the loadings of chlo-
ride to each of the four lakes and c1, c2, c3, and c4 are the resulting 
chloride concentrations for Lakes Powell, Mead, Mohave, and 
Havasu, respectively.
(a) Use the matrix inverse to solve for the concentration in each of 

the four lakes.
(b) How much must the loading to Lake Powell be reduced in order 

for the chloride concentration of Lake Havasu to be 75?
(c) Using the column-sum norm, compute the condition number 

and determine how many suspect digits would be generated by 
solving this system.

12.9 A stage extraction process is depicted in Fig. P12.9. In such 
systems, a stream containing a weight fraction Yin of a chemical 
enters from the left at a mass flow rate of F1. Simultaneously, a 
solvent carrying a weight fraction Xin of the same chemical enters 
from the right at a flow rate of F2. Thus, for stage i, a mass balance 
can be represented as

F1Yi−1 + F2 
Xi+1 = F1Yi + F2 

Xi (P12.9.1)

FIGURE P12.6
Three reactors linked by 
pipes. The rate of mass trans-
fer through each pipe is equal 
to the product of flow Q and 
concentration c of the reactor 
from which the flow originates.

2

3

Q33 = 120
Q13 = 40
Q12 = 90
Q23 = 60
Q21 = 30

Q12c1Q21c2

Q23c2

Q33c3Q13c1
200 mg/s

500 mg/s

1
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If F1 = 400 kg/h, Yin = 0.1, F2 = 800 kg/h, Xin = 0, and K = 5, de-
termine the values of Yout and Xout if a five-stage reactor is used. 
Note that Eq. (P12.9.3) must be modified to account for the inflow 
weight fractions when applied to the first and last stages.
12.10 An irreversible, first-order reaction takes place in four well-
mixed reactors (Fig. P12.10),

A →k B

Thus, the rate at which A is transformed to B can be represented as

Rab = kVc

The reactors have different volumes, and because they are operated 
at different temperatures, each has a different reaction rate:

Reactor V, L k, h−1

 1 25 0.075
 2 75 0.15
 3 100 0.4

 4 25 0.1

Determine the concentration of A and B in each of the reactors at 
steady state.
12.11 A peristaltic pump delivers a unit flow (Q1) of a highly vis-
cous fluid. The network is depicted in Fig. P12.11. Every pipe section 
has the same length and diameter. The mass and mechanical energy 
balance can be simplified to obtain the flows in every pipe. Solve the 
following system of equations to obtain the flow in every pipe.

Q3 + 2Q4 − 2Q2 = 0

Q5 + 2Q6 − 2Q4 = 0

At each stage, an equilibrium is assumed to be established between 
Yi and Xi as in

K =
Xi

Yi

 (P12.9.2)

where K is called a distribution coefficient. Equation (P12.9.2) can 
be solved for Xi and the result substituted into Eq. (P12.9.1) to yield

Yi−1 − (1 +
F2

F1
 K)Yi + (

F2

F1
 K)Yi+1 = 0 (P12.9.3)

FIGURE P12.7
A chloride mass balance for the 
Great Lakes. Numbered arrows 
are direct inputs.

QSH = 67
QMH = 36

     QHE = 161
QEO = 182
QOO = 212

QSHcS

QMHcM

QHEcH

QEOcE

QOOcO

3850

4720

740

180

710

Superior

Michigan

Huron

Erie

Ontario

c1

c2

c3

c4

Upper
Colorado

River

Lake
Mead

Lake
Mohave

Lake
Havasu

Lake
Powell

FIGURE P12.8
The Lower Colorado River.
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chemical from the gas into the liquid occurs at a rate that is propor-
tional to the difference between the gas and liquid concentrations in 
each reactor. At steady state, a mass balance for the first reactor can 
be written for the gas as

QG 
cG0 − QG 

cG1 + D(cL1 − cG1) = 0

and for the liquid as

QL cL2 − QL cL1 + D(cG1 − cL1) = 0

where QG and QL are the gas and liquid flow rates, respectively, and 
D = the gas-liquid exchange rate. Similar balances can be written 
for the other reactors. Solve for the concentrations given the follow-
ing values: QG = 2, QL = 1, D = 0.8, cG0 = 100, cL6 = 20.
12.13 Figure P12.13 shows a system of three interconnected reac-
tors. Note that aside from flow between the tanks, mass is lost via 
first-order decay reactions within each tank. Mass balances can be 
written for each segment, and the following set of simultaneous 
linear algebraic equations results:

[
127 −22 0
−5 52 −7

−117 0 137] {
c1

c2

c3
} = {

1000
2000

0 }

3Q7 − 2Q6 = 0

Q1 = Q2 + Q3

Q3 = Q4 + Q5

Q5 = Q6 + Q7

12.12 Figure P12.12 depicts a chemical exchange process consist-
ing of a series of reactors in which a gas flowing from left to right 
is passed over a liquid flowing from right to left. The transfer of a 

FIGURE P12.9
A stage extraction process.

Flow = F1

Flow = F2

x2xout x3 xi xi + 1 xn – 1 xn xin

y1yin y2 yi – 1 yi yn – 2 yn – 1 yout

1 02 0n0i n – 1∙∙∙ ∙∙∙

1 2 3 4
Qin = 10

Q32 = 5

Q43 = 3

cA,in = 1

FIGURE P12.10

FIGURE P12.11

Q1 Q3 Q5

Q2 Q4 Q6 Q7

cG1cG0 cG2 cG3 cG4

QGQG

QL

cG5

QL

D

cL1 cL2 cL3 cL4 cL5 cL6

FIGURE P12.12
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12.15 Perform the same computation as in Sec. 12.2, but for the 
truss depicted in Fig. P12.15.
12.16 Perform the same computation as in Sec. 12.2, but for the 
truss depicted in Fig. P12.16.
12.17 Calculate the forces and reactions for the truss in Fig. 12.4 if 
a downward force of 3000 kg and a horizontal force to the right of 
1500 kg are applied at node 1.
12.18 In the example for Fig. 12.4, where a 1000-lb downward 
force is applied at node 1, the external reactions V2 and V3 were 
calculated. But if the lengths of the truss members had been 
given, we could have calculated V2 and V3 by utilizing the fact 
that V2 + V3 must equal 1000 and by summing moments around 
node 2. However, because we do know V2 and V3, we can work 
backward to solve for the lengths of the truss members. Note that 
because there are three unknown lengths and only two equations, 
we can solve for only the relationship between lengths. Solve for 
this relationship.
12.19 Employing the same methods as used to analyze Fig. 12.4, 
determine the forces and reactions for the truss shown in Fig. 
P12.19.
12.20 Solve for the forces and reaction for the truss in Fig. P12.20. 
Determine the matrix inverse for the system. Does the vertical-
member force in the middle member seem reasonable? Why?
12.21 As the name implies, indoor air pollution deals with air con-
tamination in enclosed spaces such as homes, offices, work areas, 
etc. Suppose that you are designing a ventilation system for a 

800

1200

500

30°
45° 45°

FIGURE P12.15

400 400

45° 60°45° 30°

FIGURE P12.16
 Sand Fine Gravel Coarse Gravel  
 % % %

Pit 1 52 30 18
Pit 2 20 50 30
Pit 3 25 20 55

FIGURE P12.13

1

2

3

Q2,in = 10
c2,in = 200

Q1,in = 100
c1,in = 10

Q2,1 = 22

Q1,2 = 5

Q3,2 = 7

Q1,3 = 117 Q3,out = 110

The LU factorization for this system is

[L][U] = [
1 0 0

−0.03937 1 0
−0.92126 −0.39637 1][

127 −22 0
0 51.13386 −7
0 0 134.2254]

(a) Here are the first two columns of the matrix inverse for this 
system: 

[A]−1 = [
0.008173 0.003458 _________
0.001725 0.019961 _________
0.006980 0.002953 _________]

 Use the LU factorization to compute the third column of the 
matrix inverse.

(b) If the inflow concentration to the second tank is set to zero, 
compute the reduction in concentration in tank 1. 

Civil/Environmental Engineering
12.14 A civil engineer involved in construction requires 4800, 5800, 
and 5700 m3 of sand, fine gravel, and coarse gravel,  respectively, for 
a building project. There are three pits from which these materials 
can be obtained. The composition of these pits is

How many cubic meters must be hauled from each pit in order to 
meet the engineer’s needs?
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for each room. For example, for the smoking section (room 1), the 
balance can be written as

0 = Wsmoker +  Qa 

ca −  Qa  

c1  + E13(c3 − c1)
 (load) + (inflow) − (outflow)  + (mixing)

or substituting the parameters:

225c1 − 25c3 = 3400

Similar balances can be written for the other rooms.
(a) Solve for the steady-state concentration of carbon monoxide in 

each room.
(b) Determine what percent of the carbon monoxide in the kids’ 

section is due to (i) the smokers, (ii) the grill, and (iii) the air in 
the intake vents.

(c) If the smoker and grill loads are increased to 4000 and 6000 
mg/hr, respectively, use the matrix inverse to determine the in-
crease in the concentration in the kids’ section.

(d) How does the concentration in the kids’ section change if a 
screen is constructed so that the mixing between areas 2 and 4 
is decreased to 5 m3/hr?

12.22 An upward force of 20 kN is applied at the top of a tripod as 
depicted in Fig. P12.22. Determine the forces in the legs of the 
 tripod.
12.23 A truss is loaded as shown in Fig. P12.23. Using the follow-
ing set of equations, solve for the 10 unknowns: AB, BC, AD, BD, 
CD, DE, CE, Ax, Ay, and Ey.

Ax + AD = 0
Ay + AB = 0
84 + BC + (3∕5)BD = 0
−AB − (4∕5)BD = 0
−BC + (3∕5)CE = 0

  

−24 − CD − (4∕5)CE = 0
−AD + DE − (3∕5)BD = 0
CD + (4∕5)BD = 0
−DE − (3∕5)CE = 0
Ey + (4∕5)CE = 0

 restaurant as shown in Fig. P12.21. The restaurant serving area 
consists of two square rooms and one elongated room. Room 1 and 
room 3 have sources of carbon monoxide from smokers and a 
faulty grill, respectively. Steady-state mass balances can be written 

FIGURE P12.20

FIGURE P12.19

45°

900

150

30°

30°

60°
45° 45°60°

4000

Qc = 150 m3/hr

2
(Kids’ section)

1
(Smoking section)

Grill load
(2000 mg/hr)

Smoker load
(3000 mg/hr)

4

25 m3/hr

25 m3/hr

3

Qb = 50 m3/hr

cb = 2 mg/m3

Qa = 200 m3/hr

ca = 2 mg/m3

Qd = 100 m3/hr
50

 m
3 /h

r

FIGURE P12.21
Overhead view of rooms in a 
restaurant. The one-way arrows 
represent volumetric airflows, 
whereas the two-way arrows 
represent diffusive mixing. The 
smoker and grill loads add 
 carbon monoxide mass to the 
system but negligible airflow.
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where x = distance along the beam (m), y = deflection (m), L = 
length (m), E = modulus of elasticity (N∕m2), I = moment of iner-
tia (m4), and w = uniform load (N∕m).
(a) Convert the given differential equation to an equivalent sys-

tem of simultaneous algebraic equations using a centered-
difference approximation for the second derivative.

(b) Solve these equations from x = 0 to L to generate the resulting 
distances and deflections. Test your solution for the following 
parameters: L = 3 m, Δx = 0.2 m, E = 250 × 109 N∕m2, I = 3 × 
10–4 m4, w = 22,500 N∕m, y(0) = 0, and y(3) = 0.

Electrical Engineering
12.25 Perform the same computation as in Sec. 12.3, but for the 
circuit depicted in Fig. P12.25.
12.26 Perform the same computation as in Sec. 12.3, but for the 
circuit depicted in Fig. P12.26.
12.27 Solve the circuit in Fig. P12.27 for the currents in each wire. 
Use Gauss elimination with pivoting.
12.28 An electrical engineer supervises the production of three 
types of electrical components. Three kinds of material—metal, 
plastic, and rubber—are required for their production. The amounts 
needed to produce each component are

  Metal,  Plastic,  Rubber, 
 Component g/component  g/component g/component

 1 15 0.25 1.0
 2 17 0.33 1.2
 3 19 0.42 1.6

12.24 The following differential equation results from a force bal-
ance for a beam with a uniform loading:

0 = EI
d2y

dx2 −
wLx

2
+

wx2

2

FIGURE P12.23
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FIGURE P12.25
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FIGURE P12.26

R = 7 Ω
R = 5 Ω R = 10 Ω

R = 30 Ω3 2 1

4 5 6

R = 18 Ω

R = 35 Ω
V1 = 10 volts

V6 = 200 volts
R = 5 Ω

D

B

C

A

x

y

0.6 m

2.4 m

0.8 m
0.8 m

1 m

FIGURE P12.22

cha32077_ch12_325-346.indd   342 8/6/19   12:35 PM



 PROBLEMS 343

If totals of 3.89, 0.095, and 0.282 kg of metal, plastic, and rubber, 
respectively, are available each day, how many components can be 
produced per day?
12.29 Determine the currents for the circuit in Fig. P12.29.
12.30 Determine the currents for the circuit in Fig. P12.30.
12.31 The following system of equations was generated by applying 
the current law to the circuit in Fig. P12.31:

55I1 − 25I4 = −200
−37I3 − 4I4 = −250
−25I1 − 4I3 + 29I4 = 100

Solve for I1, I3, and I4.
12.32 The following system of equations was generated by apply-
ing the current law to the circuit in Fig. P12.32:

60I1 − 40I2 = 200
−40I1 + 150I2 − 100I3 = 0
−100I2 + 130I3 = 230

Solve for I1, I2, and I3.
12.33 Determine the currents for the circuit in Fig. P12.33 given 
R1 = 10 Ω, R2 = 5 Ω, R3 = 8 Ω, R4 = 15 Ω, R5 = 2 Ω, and V = 100 V.

FIGURE P12.27
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Mechanical/Aerospace Engineering
12.34 Perform the same computation as in Sec. 12.4, but add a 
third spring between masses 1 and 2 and triple k for all springs.
12.35 Perform the same computation as in Sec. 12.4, but change 
the masses from 2, 3, and 2.5 kg to 10, 3.5, and 2 kg, respectively.
12.36 Idealized spring-mass systems have numerous applications 
throughout engineering. Figure P12.36 shows an arrangement of 
four springs in series being depressed with a force of 2000 kg. At 
equilibrium, force-balance equations can be developed defining the 
interrelationships between the springs,

 k2(x2 − x1) = k1x1

 k3(x3 − x2) = k2(x2 − x1)
 k4(x4 − x3) = k3(x3 − x2)

 F = k4(x4 − x3)

FIGURE P12.36
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FIGURE P12.33

where the k’s are spring constants. If k1 through k4 are 150, 50, 75, 
and 225 N/m, respectively, compute the x’s.
12.37 Three blocks are connected by a weightless cord and rest 
on an inclined plane (Fig. P12.37a). Employing a procedure 
similar to the one used in the analysis of the falling parachutists in 
Example 9.11 yields the following set of simultaneous equations 
(free-body diagrams are shown in Fig. P12.37b):

100a + T  = 519.72
  50a − T + R = 216.55
  25a  − R = 108.28

Solve for acceleration a and the tensions T and R in the two ropes.
12.38 Perform a computation similar to that called for in Prob. 12.37, 
but for the system shown in Fig. P12.38.
12.39 Perform the same computation as in Prob. 12.37, but for the 
system depicted in Fig. P12.39 (angles are 45°).
12.40 Consider the system of three masses and four springs in 
Fig. P12.40. Determining the equations of motion from ΣFx = ma, 
for each mass using its free-body diagram, results in the following 
differential equations:

x


1 + (
k1 + k2

m1 ) x1 − (
k2

m1) x2 = 0

x


2 − (
k2

m2) x1 + (
k2 + k3

m2 ) x2 − (
k3

m2)x3 = 0

x


3 − (
k3

m3) x2 + (
k3 + k4

m3 ) x3 = 0

where k1 = k4 = 10 N/m, k2 = k3 = 30 N/m, and m1 = m2 = m3 = 2 kg. 
Write the three equations in matrix form:

0 = [Acceleration vector] + [k/m matrix][displacement vector x]

At a specific time when x1 = 0.05 m, x2 = 0.04 m, and x3 = 0.03 m, 
this is a tridiagonal matrix. Solve for the acceleration of each 
mass.
12.41 Linear algebraic equations can arise in the solution of 
 differential equations. For example, the following differential equa-
tion derives from a heat balance for a long, thin rod (Fig. P12.41):

d 

2T

dx2 + h′ (Ta − T) = 0 (P12.41.1)

where T = temperature (°C), x = distance along the rod (m), h′ = a 
heat transfer coefficient between the rod and the ambient air (m−2), 
and Ta = the temperature of the surrounding air (°C). This equation 
can be transformed into a set of linear algebraic equations by using 
a finite-divided-difference approximation for the second derivative 
(recall Section 4.1.3),

d 
2 T

dx2 =
Ti+1 − 2Ti + Ti−1

Δx2
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FIGURE P12.37
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FIGURE P12.41
A noninsulated uniform rod positioned between two walls at 
constant but different temperatures. The finite-difference  
representation employs four interior nodes.
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346 CASE STUDIES: LINEAR ALGEBRAIC EQUATIONS

where Ti designates the temperature at node i. This approximation 
can be substituted into Eq. (P12.41.1) to give

−Ti−1 + (2 + h′Δx2)Ti − Ti+1 = h′Δx2Ta

This equation can be written for each of the interior nodes of the 
rod, resulting in a tridiagonal system of equations. The first and last 
nodes at the rod’s ends are fixed by boundary conditions.
(a) Develop an analytical solution for Eq. (P12.41.1) for a 

10-m rod with Ta = 20, T(x = 0) = 40, T(x = 10) = 200, and 
h′ = 0.02.

(b) Develop a numerical solution for the same parameter values 
employed in part (a) using a finite-difference solution with four 
interior nodes as shown in Fig. P12.41 (Δx = 2 m).

12.42 The steady-state distribution of temperature on a heated 
plate can be modeled by the Laplace equation,

0 =
∂2T

∂x2 +
∂2T

∂y2

FIGURE P12.42
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If the plate is represented by a series of nodes (Fig. P12.42), cen-
tered finite-divided differences can be substituted for the second 
derivatives, which results in a system of linear algebraic equations. 
Use the Gauss-Seidel method to solve for the temperatures of the 
nodes in Fig. P12.42.
12.43 A rod on a ball-and-socket joint is attached to cables A and 
B, as in Fig. P12.43.
(a) If a 50-N force is exerted on the massless rod at C, what is the 

tensile force at cables A and B?
(b) Solve for the reactant forces at the base of the rod. Call the base 

point P.
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 PT3.4 TRADE-OFFS
Table PT3.2 provides a summary of the trade-offs involved in solving simultaneous 
linear algebraic equations. Two methods—graphical and Cramer’s rule—are limited to 
small (≤ 3) numbers of equations and thus have little utility for practical problem solv-
ing. However, these techniques are useful didactic tools for understanding the behavior 
of linear systems in general.
 The numerical methods themselves are divided into two general categories: exact 
and approximate methods. As the name implies, the former are intended to yield exact 
answers. However, because they are affected by round-off errors, they sometimes yield 
imprecise results. The magnitude of the round-off error varies from system to system 
and is dependent on a number of factors. These include the system’s dimensions, its 
condition, and whether the matrix of coefficients is sparse or full. In addition, computer 
precision will affect round-off error.
 It is recommended that a pivoting strategy be employed in any computer program 
implementing exact elimination methods. The inclusion of such a strategy minimizes 
round-off error and avoids problems such as division by zero. All other things being 
equal, LU decomposition–based algorithms are the methods of choice because of their 
efficiency and flexibility.

TABLE PT3.2  Comparison of the characteristics of alternative methods for finding solutions  
of simultaneous linear algebraic equations.

   Breadth of Programming  
Method Stability Precision Application Effort Comments

Graphical — Poor Limited —  May take more time than the  
  numerical method but can be 

useful for visualization
Cramer’s rule — Affected by Limited — Excessive computational effort  
   round-off error      required for more than three 

equations
Gauss elimination (with — Affected by General Moderate 
 partial pivoting)   round-off error
LU decomposition — Affected by General Moderate Preferred elimination method; allows  
   round-off error     computation of matrix inverse
Gauss-Seidel May not Excellent Appropriate only Easy 
  converge if system   for diagonally 
  is not diagonally   dominant systems 
  dominant

EPILOGUE: PART THREE
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 Although elimination methods have great utility, their use of the entire matrix of 
coefficients can be somewhat limiting when dealing with very large, sparse systems. This 
is due to the fact that large portions of computer memory would be devoted to storage of 
meaningless zeros. For banded systems, techniques are available to implement elimination 
methods without having to store the entire coefficient matrix.
 The approximate technique described in this book is called the Gauss-Seidel 
method. It differs from the exact techniques in that it employs an iterative scheme to 
obtain progressively closer estimates of the solution. Thus, the effect of round-off is 
a moot point with the Gauss-Seidel method because the iterations can be continued as 
long as is necessary to obtain the desired precision. In addition, versions of the Gauss-
Seidel method can be developed to efficiently utilize computer storage requirements 
for sparse systems. Consequently, the Gauss-Seidel technique has utility for large sys-
tems of equations where storage requirements would pose significant problems for the 
exact techniques.
 The disadvantage of the Gauss-Seidel method is that it does not always converge or 
sometimes converges slowly on the true solution. It is strictly reliable only for those 
systems that are diagonally dominant. However, relaxation methods are available that 
sometimes offset these disadvantages. In addition, because many sets of linear algebraic 
equations originating from physical systems exhibit diagonal dominance, the Gauss- 
Seidel method has great utility for engineering problem solving.
 In summary, a variety of factors will bear on your choice of a technique for a par-
ticular problem involving linear algebraic equations. However, as outlined above, the size 
and sparseness of the system are particularly important factors in determining your choice.

 PT3.5 IMPORTANT RELATIONSHIPS AND FORMULAS
Every part of this book includes a section that summarizes important formulas. Although 
Part Three does not really deal with single formulas, we have used Table PT3.3 to sum-
marize the algorithms that were covered. The table provides an overview that should be 
helpful for review and in elucidating the major differences between the methods.

 PT3.6 ADVANCED METHODS AND ADDITIONAL REFERENCES
General references on the solution of simultaneous linear equations can be found in 
Fadeev and Fadeeva (1963), Stewart (1973), Varga (1962), and Young (1971). Ralston 
and Rabinowitz (1978) provide a general summary.
 Many advanced techniques are available to increase the savings in time and/or space 
when solving linear algebraic equations. Most of these focus on exploiting properties of 
the equations such as symmetry and bandedness. In particular, algorithms are available 
to operate on sparse matrices to convert them to a minimum banded format. Jacobs 
(1977) and Tewarson (1973) include information on this area. Once they are in a mini-
mum banded format, there are a variety of efficient solution strategies that are employed 
such as the active column storage approach of Bathe and Wilson (1976).
 Aside from n × n sets of equations, there are other systems where the number of 
equations, m, and number of unknowns, n, are not equal. Systems where m < n are called 
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underdetermined. In such cases, there can be either no solution or more than one. Sys-
tems where m > n are called overdetermined. For such situations, there is in general no 
exact solution. However, it is often possible to develop a compromise solution that at-
tempts to determine answers that come “closest” to satisfying all the equations 
 simultaneously. A common approach is to solve the equation in a “least-squares” sense 
(Lawson and Hanson 1974; Wilkinson and Reinsch 1971). Alternatively, one can use 
linear programming methods where the equations are solved in an “optimal” sense by 
minimizing some objective function (Dantzig 1963; Luenberger 1984; Rabinowitz 1968). 
We describe this approach in detail in Chap. 15.

TABLE PT3.3 Summary of important information presented in Part Three.

  Potential  
  Problems and  
Method Procedure Remedies

Gauss 
 elimination

LU
 decomposition

Gauss-Seidel  
 method

Problems:
 III conditioning
 Round-off
 Division by zero
Remedies:
 Higher precision
 Partial pivoting

Problems:
 III conditioning
 Round-off
 Division by zero
Remedies:
 Higher precision
 Partial pivoting

Problems:
 Divergent or  
  converges slowly
Remedies:
 Diagonal  
  dominance
 Relaxation

[
a11 a12 a13 ∣ c1

a21 a22 a23 ∣ c2

a31 a32 a33 ∣ c3
]⇒[

a11 a12 a13 ∣ c1

a'22 a'23 ∣ c'2
a''33 ∣ c''3

]⇒
x3 = c''3∕a''33

x2 = (c'2 − a'23x3)∕a'22

x1 = (c1 − a12x1 − a13x3)∕a11

Decomposition                                           Back Substitution

[
a11 a12 a13

a21 a22 a23

a31 a32 a33
] ⇒[

1 0 0
l21 1 0
l31 l32 1 ] {

d1

d2

d3
} = {

c1

c2

c3
} ⇒ [

u11 u12 u13

0 u22 u23

0 0 u33
] {

x1

x2

x3
} = {

d1

d2

d3
} = {

x1

x2

x3
}

Forward Substitution

x i
1 = (c1 − a12x

i−1
2 − a13x

i−1
3 )∕a11

x i
2 = (c2 − a21x

i
1    − a23x

i−1
3 )∕a22

x i
3 = (c3 − a31x

i
1    − a32x

i
2)∕a33

} ∣ xii − xi−1
i

xii
∣ 100% < ϵs

 for all x'i s

continue iteratively until
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PA R T  F O U R

 PT4.1 MOTIVATION
Root location (Part Two) and optimization are related in the sense that both involve guess-
ing and searching for a point on a function. The fundamental difference between the two 
types of problems is illustrated in Fig. PT4.1. Root location involves searching for zeros 
of a function or functions. In contrast, optimization involves searching for either the min-
imum or the maximum.
 The optimum is the point where the curve is flat. In mathematical terms, this corre-
sponds to the x value where the derivative f′(x) is equal to zero. Additionally, the second 
derivative, f ″(x), indicates whether the optimum is a minimum or a maximum: If f ″(x) < 
0, the point is a maximum; if f ″(x) > 0, the point is a minimum.
 Now, understanding the relationship between roots and optima would suggest a pos-
sible strategy for finding the latter. That is, you can differentiate the function and locate 
the root (that is, the zero) of the new function. In fact, some optimization methods seek 
to find an optima by solving the root problem: f′(x) = 0. It should be noted that such 
searches are often complicated because f′(x) is not always available analytically. Thus, 
one must sometimes use finite-difference approximations to estimate the derivative.

OPTIMIZATION

FIGURE PT4.1
A function of a single variable illustrating the difference between roots and optima.
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Root

Root
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 Beyond viewing optimization as a roots problem, it should be noted that the task of 
locating optima is aided by some extra mathematical structure that is not part of simple 
root finding. This tends to make optimization a more tractable task, particularly for 
multidimensional cases.

PT4.1.1 Noncomputer Methods and History
As mentioned above, differential calculus methods are still used to determine optimum 
solutions. All engineering and science students recall working maxima-minima problems 
by  determining first derivatives of functions in their calculus courses. Bernoulli, Euler, 
Lagrange, and others laid the foundations of the calculus of variations, which deals with 
the minimization of functions. The Lagrange multiplier method was developed to opti-
mize constrained problems, that is, optimization problems where the variables are 
bounded in some way.
 The first major advances in numerical approaches occurred only with the develop-
ment of digital computers after World War II. Koopmans in the United Kingdom and 
Kantorovich in the former Soviet Union independently worked on the general problem 
of least-cost distribution of supplies and products. In 1947, Koopman’s student Dantzig 
invented the simplex procedure for solving linear programming problems. This approach 
paved the way for other methods of constrained optimization to be developed by a num-
ber of investigators, notably Charnes and his coworkers. Approaches for unconstrained 
optimization also developed rapidly following the widespread availability of computers.

PT4.1.2 Optimization and Engineering Practice
Most of the mathematical models we have dealt with to this point have been descriptive 
models. That is, they have been derived to simulate the behavior of an engineering device 
or system. In contrast, optimization typically deals with finding the “best result,” or optimum 
solution, of a problem. Thus, in the context of modeling, they are often termed prescriptive 
models since they can be used to prescribe a course of action or the best design.
 Engineers must continuously design devices and products that perform tasks in an 
efficient fashion. In doing so, they are constrained by the limitations of the physical 
world. Further, they must keep costs down. Thus, they are always confronting optimiza-
tion problems that balance performance and limitations. Some common instances are 
listed in Table PT4.1. The following example has been developed to help you get a feel 
for the way in which such problems might be formulated.

 EXAMPLE PT4.1 Optimization of Parachute Cost
Problem Statement. Throughout the book, we have used the falling parachutist to 
illustrate the basic problem areas of numerical methods. You may have noticed that none 
of these examples concentrate on what happens after the chute opens. In this example, 
we will examine a case where the chute has opened and we are interested in predicting 
impact velocity at the ground.
 You are an engineer working for an agency planning to airlift supplies to refugees 
in a war zone. The supplies will be dropped at low altitude (500 m) so that the drop is 
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352 OPTIMIZATION

not detected and the supplies fall as close as possible to the refugee camp. The chutes 
open immediately upon leaving the plane. To reduce damage, the vertical velocity on 
impact must be below a critical value of υc = 20 m/s.
 The parachute used for the drop is depicted in Fig. PT4.2. The cross-sectional area 
of the chute is that of a half sphere,

A = 2πr2 (PT4.1)

The length of each of the 16 cords connecting the chute to the mass is related to the 
chute radius by

ℓ = √2r (PT4.2)

FIGURE PT4.2
A deployed parachute.

m

r

ℓ

TABLE PT4.1 Some common examples of optimization problems in engineering.

∙ Design aircraft for minimum weight and maximum strength.
∙ Optimal trajectories of space vehicles.
∙ Design civil engineering structures for minimum cost.
∙  Design water-resource projects like dams to mitigate flood damage while yielding maximum 

hydropower.
∙ Predict structural behavior by minimizing potential energy.
∙ Material-cutting strategy for minimum cost.
∙ Design pump and heat transfer equipment for maximum efficiency.
∙ Maximize power output of electrical networks and machinery while minimizing heat generation.
∙ Shortest route of salesperson visiting various cities during one sales trip.
∙ Optimal planning and scheduling.
∙ Statistical analysis and models with minimum error.
∙ Optimal pipeline networks.
∙ Inventory control.
∙ Maintenance planning to minimize cost.
∙ Minimize waiting and idling times.
∙ Design waste treatment systems to meet water-quality standards at least cost.
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You know that the drag force for the chute is a linear function of its cross-sectional area 
described by the following formula

c = kc A (PT4.3)

where c = drag coefficient (kg/s) and kc = a proportionality constant parameterizing the 
effect of area on drag [kg/(s m2)].
 Also, you can divide the payload into as many parcels as you like. That is, the mass 
of each individual parcel can be calculated as

m =
Mt

n

where m = mass of an individual parcel (kg), Mt = total load being dropped (kg), and 
n = total number of parcels.
 Finally, the cost of each chute is related to chute size in a nonlinear fashion,

Cost per chute = c0 + c1ℓ + c2A
2 (PT4.4)

where c0, c1, and c2 = cost coefficients. The constant term, c0, is the base price for the 
chutes. The nonlinear relationship between cost and area exists because larger chutes are 
much more difficult to construct than small chutes.
 Determine the size (r) and number of chutes (n) that result in minimum cost while 
at the same time meeting the requirement of having a sufficiently small impact velocity.

Solution. The objective here is to determine the number and size of parachutes to 
minimize their cost. The problem is constrained because the parcels must have an impact 
velocity less than a critical value.
 The cost can be computed by multiplying the cost of the individual parachute 
[Eq. (PT4.4)] by the number of parachutes (n). Thus, the function you wish to minimize, 
which is formally called the objective function, is written as

Minimize C = n(c0 + c1ℓ + c2A
2) (PT4.5)

where C = cost ($) and A and ℓ are calculated by Eqs. (PT4.1) and (PT4.2), respectively.
 Next, we must specify the constraints. For this problem there are two constraints. 
First, the impact velocity must be equal to or less than the critical velocity,

υ ≤ υc (PT4.6)

Second, the number of parcels must be an integer and greater than or equal to 1,

n ≥ 1 (PT4.7)

where n is an integer.
 At this point, the optimization problem has been formulated. As can be seen, it is a 
nonlinear constrained problem.
 Although the problem has been broadly formulated, one more issue must be 
 addressed: How do we determine the impact velocity υ? Recall from Chap. 1 that the 
velocity of a falling object can be computed with

υ =
gm

c
 (1 − e−(c∕m)t) (1.10)
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where υ = velocity (m/s), g = acceleration due to gravity (m/s2), m = mass (kg), and 
t = time (s).
 Although Eq. (1.10) provides a relationship between υ and t, we need to know how long 
the mass falls. Therefore, we need a relationship between the drop distance z and the time 
of fall t. The drop distance can be calculated from the velocity in Eq. (1.10) by integration

z = ∫ t

0

gm

c
 (1 − e−(c/m)t) dt (PT4.8)

This integral can be evaluated to yield

z = z0 −
gm

c
 t +

gm2

c2  (1 − e−(c/m)t) (PT4.9)

where z0 = initial height (m). This function, as plotted in Fig. PT4.3, provides a way to 
predict z given knowledge of t.
 However, we do not need z as a function of t to solve this problem. Rather, we need 
to compute the time required for the parcel to fall the distance z0. Thus, we recognize 
that we must reformulate Eq. (PT4.9) as a root-finding problem. That is, we must solve 
for the time at which z goes to zero,

f(t) = 0 = z0 −
gm

c
 t +

gm2

c2  (1 − e−(c∕m)t) (PT4.10)

Once the time to impact is computed, we can substitute it into Eq. (1.10) to solve for 
the impact velocity.
 The final specification of the problem, therefore, would be

Minimize C = n(c0 + c1ℓ + c2 
A2) (PT4.11)

FIGURE PT4.3
The height z and velocity v of a deployed parachute as it falls to earth (z = 0).
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subject to

υ ≤ υc (PT4.12)

n ≥ 1 (PT4.13)

where

A = 2πr2 (PT4.14)

ℓ = √2r (PT4.15)

c = kc A (PT4.16)

m =
Mt

n
 (PT4.17)

t = root[z0 −
gm

c
 t +

gm2

c2  (1 − e−(c∕m)t)] (PT4.18)

υ =
gm

c
 (1 − e−(c∕m)t) (PT4.19)

 We will solve this problem in Example 15.4 in Chap. 15. For the time being, recog-
nize that it has most of the fundamental elements of other optimization problems you 
will routinely confront in engineering practice. These are

∙ The problem will involve an objective function that embodies your goal.
∙ There will be a number of design variables. These variables can be real numbers or 

they can be integers. In our example, these are r (real) and n (integer).
∙ The problem will include constraints that reflect the limitations you are working under.

 We should make one more point before proceeding. Although the objective function 
and constraints may superficially appear to be simple equations [e.g., Eq. (PT4.11)], they 
may in fact be the “tip of the iceberg.” That is, they may be underlain by complex depen-
dencies and models. For instance, as in our example, they may involve other numerical 
methods [Eq. (PT4.18)]. This means that the functional relationships you will be using 
could actually represent large and complicated calculations. Thus, techniques that can find 
the optimal solution, while minimizing function evaluations, can be extremely valuable.

 PT4.2 MATHEMATICAL BACKGROUND
There are a number of mathematical concepts and operations that underlie optimization. 
Because we believe that they will be more relevant to you in context, we will defer 
discussion of specific mathematical prerequisites until they are needed. For example, we 
will discuss the important concepts of the gradient and Hessians at the beginning of 
Chap. 14 on multivariate unconstrained optimization. In the meantime, we will limit 
ourselves here to the more general topic of how optimization problems are classified.
 An optimization, or mathematical programming, problem generally can be stated as:

 Find x, which minimizes or maximizes f(x)
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subject to

di 
(x) ≤ ai  i = 1, 2, … , m (PT4.20)

ei 
(x) = bi  i = 1, 2, … , p (PT4.21)

where x is an n-dimensional design vector, f (x) is the objective function, di(x) are inequal-
ity constraints, ei(x) are equality constraints, and ai and bi are constants.
 Optimization problems can be classified on the basis of the form of f(x):

∙ If f(x) and the constraints are linear, we have linear programming.
∙ If f(x) is quadratic and the constraints are linear, we have quadratic programming.
∙ If f(x) is not linear or quadratic and/or the constraints are nonlinear, we have nonlinear 

programming.

Further, when Eqs. (PT4.20) and (PT4.21) are included, we have a constrained optimiza-
tion problem; otherwise, it is an unconstrained optimization problem.
 Note that for constrained problems, the degrees of freedom are given by n − p − m. 
Generally, to obtain a solution, p + m must be ≤ n. If p + m > n, the problem is said 
to be overconstrained.
 Another way in which optimization problems are classified is by dimensionality. 
This is most commonly done by dividing them into one-dimensional and multidimen-
sional problems. As the name implies, one-dimensional problems involve functions that 
depend on a single dependent variable. As in Fig. PT4.4a, the search then consists of 
climbing or descending one-dimensional peaks and valleys. Multidimensional problems 
involve functions that depend on two or more dependent variables. In the same spirit, a 
two-dimensional optimization can again be visualized as searching out peaks and valleys 

FIGURE PT4.4
(a) One-dimensional optimization. This figure also illustrates how minimization of f(x) is equivalent 
to maximization of −f(x). (b) Two-dimensional optimization. Note that this figure can be taken to 
represent either a maximization (contours increase in elevation up to the maximum like a moun-
tain) or a minimization (contours decrease in elevation down to the minimum like a valley).
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(Fig. PT4.4b). However, just as in real hiking, we are not constrained to walk in a single 
direction, instead the topography is examined to efficiently reach the goal.
 Finally, the process of finding a maximum versus finding a minimum is essentially 
identical because the same value, x*, both minimizes f(x) and maximizes −f(x). This 
equivalence is illustrated graphically for a one-dimensional function in Fig. PT4.4a.

 PT4.3 ORIENTATION
Some orientation is helpful before proceeding to the numerical methods for optimization. 
The following is intended to provide an overview of the material in Part Four. In addi-
tion, some objectives have been included to help you focus your efforts when studying 
the material.

PT4.3.1 Scope and Preview
Figure PT4.5 is a schematic representation of the organization of Part Four. Examine 
this figure carefully, starting at the top and working clockwise.
 After the present introduction, Chap. 13 is devoted to one-dimensional unconstrained 
optimization. Methods are presented to find the minimum or maximum of a function of 
a single variable. Three methods are covered: golden-section search, parabolic interpola-
tion, and Newton’s method. An advanced hybrid approach, Brent’s method, that combines 
the reliability of the golden-section search with the speed of parabolic interpolation is 
also described.
 Chapter 14 covers two general types of methods to solve multidimensional uncon-
strained optimization problems. Direct methods such as random searches, univariate 
searches, and pattern searches do not require the evaluation of the function’s derivatives. 
On the other hand, gradient methods use first and sometimes second derivatives to find 
the optimum. The chapter introduces the gradient and the Hessian, which are multidi-
mensional representations of the first and second derivatives. The method of steepest 
ascent/descent is then covered in some detail. This is followed by descriptions of some 
advanced methods: conjugate gradient, Newton’s method, Marquardt’s method, and 
quasi-Newton methods.
 Chapter 15 is devoted to constrained optimization. Linear programming is described 
in detail using both a graphical representation and the simplex method. The detailed 
analysis of nonlinear constrained optimization is beyond this book’s scope, but we pro-
vide an overview of the major approaches. In addition, we illustrate how solutions of 
such problems (along with the problems covered in Chaps. 13 and 14) can be obtained 
with software packages such as Excel, MATLAB, and Mathcad.
 Chapter 16 extends the above concepts to actual engineering problems. Engineering 
applications are used to illustrate how optimization problems are formulated and provide 
insight into the application of the solution techniques in professional practice.
 An epilogue is included at the end of Part Four. It contains an overview of the 
methods discussed in Chaps. 13, 14, and 15. This overview includes a description of 
trade-offs related to the proper use of each technique. It also provides references for some 
numerical methods that are beyond the scope of this text.
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FIGURE PT4.5
Schematic of the organization of the material in Part Four: Optimization.
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PT4.3.2 Goals and Objectives
Study Objectives. After completing Part Four, you should have sufficient information 
to successfully approach a wide variety of engineering problems dealing with optimization. 
In general, you should have mastered the techniques, have learned to assess their reli-
ability, and be capable of analyzing alternative methods for any particular problem. In 
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addition to these general goals, the specific concepts in Table PT4.2 should be assimilated 
for a comprehensive understanding of the material in Part Four.

Computer Objectives. You should be able to write a subprogram to implement a simple 
one-dimensional (like golden-section search or parabolic interpolation) and multidimen-
sional (like the random-search method) search. In addition, software packages such as Excel, 
MATLAB, or Mathcad have varying capabilities for optimization. You can use this part of 
the book to become familiar with these capabilities.

TABLE PT4.2 Specific study objectives for Part Four.

 1. Understand why and where optimization occurs in engineering problem solving.
 2. Understand the major elements of the general optimization problem: objective function, decision 

variables, and constraints.
 3. Be able to distinguish between linear and nonlinear optimization, and between constrained and 

unconstrained problems.
 4. Be able to define the golden ratio and understand how it makes one-dimensional optimization 

efficient.
 5. Locate the optimum of a single-variable function with the golden-section search, parabolic 

interpolation, and Newton’s method. Also, recognize the trade-offs among these approaches, 
with particular attention to initial guesses and convergence.

 6. Understand how Brent’s optimization method combines the reliability of the golden-section 
search with the speed of parabolic interpolation.

 7. Be capable of writing a program and solving for the optimum of a multivariable function using 
random searching.

 8. Understand the ideas behind pattern searches, conjugate directions, and Powell’s method.
 9. Be able to define and evaluate the gradient and Hessian of a multivariable function both 

analytically and numerically.
 10. Compute by hand the optimum of a two-variable function using the method of steepest ascent/

descent.
 11. Understand the basic ideas behind the conjugate gradient, Newton’s, Marquardt’s, and quasi-

Newton methods. In particular, understand the trade-offs among the approaches and recognize 
how each improves on the steepest ascent/descent.

 12. Be capable of recognizing and setting up a linear programming problem to represent applicable 
engineering problems.

 13. Be able to solve a two-dimensional linear programming problem with both the graphical and 
simplex methods.

 14. Understand the four possible outcomes of a linear programming problem.
 15. Be able to set up and solve nonlinear constrained optimization problems using a software 

package.
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360

C H A P T E R

13
One-Dimensional Unconstrained 
Optimization

This chapter will describe techniques to find the minimum or maximum of a function of 
a single variable, f(x). A useful image in this regard is the one-dimensional, “roller coaster”–
like function depicted in Fig. 13.1. Recall from Part Two that root location was complicated 
by the fact that several roots can occur for a single function. Similarly, both local and global 
optima can occur in optimization. Such cases are called multimodal. In almost all instances, 
we will be interested in finding the absolute highest or lowest value of a function. Thus, 
we must take care that we do not mistake a local result for the global optimum.
 Distinguishing a global from a local extremum can be a very difficult problem for 
the general case. There are three usual ways to approach this problem. First, insight into 
the behavior of low-dimensional functions can sometimes be obtained graphically. Sec-
ond, it may be possible to find optima based on widely varying and perhaps randomly 
generated starting guesses, and then select the largest of these as global. Finally, we 
might perturb the starting point associated with a local optimum and see if the routine 
returns a better point or always returns to the same point. Although all these approaches 
can have utility, the fact is that in some problems (usually the large ones), there may be 
no practical way to ensure that you have located a global optimum. However, although 
you should always be sensitive to the issue, it is fortunate that there are numerous engi-
neering problems where you can locate the global optimum in an unambiguous fashion.

FIGURE 13.1
A function that asymptotically approaches zero at plus and minus ∞ and has two maximum 
and two minimum points in the vicinity of the origin. The two points to the right are local op-
tima, whereas the two to the left are global.

Local
maximum
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minimum

Global
minimum

Global
maximum

f (x)

x
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 13.1 GOLDEN-SECTION SEARCH 361

 Just as in root location, optimization in one dimension can be divided into bracket-
ing and open methods. As described in the next section, the golden-section search is an 
example of a bracketing method that depends on initial guesses that bracket a single 
optimum. This is followed by an alternative approach, parabolic interpolation, which 
often converges faster than the golden-section search, but sometimes diverges.
 Another method described in this chapter is an open method based on the idea from 
calculus that the minimum or maximum can be found by solving f ′(x) = 0. This reduces 
the optimization problem to finding the root of f ′(x) using techniques of the sort described 
in Part Two. We will demonstrate one version of this approach—Newton’s method.
 Finally, an advanced hybrid approach, Brent’s method, is described. This ap-
proach combines the reliability of the golden-section search with the speed of para-
bolic interpolation.

 13.1 GOLDEN-SECTION SEARCH
In solving for the root of a single nonlinear equation, the goal was to find the value of the 
variable x that yields a zero of the function f(x). Single-variable optimization has the goal 
of finding the value of x that yields an extremum, either a maximum or minimum of f(x).
 The golden-section search is a simple, general-purpose, single-variable search tech-
nique. It is similar in spirit to the bisection approach for locating roots in Chap. 5. Recall 
that bisection hinged on defining an interval, specified by a lower guess (xl) and an upper 
guess (xu), that bracketed a single root. The presence of a root between these bounds was 
verified by determining that f(xl) and f(xu) had different signs. The root was then esti-
mated as the midpoint of this interval,

xr =
xl + xu

2
The final step in a bisection iteration involved determining a new smaller bracket. This 
was done by replacing whichever of the bounds xl or xu had a function value with the 
same sign as f(xr). One advantage of this approach was that the new value xr replaced 
one of the old bounds.
 Now we can develop a similar approach for locating the optimum of a one-dimensional 
function. For simplicity, we will focus on the problem of finding a maximum. When we 
discuss the computer algorithm, we will describe the minor modifications needed to simu-
late a minimum.
 As with bisection, we can start by defining an interval that contains a single answer. 
That is, the interval should contain a single maximum, and hence is called unimodal. 
We can adopt the same nomenclature as for bisection, where xl and xu defined the lower 
and upper bounds, respectively, of such an interval. However, in contrast to bisection, 
we need a new strategy for finding a maximum within the interval. Rather than using 
only two function values (which are sufficient to detect a sign change, and hence a zero), 
we would need three function values to detect whether a maximum occurred. Thus, an 
additional point within the interval has to be chosen. Next, we have to pick a fourth 
point. Then the test for the maximum could be applied to discern whether the maximum 
occurred within the first three or the last three points.
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362 ONE-DIMENSIONAL UNCONSTRAINED OPTIMIZATION

 The key to making this approach efficient is the wise choice of the intermediate 
points. As in bisection, the goal is to minimize function evaluations by replacing old 
values with new values. This goal can be achieved by specifying that the following two 
conditions hold (Fig. 13.2):

ℓ0 = ℓ1 + ℓ2 (13.1)

ℓ1

ℓ0
=

ℓ2

ℓ1
 (13.2)

The first condition specifies that the sum of the two sublengths ℓ1 and ℓ2 must equal 
the original interval length. The second says that the ratios of the lengths must be equal. 
Equation (13.1) can be substituted into Eq. (13.2),

ℓ1

ℓ1 + ℓ2
=

ℓ2

ℓ1
 (13.3)

If the reciprocal is taken and R = ℓ2 ∕ ℓ1, we arrive at

1 + R =
1
R

 (13.4)

or

R2 + R − 1 = 0 (13.5)

which can be solved for the positive root

R =
−1 + √1 − 4(−1)

2
=

√5 − 1
2

= 0.61803…  (13.6)

 This value, which has been known since antiquity, is called the golden ratio (see 
Box 13.1). Because it allows optima to be found efficiently, it is the key element of the 

FIGURE 13.2
The initial step of the golden-section search algorithm involves choosing two interior points 
 according to the golden ratio.
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 13.1 GOLDEN-SECTION SEARCH 363

golden-section method we have been developing conceptually. Now let us derive an 
 algorithm to implement this approach on the computer.
 As mentioned above and as depicted in Fig. 13.4, the method starts with two initial 
guesses, xl and xu, that bracket one local extremum of f(x). Next, two interior points x1 
and x2 are chosen according to the golden ratio,

d =
√5 − 1

2
 (xu − xl)

x1 = xl + d

x2 = xu − d

 The function is evaluated at these two interior points. Two results can occur:

1. If, as is the case in Fig. 13.4, f(x1) > f(x2), then the domain of x to the left of x2, 
from xl to x2, can be eliminated because it does not contain the maximum. For this 
case, x2 becomes the new xl for the next round.

2. If f(x2) > f(x1), then the domain of x to the right of x1, from x1 to xu would be 
eliminated. In this case, x1 becomes the new xu for the next round.

  Box 13.1 The Golden Ratio and Fibonacci Numbers

In many cultures, certain numbers are ascribed qualities. For ex-
ample, we in the West are all familiar with “Lucky 7” and “Friday 
the 13th.” Ancient Greeks called the following number the “golden 
ratio:”

√5 − 1
2

= 0.61803 …

This ratio was employed for a number of purposes, including 
the development of the rectangle in Fig. 13.3. These proportions 
were considered aesthetically pleasing by the Greeks. Among 
other things, many of their temples followed this shape.
 The golden ratio is related to an important mathematical se-
ries known as the Fibonacci numbers, which are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Thus, each number after the first two represents the sum of the 
preceding two. This sequence pops up in many diverse areas of 
science and engineering. In the context of the present discus-
sion, an interesting property of the Fibonacci sequence relates to 
the ratio of consecutive numbers in the sequence; that is, 0∕1 = 
0, 1∕1 = 1, 1∕2 = 0.5, 2∕3 = 0.667, 3∕5 = 0.6, 5∕8 = 0.625, 
8∕13 = 0.615, and so on. As one proceeds, the ratio of consecu-
tive numbers approaches the golden ratio!

FIGURE 13.3
The Parthenon in Athens, Greece, was constructed in the  
5th century b.c. Its front dimensions can be fit almost exactly 
within a golden rectangle.

0.61803

1
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364 ONE-DIMENSIONAL UNCONSTRAINED OPTIMIZATION

 Now, here is the real benefit from the use of the golden ratio. Because the original 
x1 and x2 were chosen using the golden ratio, we do not have to recalculate all the func-
tion values for the next iteration. For example, for the case illustrated in Fig. 13.4, the 
old x1 becomes the new x2. This means that we already have the value for the new f(x2), 
since it is the same as the function value at the old x1.
 To complete the algorithm, we now only need to determine the new x1. This is done 
with the same proportionality as before,

x1 = xl +
√5 − 1

2
 (xu − xl)

A similar approach would be used for the alternate case where the optimum fell in the 
left subinterval.
 As the iterations are repeated, the interval containing the extremum is reduced rap-
idly. In fact, each round the interval is reduced by a factor of the golden ratio (about 
61.8%). That means that after 10 rounds, the interval is shrunk to about 0.61810 or 0.008 
or 0.8% of its initial length. After 20 rounds, it is about 0.0066%. This is not quite as 
good as the reduction achieved with bisection, but this is a harder problem.

FIGURE 13.4
(a) The initial step of the golden-section search algorithm involves choosing two interior 
points according to the golden ratio. (b) The second step involves defining a new interval 
that includes the optimum.
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 13.1 GOLDEN-SECTION SEARCH 365

 EXAMPLE 13.1 Golden-Section Search
Problem Statement. Use the golden-section search to find the maximum of

f(x) = 2 sin x −
x2

10

within the interval xl = 0 and xu = 4.

Solution. First, the golden ratio is used to create the two interior points

d =
√5 − 1

2
 (4 − 0) = 2.472

x1 = 0 + 2.472 = 2.472

x2 = 4 − 2.472 = 1.528

The function can be evaluated at the interior points

f(x2) = f(1.528) = 2 sin(1.528) −
1.5282

10
= 1.765

f(x1) = f(2.472) = 0.63

 Because f(x2) > f(x1), the maximum is in the interval defined by xl, x2, and x1. Thus, 
for the new interval, the lower bound remains xl = 0, and x1 becomes the upper bound; 
that is, xu = 2.472. In addition, the former x2 value becomes the new x1; that is, x1 = 1.528. 
Further, we do not have to recalculate f(x1) because it was determined on the previous it-
eration as f(1.528) = 1.765.
 All that remains is to compute the new values of d and x2,

d =
√5 − 1

2
 (2.472 − 0) = 1.528

x2 = 2.4721 − 1.528 = 0.944

 The function evaluation at x2 is f(0.994) = 1.531. Since this value is less than the 
function value at x1, the maximum is in the interval prescribed by x2, x1, and xu.
 The process can be repeated, with the results tabulated below:

i xl f(xl) x2 f(x2) x1 f(x1) xu f(xu) d

1 0 0 1.5279 1.7647 2.4721 0.6300 4.0000 −3.1136 2.4721
2 0 0 0.9443 1.5310 1.5279 1.7647 2.4721 0.6300 1.5279
3 0.9443 1.5310 1.5279 1.7647 1.8885 1.5432 2.4721 0.6300 0.9443
4 0.9443 1.5310 1.3050 1.7595 1.5279 1.7647 1.8885 1.5432 0.5836
5 1.3050 1.7595 1.5279 1.7647 1.6656 1.7136 1.8885 1.5432 0.3607
6 1.3050 1.7595 1.4427 1.7755 1.5279 1.7647 1.6656 1.7136 0.2229
7 1.3050 1.7595 1.3901 1.7742 1.4427 1.7755 1.5279 1.7647 0.1378
8 1.3901 1.7742 1.4427 1.7755 1.4752 1.7732 1.5279 1.7647 0.0851
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366 ONE-DIMENSIONAL UNCONSTRAINED OPTIMIZATION

 Note that the current maximum is highlighted for every iteration. After the eighth 
iteration, the maximum occurs at x = 1.4427 with a function value of 1.7755. Thus, the 
result is converging on the true value of 1.7757 at x = 1.4276.

 Recall that for bisection (Sec. 5.2.1), an exact upper bound for the error can be cal-
culated at each iteration. Using similar reasoning, an upper bound for golden-section search 
can be derived as follows: Once an iteration is complete, the optimum will either fall in 
one of two intervals. If x2 is the optimum function value, it will be in the lower interval, 
(xl, x2, x1). If x1 is the optimum function value, it will be in the upper interval, (x2, x1, xu). 
Because the interior points are symmetrical, either case can be used to define the error.
 Looking at the upper interval, if the true value were at the far left, the maximum 
distance from the estimate would be

 Δxa = x1 − x2

 = xl + R(xu − xl) − xu + R(xu − xl)

 = (xl − xu) + 2R(xu − xl)

 = (2R − 1)(xu − xl)

or 0.236(xu − xl).
 If the true value were at the far right, the maximum distance from the estimate 
would be

 Δxb = xu − x1

 = xu − xl − R(xu − xl)

 = (1 − R) (xu − xl)

or 0.382(xu − xl). Therefore, this case would represent the maximum error. This result 
can then be normalized to the optimal value for that iteration, xopt, to yield

εa = (1 − R) ∣ xu − xl

xopt
∣100%

This estimate provides a basis for terminating the iterations.
 Pseudocode for the golden-section-search algorithm for maximization is presented in 
Fig. 13.5a. The minor modifications to convert the algorithm to minimization are listed in 
Fig. 13.5b. In both versions the x value for the optimum is returned as the function value 
(Gold). In addition, the value of f(x) at the optimum is returned as the variable (fx).
 You may be wondering why we have stressed the reduced function evaluations of 
the golden-section search. Of course, for solving a single optimization, the speed savings 
would be negligible. However, there are two important contexts where minimizing the 
number of function evaluations can be important. These are

1. Many evaluations. There are cases where the golden-section-search algorithm may be 
a part of a much larger calculation. In such cases, it may be called many times. 
Therefore, keeping function evaluations to a minimum could pay great dividends for 
such cases.
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FUNCTION Gold(xlow, xhigh, maxit, es, fx)
R = (50.5 − 1)∕2
xℓ = xlow; xu = xhigh
iter = 1
d = R * (xu − xℓ)
x1 = xℓ + d; x2 = xu − d
f1 = f(x1)
f2 = f(x2)
IF f1 > f2 THEN IF f1 < f2 THEN
  xopt = x1
  fx = f1
ELSE
  xopt = x2
  fx = f2
END IF
DO
  d = R*d; xint = xu − xℓ
  IF f1 > f2 THEN IF f1 < f2 THEN
     xℓ = x2
     x2 = x1
     x1 = xℓ+d
     f2 = f1
     f1 = f(x1)
  ELSE
     xu = x1
     x1 = x2
     x2 = xu−d
     f1 = f2
     f2 = f(x2)
  END IF
  iter = iter+1
  IF f1 > f2 THEN IF f1 < f2 THEN
     xopt = x1
     fx = f1
  ELSE
     xopt = x2
     fx = f2
  END IF
  IF xopt ≠ 0. THEN
     ea = (1.−R) *ABS(xint∕xopt) * 100.
  END IF
  IF ea ≤ es OR iter ≥ maxit EXIT
END DO
Gold = xopt
END Gold
  (a) Maximization (b) Minimization

FIGURE 13.5
Algorithm for the golden- 
section search.
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2. Time-consuming evaluation. For pedagogical reasons, we use simple functions in most 
of our examples. You should understand that a function can be very complex and time-
consuming to evaluate. For example, in a later part of this book, we will describe how 
optimization can be used to estimate the parameters of a model consisting of a system 
of differential equations. For such cases, the “function” involves time-consuming model 
integration. Any method that minimizes such evaluations would be advantageous.

 13.2 PARABOLIC INTERPOLATION
Parabolic interpolation takes advantage of the fact that a second-order polynomial often 
provides a good approximation to the shape of f(x) near an optimum (Fig. 13.6).
 Just as there is only one straight line connecting two points, there is only one qua-
dratic polynomial, or parabola, connecting three points. Thus, if we have three points that 
jointly bracket an optimum, we can fit a parabola to the points. Then we can differentiate 
the quadratic polynomial, set the result equal to zero, and solve for an estimate of the 
optimal x. It can be shown through some algebraic manipulations that the result is

x3 =
f(x0) (x2

1 − x2
2) + f(x1) (x2

2 − x2
0) + f(x2) (x2

0 − x2
1)

2  f(x0) (x1 − x2) + 2 f(x1) (x2 − x0) + 2 f(x2) (x0 − x1)
 (13.7)

where x0, x1, and x2 are the initial guesses, and x3 is the value of x that corresponds to 
the maximum value of the parabolic fit to the guesses. After generating the new point, 
there are two strategies for selecting the points for the next iteration. The simplest ap-
proach, which is similar to the secant method, is to merely assign the new points sequen-
tially. That is, for the new iteration, z0 = z1, z1 = z2, and z2 = z3. Alternatively, as 
illustrated in the following example, a bracketing approach, similar to bisection or the 
golden-section search, can be employed.

FIGURE 13.6
Graphical description of parabolic interpolation.
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 EXAMPLE 13.2 Parabolic Interpolation
Problem Statement. Use parabolic interpolation to approximate the maximum of

f(x) = 2 sin x −
x2

10

with initial guesses of x0 = 0, x1 = 1, and x2 = 4.

Solution. The function values at the three guesses can be evaluated,

x0 = 0  f(x0) = 0
x1 = 1  f(x1) = 1.5829
x2 = 4  f(x2) = −3.1136

and substituted into Eq. (13.7) to give

x3 =
0(12 − 42) + 1.5829(42 − 02) + (−3.1136)(02 − 12)

2(0)(1 − 4) + 2(1.5829)(4 − 0) + 2(−3.1136)(0 − 1)
= 1.5055

which has a function value of f(1.5055) = 1.7691.
 Next, a strategy similar to the golden-section search can be employed to determine 
which point should be discarded. Because the function value for the new point is higher 
than for the intermediate point (x1) and the new x value is to the right of the intermedi-
ate point, the lower guess (x0) is discarded. Therefore, for the next  iteration,

 x0 = 1   f(x0) = 1.5829
 x1 = 1.5055   f(x1) = 1.7691
 x2 = 4   f(x2) = −3.1136

which can be substituted into Eq. (13.7) to give

 x3 =
1.5829(1.50552 − 42) + 1.7691(42 − 12) + (−3.1136)(12 − 1.50552)

2(1.5829)(1.5055 − 4) + 2(1.7691)(4 − 1) + 2(−3.1136)(1 − 1.5055)
 = 1.4903

which has a function value of f(1.4903) = 1.7714.
 The process can be repeated, with the results tabulated below:

i x0 f(x0) x1 f(x1) x2 f(x2) x3 f(x3)

1 0.0000 0.0000 1.0000 1.5829 4.0000 −3.1136 1.5055 1.7691
2 1.0000 1.5829 1.5055 1.7691 4.0000 −3.1136 1.4903 1.7714
3 1.0000 1.5829 1.4903 1.7714 1.5055 1.7691 1.4256 1.7757
4 1.0000 1.5829 1.4256 1.7757 1.4903 1.7714 1.4266 1.7757
5 1.4256 1.7757 1.4266 1.7757 1.4903 1.7714 1.4275 1.7757

Thus, within five iterations, the result is converging rapidly on the true value of 1.7757 
at x = 1.4276.
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370 ONE-DIMENSIONAL UNCONSTRAINED OPTIMIZATION

 We should mention that just like the false-position method, parabolic interpolation 
can get hung up with just one end of the interval converging. Thus, convergence can be 
slow. For example, notice that in our example, 1.0000 was an endpoint for most of the 
iterations.
 This method, as well as others using third-order polynomials, can be formulated into 
algorithms that contain convergence tests, careful selection strategies for the points to 
retain on each iteration, and attempts to minimize round-off error accumulation.

 13.3 NEWTON’S METHOD
Recall that the Newton-Raphson method of Chap. 6 is an open method that finds the 
root x of a function such that f(x) = 0. The method is summarized as

xi+1 = xi −
f(xi)
f ′(xi)

 A similar open approach can be used to find an optimum of f(x) by defining a new 
function, g(x) = f ′(x). Thus, because the same optimal value x* satisfies both,

f ′(x*) = g(x*) = 0

we can use the following,

xi+1 = xi −
f ′(xi)
f ″(xi)

 (13.8)

as a technique to find the minimum or maximum of f(x). It should be noted that this 
equation can also be derived by writing a second-order Taylor series for f(x) and setting 
the derivative of the series equal to zero. Newton’s method is an open method similar 
to Newton-Raphson because it does not require initial guesses that bracket the optimum. 
In addition, it also shares the disadvantage that it may be divergent. Finally, it is usually 
a good idea to check that the second derivative has the correct sign to confirm that the 
technique is converging on the result you desire.

 EXAMPLE 13.3 Newton’s Method
Problem Statement. Use Newton’s method to find the maximum of

f(x) = 2 sin x −
x2

10

with an initial guess of x0 = 2.5.

Solution. The first and second derivatives of the function can be evaluated as

f  ′(x) = 2 cos x −
x

5

f ″(x) = −2 sin x −
1
5
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which can be substituted into Eq. (13.8) to give

xi+1 = xi −
2 cos xi − xi∕5
−2 sin xi − 1∕5

Substituting the initial guess yields

x1 = 2.5 −
2 cos 2.5 − 2.5∕5
−2 sin 2.5 − 1∕5

= 0.99508

which has a function value of 1.57859. The second iteration gives

x2 = 0.995 −
2 cos 0.995 − 0.995∕5

−2 sin 0.995 − 1∕5
= 1.46901

which has a function value of 1.77385.
 The process can be repeated, with the results tabulated below:

i x f(x) f′(x) f″(x)

 0 2.5 0.57194 −2.10229 −1.39694
 1 0.99508 1.57859 0.88985 −1.87761
 2 1.46901 1.77385 −0.09058 −2.18965
 3 1.42764 1.77573 −0.00020 −2.17954
 4 1.42755 1.77573 0.00000 −2.17952

Thus, within four iterations, the result converges rapidly on the true value.

 Although Newton’s method works well in some cases, it is impractical for cases 
where the derivatives cannot be conveniently evaluated. For these cases, other approaches 
that do not involve derivative evaluation are available. For example, a secant-like version 
of Newton’s method can be developed by using finite-difference approximations for the 
derivative evaluations.
 A bigger reservation regarding the approach is that it may diverge based on the 
nature of the function and the quality of the initial guess. Thus, it is usually employed 
only when we are close to the optimum. As described next, hybrid techniques that use 
bracketing approaches far from the optimum and open methods near the optimum attempt 
to exploit the strong points of both approaches.

 13.4 BRENT’S METHOD
Recall that in Sec. 6.4, we described Brent’s method for root location. This hybrid method 
combined several root-finding methods into a single algorithm that balanced reliability 
with efficiency.
 Brent also developed a similar approach for one-dimensional minimization. It combines 
the slow, dependable golden-section search with the faster, but possibly unreliable, parabolic 
interpolation. It first attempts parabolic interpolation and keeps applying it as long as ac-
ceptable results are obtained. If not, it uses the golden-section search to get matters in hand.
 Figure 13.7 presents pseudocode for the algorithm based on a MATLAB software 
M-file developed by Cleve Moler (2004). It represents a stripped-down version of the 
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Function fminsimp(x1, xu)
tol = 0.000001; phi = (1 + √5)∕2;; rho = 2 − phi
u = x1 + rho*(xu − x1); v = u; w = u; x = u
fu = f(u); fv = fu; fw = fu; fx = fu
xm = 0.5*(x1 + xu); d = 0; e = 0
DO
  IF |x − xm| ≤ tol EXIT
  para = |e| > tol
  IF para THEN (Try parabolic fit)
    r = (x − w)*(fx − fv); q = (x − v)*(fx − fw)
    p = (x − v)*q − (x − w)*r; s = 2*(q − r)
    IF s > 0 THEN p = −p
    s = |s|
    ' Is the parabola acceptable?
    para = |p| < |0.5*s*e| AND p > s*(x1 − x) AND p < s*(xu − x)
    IF para THEN
      e = d; d = p∕s (Parabolic interpolation step)
    ENDIF
  ENDIF
  IF NOT para THEN
    IF x ≥ xm THEN (Golden-section search step)
      e = x1 − x
    ELSE
      e = xu − x
    ENDIF
    d = rho*e
  ENDIF
  u = x + d; fu = f(u)
  IF fu ≤ fx THEN (Update x1, xu, x, v, w, xm)
    IF u ≥ x THEN
      x1 = x
    ELSE
      xu = x
    ENDIF
    v = w; fv = fw; w = x; fw = fx; x = u; fx = fu
  ELSE
    IF u < x THEN
      x1 = u
    ELSE
      xu = u
    ENDIF
    IF fu ≤ fw OR w = x THEN
      v = w; fv = fw; w = u; fw = fu
    ELSEIF fu ≤ fv OR v = x OR v = w THEN
      v = u; fv = fu
    ENDIF
  ENDIF
  xm = 0.5*(x1 + xu)
ENDDO
fminsimp = fu
END fminsimp

FIGURE 13.7
Pseudocode for Brent’s  
minimum-finding algorithm 
based on a MATLAB M-file  
developed by Cleve  
Moler (2004).
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fminbnd function, which is the professional minimization function employed in MATLAB. 
For that reason, we call the simplified version fminsimp. Note that it requires another 
function f that holds the equation for which the minimum is being evaluated.
 This concludes our treatment of methods to solve the optima of functions of a single 
variable. Some engineering examples are presented in Chap. 16. In addition, the tech-
niques described here are an important element of some procedures to optimize multi-
variable functions, as discussed in Chap. 14.

PROBLEMS

13.1 Given the formula

f (x) = −x2 + 9x − 11

(a) Determine the maximum and the corresponding value of x for 
this function analytically (i.e., using differentiation).

(b) Verify that Eq. (13.7) yields the same results based on initial 
guesses of x0 = 0, x1 = 2, and x2 = 6.

13.2 Given

f (x) = −1.6x6 − 3x4 + 10x

(a) Plot the function.
(b) Use analytical methods to prove that the function is concave for 

all values of x.
(c) Differentiate the function and then use a root-location 

method to solve for the maximum f(x) and the corresponding 
value of x.

13.3 Solve for the value of x that maximizes f(x) in Prob. 13.2 
 using the golden-section search. Employ initial guesses of xl = 0 
and xu = 1 and perform three iterations.
13.4 Repeat Prob. 13.3, except use parabolic interpolation in the same 
fashion as Example 13.2. Employ initial guesses of x0 = 0, x1 = 1, and 
x2 = 2 and perform three iterations.
13.5 Repeat Prob. 13.3 but use Newton’s method. Employ an ini-
tial guess of x0 = 1 and perform three iterations.
13.6 Employ the following methods to find the maximum of

f (x) = 4x − 1.8x2 + 1.2x3 − 0.3x4

(a) Golden-section search (xl = −2, xu = 4, εs = 1%).
(b) Parabolic interpolation (x0 = 1.75, x1 = 2, x2 = 2.5, iterations = 4). 

Select new points sequentially as in the secant method.
(c) Newton’s method (x0 = 3, εs = 1%).
13.7 Consider the following function:

f (x) = − x4 − 2x3 − 9x2 − 6x

Use analytical and graphical methods to show that the function has 
a maximum for some value of x in the range −2 ≤ x ≤ 1.

13.8 Employ the following methods to find the maximum of the 
function from Prob. 13.7:
(a) Golden-section search (xl = −2, xu = 1, εs = 1%).
(b) Parabolic interpolation (x0 = −2, x1 = −1, x2 = 1, iterations = 4). 

Select new points sequentially as in the secant method.
(c) Newton’s method (x0 = −1, εs = 1%).
13.9 Consider the following function:

f (x) = 2x +
3
x

Perform 10 iterations of parabolic interpolation to locate the mini-
mum. Select new points in the same fashion as in Example 13.2. 
Comment on the convergence of your results. (x0 = 0.1, x1 = 0.5, 
x2 = 5)
13.10 Consider the following function:

f (x) = 3 + 6x + 5x2 + 3x3 + 4x4

Locate the minimum by finding the root of the derivative of this 
function. Use bisection with initial guesses of xl = −2 and xu = 1.
13.11 Determine the minimum of the function from Prob. 13.10 
with the following methods:
(a) Newton’s method (x0 = −1, εs = 1%).
(b) Newton’s method, but using a finite difference approximation 

for the derivative estimates.

f ′(x) =
f (xi + δxi) − f (xi − δxi)

2δxi

f ″(x) =
f (xi + δxi) − 2f (xi) − f (xi − δxi)

(δxi)2

where δ = a perturbation fraction (= 0.01). Use an initial guess of 
x0 = −1 and iterate to εs = 1%.
13.12 Develop a program using a programming or macro language 
to implement the golden-section search algorithm. Design the pro-
gram so that it is expressly designed to locate a maximum. The 
subroutine should have the following features:

 PROBLEMS 373
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Given that L = 500 cm, E = 50,000 kN∕cm2, I = 30,000 cm4, and 
w0  = 2.5 kN∕cm, determine the point of maximum deflection 
(a) graphically and (b) using the golden-section search until the 
approximate error falls below εs = 5% with initial guesses of xl = 0 
and xu = L.
13.19 An object with a mass of 120 kg is projected upward from the 
surface of the earth at a velocity of 55 m∕s. If the object is subject to 
linear drag (c = 16 kg∕s), use the golden-section search to determine 
the maximum height the object attains and the time it takes to reach 
the maximum. Hint: Recall Sec. PT4.1.2.
13.20 The normal distribution is a bell-shaped curve defined by

y = e−x2

Use the golden-section search to determine the location of the 
 inflection point of this curve for positive x.
13.21 An object can be projected upward at a specified velocity. If 
it is subject to linear drag, its altitude as a function of time can be 
computed as

z = z0 +
m

c
 (υ0 +

mg

c ) (1 − e−(c∕m)t) −
mg

c
 t

where z = altitude (m) above the earth’s surface (defined as z = 0), 
z0 = the initial altitude (m), m = mass (kg), c = a linear drag coeffi-
cient (kg∕s), v0 = initial velocity (m∕s), and t = time (s). Note that for 
this formulation, positive velocity is considered to be in the upward 
direction. Given the following parameter values: g = 9.81 m∕s2, z0 = 
100 m, v0 = 60 m∕s, m = 90 kg, and c = 14 kg∕s, the equation can be 
used to calculate the object’s altitude. Determine the time and alti-
tude of the peak elevation (a) graphically, (b) analytically, and 
(c) with the golden-section search until the approximate error falls 
below εs = 1% with initial guesses of tl = 0 and tu = 10 s.
13.22 Use the golden-section search to determine the length of the 
shortest ladder that reaches from the ground over the fence to touch the 
building’s wall (Fig. P13.22). Test it for the case where h = d = 4 m.

∙ Iterate until the relative error falls below a stopping criterion or  
a maximum number of iterations has been reached.

∙ Return both the optimal x and f(x).
∙ Minimize the number of function evaluations.

Test your program with the same problem as Example 13.1.
13.13 Develop a program as described in Prob. 13.12, but make it 
perform minimization or maximization depending on the user’s 
preference.
13.14 Develop a program using a programming or macro language 
to implement the parabolic interpolation algorithm. Design the pro-
gram so that it is expressly designed to locate a maximum and se-
lects new points as in Example 13.2. The subroutine should have 
the following features:

∙ Base it on two initial guesses, and have the program generate the 
third initial value at the midpoint of the interval.

∙ Check whether the guesses bracket a maximum. If not, the sub-
routine should not implement the algorithm, but should return an 
error message.

∙ Iterate until the relative error falls below a stopping criterion or  
a maximum number of iterations has been reached.

∙ Return both the optimal x and f(x).
∙ Minimize the number of function evaluations.

Test your program with the same problem as Example 13.2.
13.15 Develop a program using a programming or macro language 
to implement Newton’s method. The subroutine should have the 
following features:

∙ Iterate until the relative error falls below a stopping criterion or  
a maximum number of iterations has been reached.

∙ Return both the optimal x and f(x).

Test your program with the same problem as Example 13.3.
13.16 Pressure measurements are taken at certain points behind an 
airfoil over time. These data best fit the curve y = 5 cos x − 1.2 sin x 
from x = 0 to 6 s. Use four iterations of the golden-section search  
to find the minimum pressure. Set xl = 2 and xu = 4.
13.17 The trajectory of a ball can be computed with

y = (tan θ0)x −
g

2υ2
0 cos2 θ0

 x2 + y0

where y = the height (m), θ0 = the initial angle (radians), υ0 = the 
initial velocity (m∕s), g = the gravitational constant = 9.81 m∕s2, 
and y0 = the initial height (m). Use the golden-section search to 
determine the maximum height given y0 = 2 m, υ0 = 24 m∕s, and  
θ0 = 52°. Iterate until the approximate error falls below εs = 1% 
using initial guesses of xl = 0 and xu = 60 m.
13.18 The deflection of a uniform beam subject to a linearly in-
creasing distributed load can be computed as

y =
w0

120EIL
 (−x5 + 2L2 x3 − L4x)

d

h

FIGURE P13.22
A ladder leaning against a fence and just touching a wall.
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375

C H A P T E R

14
Multidimensional Unconstrained 
Optimization

This chapter describes techniques to find the minimum or maximum of a function of 
several variables. Recall from Chap. 13 that our visual image of a one-dimensional search 
was like a roller coaster. For two-dimensional cases, the image becomes that of moun-
tains and valleys (Fig. 14.1). For higher-dimensional problems, convenient images are 
not possible.
 We have chosen to limit this chapter to the two-dimensional case. We have adopted 
this approach because the essential features of multidimensional searches are often best 
communicated visually.
 Techniques for multidimensional unconstrained optimization can be classified in a 
number of ways. For purposes of the present discussion, we will divide them depending 
on whether they require derivative evaluation. The approaches that do not require de-
rivative evaluation are called nongradient, or direct, methods. Those that require deriva-
tives are called gradient, or descent (or ascent), methods.

FIGURE 14.1
The most tangible way to visu-
alize two-dimensional 
searches is in the context of 
ascending a mountain (maximi-
zation) or  descending into a 
valley ( minimization). (a) A 2-D 
 topographic map that 
 corresponds to the 3-D 
 mountain in (b).

Lines of constant f
x

x

y

f

y

(a) (b)
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376 MULTIDIMENSIONAL UNCONSTRAINED OPTIMIZATION

 14.1 DIRECT METHODS
Direct methods vary from simple brute force approaches to more elegant techniques that 
attempt to exploit the nature of the function. We will start our discussion with a brute 
force approach.

14.1.1 Random Search
A simple example of a brute force approach is the random search method. As the name 
implies, this method repeatedly evaluates the function at randomly selected values of the 
independent variables. If a sufficient number of samples are conducted, the optimum will 
eventually be located.

 EXAMPLE 14.1 Random Search Method
Problem Statement. Use a random number generator to locate the maximum of

f(x, y) = y − x − 2x2 − 2xy − y2 (E14.1.1)

in the domain bounded by x = −2 to 2 and y = 1 to 3. The domain is depicted in Fig. 14.2. 
Notice that a single maximum of 1.25 occurs at x = −1 and y = 1.5.

Solution. Random number generators typically generate values between 0 and 1. If we 
designate such a number as r, the following formula can be used to generate x values 
randomly within a range from xl to xu:

x = xl + (xu − xl)r

For the present application, xl = −2 and xu = 2, and the formula is

x = −2 + (2 − (−2))r = −2 + 4r

This can be tested by substituting 0 and 1 to yield −2 and 2, respectively.

FIGURE 14.2 
Plot of Eq. (E14.1.1) showing the maximum at x = −1 and y = 1.5.
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 This simple brute force approach works even for discontinuous and nondifferentiable 
functions. Furthermore, it always finds the global optimum rather than a local optimum. 
Its major shortcoming is that as the number of independent variables grows, the imple-
mentation effort required can become onerous. In addition, it is not efficient because it 
takes no account of the behavior of the underlying function. The remainder of the ap-
proaches described in this chapter do take function behavior into account as well as the 
results of previous trials to improve the speed of convergence. Thus, although the random 
search method can certainly prove useful in specific problem contexts, the following 
methods have more general utility and almost always lead to more efficient convergence.

Iterations x y f (x, y)

 1000 −0.9886 1.4282 1.2462
 2000 −1.0040 1.4724 1.2490
 3000 −1.0040 1.4724 1.2490
 4000 −1.0040 1.4724 1.2490
 5000 −1.0040 1.4724 1.2490
 6000 −0.9837 1.4936 1.2496
 7000 −0.9960 1.5079 1.2498
 8000 −0.9960 1.5079 1.2498
 9000 −0.9960 1.5079 1.2498
 10000 −0.9978 1.5039 1.2500

 Similarly for y, a formula for the present example could be developed as

y = yl + ( yu − yl)r = 1 + (3 − 1)r = 1 + 2r

 The following Excel/VBA macrocode uses the VBA random number function Rnd, 
to generate (x, y) pairs. These are then substituted into Eq. (E14.1.1). The maximum 
value from among these random trials is stored in the variable maxf, and the correspond-
ing x and y values in maxx and maxy, respectively.

maxf = −1E9
For j = 1 To n
  x = −2 + 4 * Rnd
  y = 1 + 2 * Rnd
  fn = y − x − 2 * x ^ 2 − 2 * x * y − y ^ 2
  If fn > maxf Then
    maxf = fn
    maxx = x
    maxy = y
  End If
Next j

 A number of iterations yields

The results indicate that the technique homes in on the true maximum.
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 It should be noted that more sophisticated search techniques are available. These are 
heuristic approaches that were developed to handle either nonlinear and/or discontinuous 
problems that classical optimization cannot usually handle well, if at all. Simulated an-
nealing, tabu search, artificial neural networks, and genetic algorithms are a few. The 
most widely applied is the genetic algorithm, with a number of commercial packages 
available. Holland (1975) pioneered the genetic algorithm approach, and Davis (1991) 
and Goldberg (1989) provide good overviews of the theory and application of the method.

14.1.2 Univariate and Pattern Searches
It is very appealing to have an efficient optimization approach that does not require 
evaluation of derivatives. The random search method described above does not require 
derivative evaluation, but it is not very efficient. This section describes an approach, the 
univariate search method, that is more efficient and still does not require derivative 
evaluation.
 The basic strategy underlying the univariate search method is to change one variable 
at a time to improve the approximation while the other variables are held constant. Since 
only one variable is changed, the problem reduces to a sequence of one-dimensional 
searches that can be solved using a variety of methods (including those described in 
Chap. 13).
 Let us perform a univariate search graphically, as shown in Fig. 14.3. Start at point 1, 
and move along the x axis with y constant to the maximum at point 2. You can see that 
point 2 is a maximum by noticing that the trajectory along the x axis just touches a 
contour line at the point. Next, move along the y axis with x constant to point 3. Continue 
this process generating points 4, 5, 6, etc.

FIGURE 14.3
A graphical depiction of how a univariate search is conducted.
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 Although we are gradually moving toward the maximum, the search becomes less 
efficient as we move along the narrow ridge toward the maximum. However, also note 
that lines joining alternate points such as 1-3, 3-5 or 2-4, 4-6 point in the general direc-
tion of the maximum. These trajectories present an opportunity to shoot directly along 
the ridge toward the maximum. Such trajectories are called pattern directions.
 Formal algorithms are available that capitalize on the idea of pattern directions to 
find optimum values efficiently. The best known of these algorithms is called Powell’s 
method. It is based on the observation (see Fig. 14.4) that if points 1 and 2 are obtained 
by one-dimensional searches in the same direction but from different starting points, then 
the line formed by 1 and 2 will be directed toward the maximum. Such lines are called 
conjugate directions.
 In fact, it can be proved that if f(x, y) is a quadratic function, sequential searches 
along conjugate directions will converge exactly in a finite number of steps regardless 
of the starting point. Since a general nonlinear function can often be reasonably ap-
proximated by a quadratic function, methods based on conjugate directions are usually 
quite efficient and are in fact quadratically convergent as they approach the optimum.
 Let us graphically implement a simplified version of Powell’s method to find the 
maximum of

f(x, y) = c − (x − a)2 − (y − b)2

where a, b, and c are positive constants. This equation results in circular contours in the 
xy plane, as shown in Fig. 14.5.
 Initiate the search at point 0 with starting directions h1 and h2. Note that h1 and h2 are 
not necessarily conjugate directions. From zero, move along h1 until a maximum is located 

2

1

y

x

FIGURE 14.4
Conjugate directions.
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380 MULTIDIMENSIONAL UNCONSTRAINED OPTIMIZATION

at point 1. Then search from point 1 along direction h2 to find point 2. Next, form a new 
search direction h3 through points 0 and 2. Search along this direction until the maximum 
at point 3 is located. Then search from point 3 in the h2 direction until the maximum at 
point 4 is located. From point 4 arrive at point 5 by again searching along h3. Now, observe 
that both points 5 and 3 have been located by searching in the h3 direction from two dif-
ferent points. Powell has shown that h4 (formed by points 3 and 5) and h3 are conjugate 
directions. Thus, searching from point 5 along h4 brings us directly to the maximum.
 Powell’s method can be refined to make it more efficient, but the formal algorithms 
are beyond the scope of this text. However, it is an efficient method that is quadratically 
convergent without requiring derivative evaluation.

 14.2 GRADIENT METHODS
As the name implies, gradient methods explicitly use derivative information to generate 
efficient algorithms to locate optima. Before describing specific approaches, we must 
first review some key mathematical concepts and operations.

14.2.1 Gradients and Hessians
Recall from calculus that the first derivative of a one-dimensional function provides a 
slope or tangent to the function being differentiated. From the standpoint of optimization, 
this is useful information. For example, if the slope is positive, it tells us that increasing 
the independent variable will lead to a higher value of the function we are exploring.
 From calculus, also recall that the first derivative may tell us when we have reached 
an optimal value since this is the point that the derivative goes to zero. Further, the sign 
of the second derivative can tell us whether we have reached a minimum (positive second 
derivative) or a maximum (negative second derivative).

FIGURE 14.5
Powell’s method.
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 These ideas were useful to us in the one-dimensional search algorithms we explored 
in Chap. 13. However, to fully understand multidimensional searches, we must first 
understand how the first and second derivatives are expressed in a multidimensional 
context.

The Gradient. Suppose we have a two-dimensional function f(x, y). An example might 
be your elevation on a mountain as a function of your position. Suppose that you are at a 
specific location on the mountain (a, b) and you want to know the slope in an arbitrary 
direction. One way to define the direction is along a new axis h that forms an angle θ with 
the x axis (Fig. 14.6). The elevation along this new axis can be thought of as a new func-
tion g(h). If you define your position as being the origin of this axis (that is, h = 0), the 
slope in this direction would be designated as g′(0). This slope, which is called the direc-
tional derivative, can be calculated from the partial derivatives along the x and y axis by

g′(0) =
∂f

∂x
 cos θ +

∂f

∂y
 sin θ (14.1)

where the partial derivatives are evaluated at x = a and y = b.
 Assuming that your goal is to gain the most elevation with the next step, the next 
logical question would be: What direction is the steepest ascent? The answer to this 
question is provided very neatly by what is referred to mathematically as the gradient, 
which is defined as

∇ f =
∂f

∂x
  i +

∂f

∂y
  j (14.2)

This vector is also referred to as “del f.” It represents the directional derivative of f(x, y) 
at point x = a and y = b.

x = a
y = b
h = 0

h

θ

y

x

FIGURE 14.6
The directional gradient is defined along an axis h that forms an angle θ with the x axis.
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 Vector notation provides a concise means to generalize the gradient to n dimensions, as

∇ f(x) =

{

∂f

∂x1
 (x)

∂f

∂x2
 (x)

.

.

.
∂f

∂xn

 (x)
}

 How do we use the gradient? For the mountain-climbing problem, if we are inter-
ested in gaining elevation as quickly as possible, the gradient tells us what direction to 
move locally and how much we will gain by taking it. Note, however, that this strategy 
does not necessarily take us on a direct path to the summit! We will discuss these ideas 
in more depth later in this chapter.

 EXAMPLE 14.2 Using the Gradient to Evaluate the Path of Steepest Ascent
Problem Statement. Employ the gradient to evaluate the steepest ascent direction for 
the function

f(x, y) = xy2

at the point (2, 2). Assume that positive x is pointed east and positive y is pointed north.

Solution. First, our elevation can be determined as

f(2, 2) = 2(2)2 = 8

Next, the partial derivatives can be evaluated,
∂f

∂x
= y2 = 22 = 4

∂f

∂y
= 2xy = 2(2)(2) = 8

These values can be used to determine the gradient as

∇ f = 4i + 8j

This vector can be sketched on a topographical map of the function, as in Fig. 14.7. This 
immediately tells us that the direction we must take is

θ = tan−1
(

8
4) = 1.107 radians (= 63.4°)

relative to the x axis. The slope in this direction, which is the magnitude of ∇ f, can be 
calculated as

√42 + 82 = 8.944
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Thus, during our first step, we will initially gain 8.944 units of elevation rise for a unit 
distance advanced along this steepest path. Observe that Eq. (14.1) yields the same result,

g′(0) = 4 cos(1.107) + 8 sin(1.107) = 8.944

Note that for any other direction, say θ = 1.107∕2 = 0.5235, g′(0) = 4 cos(0.5235) + 
8 sin(0.5235) = 7.608, which is smaller.
 As we move forward, both the direction and magnitude of the steepest path will 
change. These changes can be quantified at each step using the gradient, and your climb-
ing direction modified accordingly.
 A final insight can be gained by inspecting Fig. 14.7. As indicated, the direction of 
steepest ascent is perpendicular, or orthogonal, to the elevation contour at the coordinate 
(2, 2). This is a general characteristic of the gradient.

0
0

1

2

3

4

1 2 3 4

y

x

8 24 40

FIGURE 14.7
The arrow indicates the direction of steepest ascent calculated with the gradient.

 Aside from defining a steepest path, the first derivative can also be used to discern 
whether an optimum has been reached. As is the case for a one-dimensional function, if 
the partial derivatives with respect to both x and y are zero, a two-dimensional optimum 
has been reached.

The Hessian. For one-dimensional problems, both the first and second derivatives 
provide valuable information for searching out optima. The first derivative (1) provides 
a steepest trajectory of the function and (2) tells us that we have reached an optimum. 
Once at an optimum, the second derivative tells us whether we are a maximum [negative 
f ″(x)] or a minimum [positive f ″(x)]. In the previous paragraphs, we illustrated how the 
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gradient provides best local trajectories for multidimensional problems. Now, we will 
examine how the second derivative is used in such contexts.
 You might expect that if the partial second derivatives with respect to both x and y 
are both negative, then you have reached a maximum. Figure 14.8 shows a function 
where this is not true. The point (a, b) of this graph appears to be a minimum when 
observed along either the x dimension or the y dimension. In both instances, the second 
partial derivatives are positive. However, if the function is observed along the line y = x, 
it can be seen that a maximum occurs at the same point. This shape is called a saddle, 
and clearly, neither a maximum nor a minimum occurs at the point.
 Whether a maximum or a minimum occurs involves not only the partials with respect 
to x and y but also the second partials with respect to x and y. Assuming that the partial 
derivatives are continuous at and near the point being evaluated, the following quantity 
can be computed:

∣H∣ =
∂2 f

∂ x 
2 

∂2 f

∂ y2 − (
∂2 f

∂ x ∂ y)
2

 (14.3)

 Three cases can occur

∙ If ∣ H ∣ > 0 and ∂2f∕∂x2 > 0, then f(x, y) has a local minimum.
∙ If ∣ H ∣ > 0 and ∂2f∕∂x2 < 0, then f(x, y) has a local maximum.
∙ If ∣ H ∣ < 0, then f(x, y) has a saddle point.

f (x, y)

(a, b)

x

y
y = x

FIGURE 14.8
A saddle point (x = a and y = b). Notice that when the curve is viewed along the x and y 
 directions, the function appears to go through a minimum (positive second derivative), 
whereas when viewed along an axis x = y, it is concave downward (negative second 
 derivative).
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 The quantity ∣ H ∣ is equal to the determinant of a matrix made up of the second 
derivatives,1

H =
[

∂2 f

∂ x 

2
∂2 f

∂ x ∂ y

∂2 f

∂ y ∂ x

∂2 f

∂ y 

2 ]
 (14.4)

This matrix is formally referred to as the Hessian of f.
 Besides providing a way to discern whether a multidimensional function has reached 
an optimum, the Hessian has other uses in optimization (for example, for the multidi-
mensional form of Newton’s method). In particular, it allows searches to include second-
order curvature to attain superior results.

Finite-Difference Approximations. It should be mentioned that, for cases where they 
are difficult or inconvenient to compute analytically, both the gradient and the determi-
nant of the Hessian can be evaluated numerically. In most cases, the approach introduced 
in Sec. 6.3.3 for the modified secant method is employed. That is, the independent 
variables can be perturbed slightly to generate the required partial derivatives. For ex-
ample, if a centered-difference approach is adopted, they can be computed as

∂f

∂x
=

f(x + δx, y) − f(x − δx, y)
2δx

 (14.5)

∂f

∂y
=

f(x, y + δy) − f(x, y − δy)
2δy

 (14.6)

∂2 f

∂x2 =
f(x + δx, y) − 2 f(x, y) + f(x − δx, y)

δx2  (14.7)

∂2 f

∂y2 =
f(x, y + δy) − 2 f(x, y) + f(x, y − δy)

δy2  (14.8)

∂2 f

∂x∂y
=

f(x + δx, y + δy) − f(x + δx, y − δy) − f(x − δx, y + δy) + f(x − δx, y − δy)
4δx δy

(14.9)

where δ is some small fractional value.
 Note that the methods employed in commercial software packages also use forward 
differences. In addition, they are usually more complicated than the approximations listed 
in Eqs. (14.5) through (14.9). Dennis and Schnabel (1996) provide more detail on such 
approaches.
 Regardless of how the approximation is implemented, the important point is that 
you may have the option of evaluating the gradient and/or the Hessian analytically. This 
can sometimes be an arduous task, but the performance of the algorithm may benefit 

1Note that ∂2f∕(∂x ∂y) = ∂2f∕(∂y ∂x).
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enough to make your effort worthwhile. The closed-form derivatives will be exact, but 
more importantly, you will reduce the number of function evaluations. This latter point 
can have a critical impact on the execution time.
 On the other hand, you will often exercise the option of having the quantities com-
puted internally using numerical approaches. In many cases, the performance will be 
quite adequate and you will be saved the difficulty of numerous partial differentiations. 
Such would be the case on the optimizers used in certain spreadsheets and mathematical 
software packages (for example, Excel). In such cases, you may not even be given the 
option of entering an analytically derived gradient and Hessian. However, for small to 
moderately sized problems, this is usually not a major shortcoming.

14.2.2 Steepest Ascent Method
An obvious strategy for climbing a hill would be to determine the maximum slope at 
your starting position and then start walking in that direction. But clearly, another prob-
lem arises almost immediately. Unless you were really lucky and started on a ridge that 
pointed directly to the summit, as soon as you moved, your path would diverge from the 
steepest ascent direction.
 Recognizing this fact, you might adopt the following strategy. You could walk a 
short distance along the gradient direction. Then you could stop, reevaluate the gradient 
and walk another short distance. By repeating the process you would eventually get to 
the top of the hill.
 Although this strategy sounds superficially sound, it is not very practical. In par-
ticular, the continuous reevaluation of the gradient can be computationally demanding. 
A preferred approach involves moving in a fixed path along the initial gradient until f(x, y) 
stops increasing, that is, becomes level along your direction of travel. This stopping point 
becomes the starting point where ∇ f  is reevaluated and a new direction followed. The 
process is repeated until the summit is reached. This approach is called the steepest 
ascent method.2 It is the most straightforward of the gradient search techniques. The basic 
idea behind the approach is depicted in Fig. 14.9.
 We start at an initial point (x0, y0) labeled “0” in the figure. At this point, we deter-
mine the direction of steepest ascent, that is, the gradient. We then search along the 
direction of the gradient, h0, until we find a maximum, which is labeled “1” in the 
figure. The process is then repeated.
 Thus, the problem boils down to two parts: (1) determining the “best” direction to 
search and (2) determining the “best value” along that search direction. As we will see, 
the effectiveness of the various algorithms described in the coming pages depends on 
how clever we are at both parts.
 For the time being, the steepest ascent method uses the gradient approach as its 
choice for the “best” direction. We have already shown how the gradient is evaluated in 
Example 14.2. Now, before examining how the algorithm goes about locating the maxi-
mum along the steepest direction, we must pause to explore how to transform a function 
of x and y into a function of h along the gradient direction.

2Because of our emphasis on maximization here, we use the terminology steepest ascent. The same approach 
can also be used for minimization, in which case the terminology steepest descent is used.
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 Starting at x0, y0 the coordinates of any point in the gradient direction can be ex-
pressed as

x = x0 +
∂f

∂x
 h (14.10)

y = y0 +
∂f

∂y
 h (14.11)

FIGURE 14.9
A graphical depiction of the method of steepest ascent.
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FIGURE 14.10
The relationship between an arbitrary direction h and x and y coordinates.
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388 MULTIDIMENSIONAL UNCONSTRAINED OPTIMIZATION

where h is distance along the h axis. For example, suppose x0 = 1 and y0 = 2 and 
∇ f = 3i + 4j, as shown in Fig. 14.10. The coordinates of any point along the h axis are 
given by

x = 1 + 3h (14.12)

y = 2 + 4h (14.13)

The following example illustrates how we can use these transformations to convert a 
two-dimensional function of x and y into a one-dimensional function in h.

 EXAMPLE 14.3 Developing a 1-D Function Along the Gradient Direction
Problem Statement. Suppose we have the following two-dimensional function:

f(x, y) = 2xy + 2x − x2 − 2y2

Develop a one-dimensional version of this equation along the gradient direction at the 
point x = −1 and y = 1.

Solution. The partial derivatives can be evaluated at (−1, 1),

∂f

∂x
= 2y + 2 − 2x = 2(1) + 2 − 2(−1) = 6

∂f

∂y
= 2x − 4y = 2(−1) − 4(1) = −6

Therefore, the gradient vector is

∇ f = 6i − 6j

To find the maximum, we could search along the gradient direction, that is, along an h axis 
running along the direction of this vector. The function can be expressed along this axis as

 f (x0 +
∂f

∂x
 h, y0 +

∂f

∂y
 h) = f(−1 + 6h, 1 − 6h)

 = 2(−1 + 6h) (1 − 6h) + 2(−1 + 6h) − (−1 + 6h)2 − 2(1 − 6h)2

where the partial derivatives are evaluated at x = −1 and y = 1.
 By combining terms, we develop a one-dimensional function g(h) that maps f(x, y) 
along the h axis,

g(h) = −180h2 + 72h − 7

 Now that we have developed a function along the path of steepest ascent, we can 
explore how to answer the second question. That is, how far along this path do we travel? 
One approach might be to move along this path until we find the maximum of this func-
tion. We will call the location of this maximum h*. This is the value of the step that 
maximizes g (and hence, f ) in the gradient direction. This problem is equivalent to find-
ing the maximum of a function of a single variable h. This can be done using different 
one-dimensional search techniques like the ones we discussed in Chap. 13. Thus, we 
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convert from finding the optimum of a two-dimensional function to performing a one-
dimensional search along the gradient direction.
 This method is called steepest ascent when an arbitrary step size h is used. If a value 
of a single step h* is found that brings us directly to the maximum along the gradient 
direction, the method is called the optimal steepest ascent.

 EXAMPLE 14.4 Optimal Steepest Ascent
Problem Statement. Maximize the following function:

f(x, y) = 2xy + 2x − x2 − 2y2

using initial guesses x = −1 and y = 1.

Solution. Because this function is so simple, we can first generate an analytical solu-
tion. To do this, the partial derivatives can be evaluated as

∂ f

∂ x
= 2y + 2 − 2x = 0

∂ f

∂ y
= 2x − 4y = 0

This pair of equations can be solved for the optimum, x = 2 and y = 1. The second 
partial derivatives can also be determined and evaluated at the optimum,

∂2 f

∂x2 = −2

∂2 f

∂y2 = −4

∂2f

∂x∂y
=

∂2f

∂y∂x
= 2

and the determinant of the Hessian is computed [Eq. (14.3)],

∣H∣ = −2(−4) − 22 = 4

Therefore, because ∣ H ∣ > 0 and ∂2f∕∂x2 < 0, the function value f(2, 1) is a maximum.
 Now let us implement optimal steepest ascent. Recall that, at the end of Example 14.3, 
we had already implemented the initial steps of the problem by generating

g(h) = −180h2 + 72h − 7

Now, because this is a simple parabola, we can directly locate the maximum (that is, h = h*) 
by solving the problem

g′(h*) = 0
−360h* + 72 = 0
h* = 0.2

This means that if we travel along the h axis, g(h) reaches a minimum value when h = 
h* = 0.2. This result can be placed back into Eqs. (14.10) and (14.11) to solve for the 
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(x, y) coordinates corresponding to this point,

x = −1 + 6(0.2) = 0.2
y = 1 − 6(0.2) = −0.2

This step is depicted in Fig. 14.11 as the move from point 0 to 1.
 The second step is implemented by merely repeating the procedure. First, the partial 
derivatives can be evaluated at the new starting point (0.2, −0.2) to give

∂ f

∂ x
= 2(−0.2) + 2 − 2(0.2) = 1.2

∂ f

∂ y
= 2(0.2) − 4(−0.2) = 1.2

Therefore, the gradient vector is

∇ f = 1.2 i + 1.2 j

This means that the steepest direction is now pointed up and to the right at a 45° angle with 
the x axis (see Fig. 14.11). The coordinates along this new h axis can now be expressed as

x = 0.2 + 1.2h

y = −0.2 + 1.2h

Substituting these values into the function yields

f(0.2 + 1.2h, −0.2 + 1.2h) = g(h) = −1.44h2 + 2.88h + 0.2

The step h* to take us to the maximum along the search direction can then be directly 
computed as

g′(h*) = −2.88h* + 2.88 = 0
h* = 1

FIGURE 14.11
The method of optimal steepest ascent.
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 It can be shown that the method of steepest ascent is linearly convergent. Further, it 
tends to move very slowly along long, narrow ridges. This is because the new gradient at 
each maximum point will be perpendicular to the original direction. Thus, the technique 
takes many small steps criss-crossing the direct route to the summit. Hence, although it 
is reliable, there are other approaches that converge much more rapidly, particularly in the 
vicinity of an optimum. The remainder of the section is devoted to such methods.

14.2.3 Advanced Gradient Approaches
Conjugate Gradient Method (Fletcher-Reeves). In Sec. 14.1.2, we have seen how 
conjugate directions in Powell’s method greatly improved the efficiency of a univariate 
search. In a similar manner, we can also improve the linearly convergent steepest ascent 
using conjugate gradients. In fact, an optimization method that makes use of conjugate 
gradients to define search directions can be shown to be quadratically convergent. Use of 
conjugate gradients also ensures that the method will optimize a quadratic function exactly 
in a finite number of steps regardless of the starting point. Since most well-behaved func-
tions can be approximated reasonably well by a quadratic in the vicinity of an optimum, 
quadratically convergent approaches are often very efficient near an optimum.
 We have seen how, starting with two arbitrary search directions, Powell’s method 
produced new conjugate search directions. This method is quadratically convergent and 
does not require gradient information. On the other hand, if evaluation of derivatives is 
practical, we can devise algorithms that combine the ideas of steepest descent and con-
jugate directions to achieve robust initial performance and rapid convergence as the 
technique gravitates toward the optimum. The Fletcher-Reeves conjugate gradient algo-
rithm modifies the steepest ascent method by imposing the condition that successive 
gradient search directions be mutually conjugate. The proof and algorithm are beyond 
the scope of the text but are described by Rao (1996).

Newton’s Method. Newton’s method for a single variable (recall Sec. 13.3) can be 
extended to multivariate cases. Write a second-order Taylor series for f(x) near x = xi,

f(x) = f(xi) + ∇ f T (xi) (x − xi) +
1
2

 (x − xi)T Hi(x − xi)

where Hi is the Hessian matrix. At the minimum,
∂f(x)

∂xj

= 0  for j = 1, 2, … , n

This result can be placed back into Eqs. (14.10) and (14.11) to solve for the (x, y) co-
ordinates corresponding to this new point,

x = 0.2 + 1.2(1) = 1.4
y = −0.2 + 1.2(1) = 1

As depicted in Fig. 14.11, we move to the new coordinates, labeled point 2 in the plot, 
and in so doing move closer to the maximum. The approach can be repeated with the 
final result converging on the analytical solution, x = 2 and y = 1.
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Thus,

∇ f = ∇ f(xi) + Hi(x − xi) = 0

If H is nonsingular,

xi+1 = xi − H−1
i ∇ f  (14.14)

which can be shown to converge quadratically near the optimum. This method again 
performs better than the steepest ascent method (see Fig. 14.12). However, note that the 
method requires both the computation of second derivatives and matrix inversion at each 
iteration. Thus, the method is not very useful in practice for functions with large numbers 
of variables. Furthermore, Newton’s method may not converge if the starting point is not 
close to the optimum.

Marquardtʼs Method. We know that the method of steepest ascent increases the func-
tion value even if the starting point is far from an optimum. On the other hand, we have 
just described Newton’s method, which converges rapidly near the maximum.  Marquardt’s 
method uses the steepest ascent method when x is far from x*, and Newton’s method 
when x closes in on an optimum. This is accomplished by modifying the diagonal of the 
Hessian in Eq. (14.14),

H
∼

i = Hi + αi I

where αi is a positive constant and I is the identity matrix. At the start of the procedure, 
αi is assumed to be large and

H
∼ −1

i ≈
1
αi

 I

FIGURE 14.12
When the starting point is close to the optimal point, following the gradient can be inefficient. 
Newton’s method attempts to search along a direct path to the optimum (solid line).
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which reduces Eq. (14.14) to the steepest ascent method. As the iterations proceed, αi 
approaches zero and the method becomes Newton’s method.
 Thus, Marquardt’s method offers the best of both worlds: It plods along reliably from 
poor initial starting values yet accelerates rapidly when it approaches the optimum. Un-
fortunately, the method still requires Hessian evaluation and matrix inversion at each 
step. It should be noted that the Marquardt method is primarily used for nonlinear least-
squares problems.

Quasi-Newton Methods. Quasi-Newton, or variable metric, methods seek to estimate 
the direct path to the optimum in a manner similar to Newton’s method. However, notice 
that the Hessian matrix in Eq. (14.14) is composed of the second derivatives of f that 
vary from step to step. Quasi-Newton methods attempt to avoid these difficulties by 
approximating H with another matrix A using only first partial derivatives of f. The 
approach involves starting with an initial approximation of H−1 and updating and improv-
ing it with each iteration. The methods are called quasi-Newton because we do not use the 
true Hessian, rather an approximation. Thus, we have two approximations at work simul-
taneously: (1) the original Taylor-series approximation and (2) the Hessian approximation.
 There are two primary methods of this type: the Davidon-Fletcher-Powell (DFP) and 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms. They are similar except for 
details concerning how they handle round-off error and convergence issues. BFGS is 
generally recognized as being superior in most cases. Rao (1996) provides details and 
formal statements of both the DFP and the BFGS algorithms.

PROBLEMS

14.1 Find the directional derivative of

f (x, y) = 2x2 + y2

at x = 2 and y = 2 in the direction of h = 3i + 2j.
14.2 Repeat Example 14.2 for the following function at the point 
(0.8, 1.2).

f (x, y) = 2.1xy + 1.6y − 1.3x2 − 1.75y2 + 4

14.3 Given

f (x, y) = 2.25xy + 1.75y − 1.5x2 − 2y2

construct and solve a system of linear algebraic equations that max-
imizes f(x). Note that this is done by setting the partial derivatives 
of f with respect to both x and y to zero.
14.4 
(a) Start with an initial guess of x = 1 and y = 1 and apply two ap-

plications of the steepest ascent method to f (x, y) from Prob. 14.3.
(b) Construct a plot from the results of (a) showing the path of the 

search.
14.5 Find the gradient vector and Hessian matrix for each of the 
following functions:
(a) f(x, y) = 2xy2 + 3exy

(b) f(x, y, z) = x2 + y2 + 2z2

(c) f(x, y) = ln(x2 + 2xy + 3y2)
14.6 Find the minimum value of

f (x, y) = (x − 3)2 + (y − 2)2

starting at x = 1 and y = 1, using the steepest descent method with 
a stopping criterion of εs = 1%. Explain your results.
14.7 Perform one iteration of the steepest ascent method to locate 
the maximum of

f (x, y) = 3.5x + 2y + x2 − x4 + 2xy − y2

using initial guesses x = 0 and y = 0. Employ bisection to find the 
optimal step size in the gradient search direction.
14.8 Perform one iteration of the optimal gradient steepest descent 
method to locate the minimum of

f (x, y) = −9x + x2 + 11y + 4y2 − 2xy

using initial guesses x = 0 and y = 0.
14.9 Develop a program using a programming or macro language 
to implement the random search method. Design the subprogram so 
that it is expressly designed to locate a maximum. Test the program 
with f(x, y) from Prob. 14.7. Use a range of −2 to 2 for both x and y.
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14.10 The grid search is another brute force approach to optimiza-
tion. The two-dimensional version is depicted in Fig. P14.10. The x 
and y dimensions are divided into increments to create a grid. The 
function is then evaluated at each node of the grid. The denser the 
grid, the more likely it would be to locate the optimum.

Develop a program using a programming or macro language to 
implement the grid search method. Design the program so that it is 
expressly designed to locate a maximum. Test it with the same 
problem as in Example 14.1.
14.11 Develop a one-dimensional equation in the pressure gradient 
direction at the point (4, 2). The pressure function is

f (x, y) = 6x2y − 9y2 − 8x2

14.12 A temperature function is

f (x, y) = 2x3y2 − 6xy − x2 + 3y

Develop a one-dimensional function in the temperature gradient 
direction at the point (1, 1).

FIGURE P14.10
The grid search.
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C H A P T E R

15
Constrained Optimization

This chapter deals with optimization problems where constraints come into play. We first 
discuss problems where both the objective function and the constraints are linear. For 
such cases, special methods are available that exploit the linearity of the underlying 
functions. Called linear programming methods, the resulting algorithms solve very large 
problems with thousands of variables and constraints with great efficiency. They are used 
in a wide range of problems in engineering and management.
 Then we will turn briefly to the more general problem of nonlinear constrained 
 optimization. Finally, we provide an overview of how software packages can be employed 
for optimization.

 15.1 LINEAR PROGRAMMING
Linear programming (LP) is an optimization approach that deals with meeting a desired 
objective such as maximizing profit or minimizing cost in the presence of constraints 
such as limited resources. The term linear connotes that the mathematical functions 
representing both the objective and the constraints are linear. The term programming 
does not mean “computer programming,” but rather connotes “scheduling” or “setting 
an agenda” (Revelle et al. 1997).

15.1.1 Standard Form
The basic linear programming problem consists of two major parts: the objective function 
and a set of constraints. For a maximization problem, the objective function is generally 
expressed as

Maximize Z = c1x1 + c2 
x2 + … + cn 

xn (15.1)

where cj = payoff of each unit of the jth activity that is undertaken and xj = magnitude 
of the jth activity. Thus, the value of the objective function, Z, is the total payoff due to 
the total number of activities, n.
 The constraints can be represented generally as

ai1x1 + ai2 
x2 + … + ain 

xn 
≤ bi (15.2)
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where aij = amount of the ith resource that is consumed for each unit of the jth activity 
and bi = amount of the ith resource that is available. That is, the resources are limited.
 The second general type of constraint specifies that all activities must have a positive 
value,

xi ≥ 0 (15.3)

In the present context, this expresses the realistic notion that, for some problems, 
negative activity is physically impossible (for example, we cannot produce negative 
goods).
 Together, the objective function and the constraints specify the linear programming 
problem. They say that we are trying to maximize the payoff for a number of activities 
under the constraint that these activities utilize finite amounts of resources. Before show-
ing how this result can be obtained, we will first develop an example.

 EXAMPLE 15.1 Setting Up the LP Problem
Problem Statement. The following problem is developed from the area of chemical 
or petroleum engineering. However, it is relevant to all areas of engineering that deal 
with producing products with limited resources.
 Suppose that a gas-processing plant receives a fixed amount of raw gas each week. 
The raw gas is processed into two grades of heating gas, regular and premium quality. 
These grades of gas are in high demand (that is, they are guaranteed to sell) and yield 
different profits to the company. However, their production involves both time and on-site 
storage constraints. For example, only one of the grades can be produced at a time, and 
the facility is open for only 80 hr/week. Further, there is limited on-site storage for each 
of the products. All these factors are listed below (note that a metric ton, or tonne, is 
equal to 1000 kg):

 Product

Resource Regular Premium Resource Availability

Raw gas  7 m3/tonne 11 m3/tonne 77 m3/week
Production time 10 hr/tonne  8 hr/tonne 80 hr/week
Storage  9 tonnes  6 tonnes

Profit $150/tonne $175/tonne

Develop a linear programming formulation to maximize the profits for this operation.

Solution. The engineer operating this plant must decide how much of each gas to 
produce to maximize profits. If the amounts of regular and premium produced weekly 
are designated as x1 and x2, respectively, the total weekly profit can be calculated as

Total profit = 150x1 + 175x2

or written as a linear programming objective function,

Maximize Z = 150x1 + 175x2
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 The constraints can be developed in a similar fashion. For example, the total raw 
gas used can be computed as

Total gas used = 7x1 + 11x2

This total cannot exceed the available supply of 77 m3/week, so the constraint can be 
represented as

7x1 + 11x2 ≤ 77

 The remaining constraints can be developed in a similar fashion, with the resulting 
total LP formulation given by

Maximize Z = 150x1 + 175x2 (maximize profit)

subject to

7x1 + 11x2 ≤ 77 (material constraint)
10x1 + 8x2 ≤ 80 (time constraint)
x1 ≤ 9 (“regular” storage constraint)
x2 ≤ 6 (“premium” storage constraint)
x1, x2 ≥ 0 (positivity constraints)

Note that the above set of equations constitute the total LP formulation. The parenthetical 
explanations at the right have been appended to clarify the meaning of each equation.

15.1.2 Graphical Solution
Because they are limited to two or three dimensions, graphical solutions have limited 
practical utility. However, they are very useful for demonstrating some basic concepts 
that underlie the general algebraic techniques used to solve higher-dimensional problems 
with the computer.
 For a two-dimensional problem, such as the one in Example 15.1, the solution space 
is defined as a plane with x1 measured along the abscissa and x2 along the ordinate. Because 
they are linear, the constraints can be plotted on this plane as straight lines. If the LP prob-
lem was formulated properly (that is, it has a solution), these constraint lines will delineate 
a region, called the feasible solution space, encompassing all possible combinations of x1 
and x2 that obey the constraints and hence represent feasible solutions. The objective func-
tion for a particular value of Z can then be plotted as another straight line and superimposed 
on this space. The value of Z can then be adjusted until it is at the maximum value while 
still touching the feasible space. This value of Z represents the optimal solution. The cor-
responding values of x1 and x2, where Z touches the feasible solution space, represent the 
optimal values for the activities. The following example should help clarify the approach.

 EXAMPLE 15.2 Graphical Solution
Problem Statement. Develop a graphical solution for the gas-processing problem pre-
viously derived in Example 15.1:

Maximize Z = 150x1 + 175x2
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subject to
7x1 + 11x2 ≤ 77 (1)
10x1 + 8x2 ≤ 80 (2)
x1 ≤ 9 (3)
x2 ≤ 6 (4)
x1 ≥ 0 (5)
x2 ≥ 0 (6)

We have numbered the constraints to identify them in the following graphical solution.

Solution. First, the constraints can be plotted on the solution space. For example, the 
first constraint can be reformulated as a line by replacing the inequality by an equal sign 
and solving for x2:

x2 = − 7
11

 x1 + 7

Thus, as in Fig. 15.1a, the possible values of x1 and x2 that obey this constraint fall below 
this line (the direction designated in the plot by the small arrow). The other constraints can 
be evaluated similarly, as superimposed on Fig. 15.1a. Notice how they encompass a region 
where they are all met. This is the feasible solution space (the area ABCDE in the plot).
 Aside from defining the feasible space, Fig. 15.1a also provides additional insight. 
In particular, we can see that constraint 3 (storage of regular gas) is “redundant.” That 
is, the feasible solution space is unaffected if it were deleted.

FIGURE 15.1
Graphical solution of a linear programming problem. (a) The constraints define a feasible solution space.  
(b) The objective function can be increased until it reaches the highest value that obeys all constraints.  
Graphically, the function moves up and to the right until it touches the feasible space at a single optimal point.
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 Next, the objective function can be added to the plot. To do this, a value of Z must 
be chosen. For example, for Z = 0, the objective function becomes

0 = 150x1 + 175x2

or, solving for x2, we derive the line

x2 = −150
175

 x1

As displayed in Fig. 15.1b, this represents a dashed line intersecting the origin. Now, 
since we are interested in maximizing Z, we can increase it to say, 600, and the objective 
function is

x2 = 600
175

− 150
175

 x1

Thus, increasing the value of the objective function moves the line away from the origin. 
Because the line still falls within the solution space, our result is still feasible. For the 
same reason, however, there is still room for improvement. Hence, Z can keep increasing 
until a further increase will take the value of the function beyond the feasible region. As 
shown in Fig. 15.1b, the maximum value of Z corresponds to approximately 1400. At 
this point, x1 and x2 are equal to approximately 4.9 and 3.9, respectively. Thus, the 
graphical solution tells us that if we produce these quantities of regular and premium, 
we will reap a maximum profit of about $1400.

 Aside from determining optimal values, the graphical approach provides further 
insights into the problem. This can be appreciated by substituting the answers back into 
the constraint equations,

 7(4.9) + 11(3.9) ≅ 77
10(4.9) + 8(3.9) ≅ 80
4.9 ≤ 9
3.9 ≤ 6

Consequently, as is also clear from the plot, producing the optimal amount of each prod-
uct brings us right to the point where we just meet the resource (1) and time constraints 
(2). Such constraints are said to be binding. Further, as is also evident graphically, neither 
of the storage constraints [(3) and (4)] acts as a limitation. Such constraints are called 
nonbinding. This leads to the practical conclusion that, for this case, we can increase 
profits by either increasing our resource supply (the raw gas) or increasing our production 
time. Further, it indicates that increasing storage would have no impact on profit.
 The result obtained in the previous example is one of four possible outcomes that 
can be generally obtained in a linear programming problem. These are

1.  Unique solution. As in the example, the maximum objective function intersects a 
single point.

2.  Alternate solutions. Suppose that the objective function in the example had coefficients 
so that it was precisely parallel to one of the constraints. In our example problem, 
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one way in which this would occur would be if the profits were changed to $140/
tonne and $220/tonne. Then, rather than a single point, the problem would have an 
infinite number of optima corresponding to a line segment (Fig. 15.2a).

3.  No feasible solution. As in Fig. 15.2b, it is possible that the problem is set up so that 
there is no feasible solution. This can be due to dealing with an unsolvable problem 
or due to errors in setting up the problem. The latter can result if the problem is 
over-constrained to the point that no solution can satisfy all the constraints.

4.  Unbounded problems. As in Fig. 15.2c, this usually means that the problem is under-
constrained and therefore open-ended. As with the no-feasible-solution case, it can 
often arise from errors committed during problem specification.

 Now let us suppose that our problem involves a unique solution. The graphical 
 approach might suggest an enumerative strategy for hunting down the maximum. From 
Fig. 15.1, it should be clear that the optimum always occurs at one of the corner points 
where two constraints meet. Such a point is known formally as an extreme point. Thus, 
out of the infinite number of possibilities in the decision space, focusing on extreme 
points clearly narrows down the possible options.
 Further, we can recognize that not every extreme point is feasible, that is, satisfying all 
constraints. For example, notice that point F in Fig. 15.1a is an extreme point but is not 
feasible. Limiting ourselves to feasible extreme points narrows the field down still further.
 Finally, once all feasible extreme points are identified, the one yielding the best value 
of the objective function represents the optimum solution. Finding this optimal solution 
could be done by exhaustively (and inefficiently) evaluating the value of the objective 
function at every feasible extreme point. The following section discusses the simplex 
method, which offers a preferable strategy that charts a selective course through a sequence 
of feasible extreme points to arrive at the optimum in an extremely efficient manner.

FIGURE 15.2
Aside from a single optimal solution (for example, Fig. 15.1b), there are three other possible  
outcomes of a linear programming problem: (a) alternative optima, (b) no feasible solution,  
and (c) an unbounded result.
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15.1.3 The Simplex Method
The simplex method is predicated on the assumption that the optimal solution will be 
an extreme point. Thus, the approach must be able to discern whether during problem 
solution an extreme point occurs. To do this, the constraint equations are reformulated 
as equalities by introducing what are called slack variables.

Slack Variables. As the name implies, a slack variable measures how much of a con-
strained resource is available, that is, how much “slack” of the resource is available. For 
example, recall the resource constraint used in Examples 15.1 and 15.2,

7x1 + 11x2 ≤ 77

We can define a slack variable S1 as the amount of raw gas that is not used for a particular 
production level (x1, x2). If this quantity is added to the left side of the constraint, it makes 
the relationship exact,

7x1 + 11x2 + S1 = 77

 Now recognize what the slack variable tells us. If it is positive, it means that we 
have some “slack” for this constraint. That is, we have some surplus resource that is not 
being fully utilized. If it is negative, it tells us that we have exceeded the constraint. 
Finally, if it is zero, we exactly meet the constraint. That is, we have used up all the 
allowable resource. Since this is exactly the condition where constraint lines intersect, 
the slack variable provides a means to detect extreme points.
 A different slack variable is developed for each constraint equation, resulting in what 
is called the fully augmented version,

Maximize Z = 150x1 + 175x2

subject to

 (15.4a)
 (15.4b)
 (15.4c)
 (15.4d)
x1, x2,  S1,  S2,  S3,  S4 ≥ 0

 Notice how we have set up the four equality equations so that the unknowns are 
aligned in columns. We did this to underscore that we are now dealing with a system of 
linear algebraic equations (recall Part Three). In the following section, we will show how 
these equations can be used to determine extreme points algebraically.

Algebraic Solution. In contrast to Part Three, where we had n equations with n un-
knowns, our example system [Eqs. (15.4)] is underspecified or underdetermined, that is, 
it has more unknowns than equations. In general terms, there are n structural variables 
(that is, the original unknowns); m surplus, or slack, variables (one per constraint); and 
n + m total variables (structural plus surplus). For the gas production problem, we have 
2 structural variables, 4 slack variables, and 6 total variables. Thus, the problem involves 
solving 4 equations with 6 unknowns.

7x1 + 11x2 + S1

10x1 + 8x2  + S2

x1        + S3

    x2       + S4

= 77
= 80
= 9
= 6
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 The difference between the number of unknowns and the number of equations (equal 
to 2 for our problem) is directly related to how we can distinguish a feasible extreme 
point. Specifically, every feasible extreme point has 2 variables out of 6 equal to zero. 
For example, the five corner points of the area ABCDE have the following zero values:

 Extreme Point Zero Variables

 A x1, x2

 B x2, S2

 C S1, S2

 D S1, S4

 E x1, S4

 This observation leads to the conclusion that the extreme points can be determined 
from the standard form by setting two of the variables equal to zero. In our example, 
this reduces the problem to a solvable form of 4 equations with 4 unknowns. For  example, 
for point E, setting x1 = S4 = 0 reduces the standard form to

11x2 + S1

8x2     + S2

            + S3

 x2

= 77
= 80
= 9
= 6

which can be solved for x2 = 6, S1 = 11, S2 = 32, and S3 = 9. Together with x1 = S4 = 0, 
these values define point E.
 To generalize, a basic solution for m linear equations with n unknowns is devel-
oped by setting n − m variables to zero, and solving the m equations for the m remain-
ing unknowns. The zero variables are formally referred to as nonbasic variables, 
whereas the remaining m variables are called basic variables. If all the basic variables 
are nonnegative, the result is called a basic feasible solution. The optimum will be one 
of these.
 Now a direct approach to determining the optimal solution would be to calculate all 
the basic solutions, determine which were feasible, and among those, which had the 
highest value of Z. There are two reasons why this is not a wise approach.
 First, for even moderately sized problems, the approach can involve solving a great 
number of equations. For m equations with n unknowns, this approach requires solving

Cn
m =

n!
m!(n − m)!

simultaneous equations. For example, if there are 10 equations (m = 10) with 16 un-
knowns (n = 16), you would have 8008 [= 16!∕(10! 6!)] 10 × 10 systems of equations 
to solve!
 Second, a significant portion of the solutions may be infeasible. For example, in the 
present problem, out of C6

4 = 15 extreme points, only 5 are feasible. Clearly, if we could 
avoid solving all these unnecessary systems, a more efficient algorithm would be devel-
oped. Such an approach is described next.
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Simplex Method Implementation. The simplex method avoids the inefficiencies out-
lined in the previous section. It does this by starting with a basic feasible solution. Then 
it moves through a sequence of other basic feasible solutions that successively improve 
the value of the objective function. Eventually, the optimal value is reached and the 
method is terminated.
 We will illustrate the approach using the gas-processing problem from Examples 15.1 
and 15.2. The first step is to start at a basic feasible solution (that is, at an extreme 
corner point of the feasible space). For cases like ours, an obvious starting point would 
be point A; that is, x1 = x2 = 0. The original 4 equations with 6 unknowns become

S1  = 77
S2 = 80

S3 = 9  
S4 = 6  

Thus, the starting values for the basic variables are given automatically as being equal 
to the right-hand sides of the constraints.
 Before proceeding to the next step, the beginning information can now be sum-
marized in a convenient tabular format called a tableau. As shown below, the tableau 
provides a concise summary of the key information constituting the linear programming 
problem.

 Basic Z x1 x2 S1 S2 S3 S4 Solution Intercept

 Z 1 −150 −175 0 0 0 0 0
 S1 0 7 11 1 0 0 0 77 11
 S2 0 10 8 0 1 0 0 80 8
 S3 0 1 0 0 0 1 0 9 9
 S4 0 0 1 0 0 0 1 6 ∞

Notice that for the purposes of the tableau, the objective function is expressed as

Z − 150x1 − 175x2 − 0S1 − 0S2 − 0S3 − 0S4 = 0 (15.5)

 The next step involves moving to a new basic feasible solution that leads to an 
improvement of the objective function. This is accomplished by increasing a current 
nonbasic variable (at this point, x1 or x2) above zero so that Z increases. Recall that, for 
the present example, extreme points must have two zero values. Therefore, one of the 
current basic variables (S1, S2, S3, or S4) must also be set to zero.
 To summarize this important step: One of the current nonbasic variables must be 
made basic (nonzero). This variable is called the entering variable. In the process, one 
of the current basic variables is made nonbasic (zero). This variable is called the leaving 
variable.
 Now, let us develop a mathematical approach for choosing the entering and leav-
ing variables. Because of the convention by which the objective function is written 
[(Eq. (15.5)], the entering variable can be any variable in the objective function having 
a negative coefficient (because this will make Z bigger). The variable with the largest 
negative value is conventionally chosen because it usually leads to the largest increase 
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in Z. For our case, x2 would be the entering variable since its coefficient, −175, is 
more negative than the coefficient of x1, −150.
 At this point the graphical solution can be consulted for insight. As in Fig. 15.3, we 
start at the initial point A. Based on its coefficient, x2 should be chosen to enter. However, 
to keep the present example brief, we choose x1 since we can see from the graph that 
this will bring us to the maximum quicker.
 Next, we must choose the leaving variable from among the current basic variables—
S1, S2, S3, or S4. Graphically, we can see that there are two possibilities. Moving to point 
B will drive S2 to zero, whereas moving to point F will drive S1 to zero. However, the 
graph also makes it clear that F is not possible because it lies outside the feasible solu-
tion space. Thus, we decide to move from A to B.
 How is the same result detected mathematically? One way is to calculate the values 
at which the constraint lines intersect the axis or line corresponding to the entering 
variable (in our case, the x1 axis). We can calculate this value as the ratio of the right-
hand side of the constraint (the “Solution” column of the tableau) to the corresponding 
coefficient of x1. For example, for the first constraint’s slack variable, S1, the result is

Intercept =
77
7

= 11

The remaining intercepts can be calculated and listed as the last column of the tableau. 
Because 8 is the smallest positive intercept, it means that the second constraint line will 
be reached first as x1 is increased. Hence, S2 should be the leaving variable.

FIGURE 15.3
Graphical depiction of how the simplex method successively moves through feasible basic 
solutions to arrive at the optimum in an efficient manner.

0

8

4

4 x1

4

1

x2

8

2

A

F

B

C

DE

3

cha32077_ch15_395-420.indd   404 8/19/19   4:11 PM



 At this point, we have moved to point B (x2 = S2 = 0), and the new basic solution 
becomes

7x1 + S1     = 77
10x1       = 80
x1   + S3  = 9
 S4 = 6

The solution of this system of equations effectively defines the values of the basic vari-
ables at point B: x1 = 8, S1 = 21, S3 = 1, and S4 = 6.
 The tableau can be used to make the same calculation by employing the Gauss-
Jordan method. Recall that the basic strategy behind Gauss-Jordan involved converting 
the pivot element to 1 and then eliminating the coefficients in the same column above 
and below the pivot element (recall Sec. 9.7).
 For this example, the pivot row is S2 (the leaving variable) and the pivot element is 10 
(the coefficient of the entering variable, x1). Dividing the row by 10 and replacing S2 by x1 
gives

Basic Z x1 x2 S1 S2 S3 S4 Solution Intercept

 Z 1 −150 −175 0 0 0 0 0
 S1 0 7 11 1 0 0 0 77
 x1 0 1 0.8 0 0.1 0 0 8
 S3 0 1 0 0 0 1 0 9
 S4 0 0 1 0 0 0 1 6

Next, the x1 coefficients in the other rows can be eliminated. For example, for the objective 
function row, the pivot row is multiplied by −150 and the result subtracted from the first 
row to give

 Z x1 x2 S1 S2 S3 S4 Solution

 1 −150 −175 0 0 0 0 0
 −0 −(−150) −(−120) −0 −(−15) 0 0 −(−1200)

 1 0 −55 0 15 0 0 1200

Similar operations can be performed on the remaining rows to give the new tableau:

Basic Z x1 x2 S1 S2 S3 S4 Solution Intercept

 Z 1 0 −55 0 15 0 0 1200
 S1 0 0 5.4 1 −0.7 0 0 21 3.889
 x1 0 1 0.8 0 0.1 0 0 8 10
 S3 0 0 −0.8 0 −0.1 1 0 1 −1.25
 S4 0 0 1 0 0 0 1 6 6
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Thus, the new tableau summarizes all the information for point B. This includes the fact 
that the move has increased the objective function to Z = 1200.
 This tableau can then be used to chart our next, and in this case final, step. Only one 
more variable, x2, has a negative value in the objective function, and it is therefore chosen 
as the entering variable. According to the intercept values (now calculated as the solution 
column over the coefficients in the x2 column), the first constraint has the smallest positive 
value, and therefore, S1 is selected as the leaving variable. Thus, the simplex method moves 
us from points B to C in Fig. 15.3. Finally, Gauss-Jordan elimination (recall Sec. 9.7) can 
be implemented to solve the simultaneous equations. The result is the final tableau:

Basic Z x1 x2 S1 S2 S3 S4 Solution

 Z 1 0 0 10.1852 7.8704 0 0 1413.889
 x2 0 0 1 0.1852 −0.1296 0 0 3.889
 x1 0 1 0 −0.1481 0.2037 0 0 4.889
 S3 0 0 0 0.1481 −0.2037 1 0 4.111
 S4 0 0 0 −0.1852 0.1296 0 1 2.111

We know that the result is final because there are no negative coefficients remaining in the 
objective function row. The final solution is tabulated as x1 = 3.889 and x2 = 4.889, which 
give a maximum objective function value of Z = 1413.889. Further, because S3 and S4 are 
still in the basis, we know that the solution is limited by the first and second constraints.

 15.2 NONLINEAR CONSTRAINED OPTIMIZATION
There are a number of approaches for handling nonlinear optimization problems in the 
presence of constraints. These can generally be divided into indirect and direct ap-
proaches (Rao 1996). A typical indirect approach uses so-called penalty functions. These 
involve including additional expressions to make the objective function less optimal as 
the solution approaches a constraint. Thus, the solution will be discouraged from violat-
ing constraints. Although such methods can be useful in some problems, they can become 
arduous when the problem involves many constraints.
 The generalized reduced gradient (GRG) search method is one of the more popular 
of the direct methods (for details, see Fylstra et al. 1998; Lasdon et al. 1978; Lasdon 
and Smith 1992). It is, in fact, the nonlinear method used within the Excel Solver.
 It first “reduces” the problem to an unconstrained optimization problem. It does this 
by solving a set of nonlinear equations for the basic variables in terms of the nonbasic 
variables. Then, the unconstrained problem is solved using approaches similar to those 
described in Chap. 14. First, a search direction is chosen along which an improvement in 
the objective function is sought. The default choice is a quasi-Newton approach (BFGS) 
that, as described in Chap. 14, requires storage of an approximation of the Hessian matrix. 
This approach performs very well for most cases. The conjugate gradient method is also 
available in Excel as an alternative for large problems. The Excel Solver has the nice 
feature that it automatically switches to the conjugate gradient method, depending on 
available storage. Once the search direction is established, a one-dimensional search is 
carried out along that direction using a variable step-size approach.
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 15.3 OPTIMIZATION WITH SOFTWARE PACKAGES
Software packages have great capabilities for optimization. In this section, we will give 
you an introduction to some of the more useful ones.

15.3.1 Excel for Linear Programming
There are a variety of software packages expressly designed to implement linear program-
ming. However, because of its broad availability, we will focus on the Excel spreadsheet. 
This involves using the Solver option previously employed in Chap. 7 for root location.
 The manner in which Solver is used for linear programming is similar to our previ-
ous applications in that the data are entered into spreadsheet cells. The basic strategy is 
to arrive at a single cell that is to be optimized as a function of variations of other cells 
on the spreadsheet. The following example illustrates how this can be done for the gas-
processing problem.

 EXAMPLE 15.3 Using Excel’s Solver for a Linear Programming Problem
Problem Statement. Use Excel to solve the gas-processing problem we have been 
examining in this chapter.

Solution. An Excel worksheet set up to calculate the pertinent values in the gas-
processing problem is shown in Fig. 15.4. The unshaded cells are those containing 
numeric and labeling data. The shaded cells will hold quantities that are calculated 
based on other cells. Recognize that the cell to be maximized is D12, which contains 
the total profit. The cells to be varied are B4:C4, which hold the amounts of regular 
and premium gas produced.

FIGURE 15.4
Excel spreadsheet set up to use the Solver for linear programming.
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E  Once the spreadsheet is created, Solver is chosen from the Data tab (recall Sec. 7.7.1). 
At this point a dialogue box will be displayed, querying you for pertinent information. 
The pertinent cells of the Solver dialogue box are filled out as

 The constraints must be added one by one by selecting the Add button. This will 
open up a dialogue box that looks like

 The constraint that the total raw gas (cell D6) must be less than or equal to the 
available supply (E6) can be added as shown. After adding each constraint, the Add 
button can be selected. When all four constraints have been entered, the OK button is 
selected to return to the Solver dialogue box.
 Now, before execution, the Solver options button should be selected and the box la-
beled “Assume linear model” should be checked. This will make Excel employ a version 
of the simplex algorithm (rather than the more general nonlinear solver it usually uses) that 
will speed up your application.
 After selecting this option, return to the Solver menu. When the OK button is se-
lected, a dialogue box will open with a report on the success of the operation. For the 
present case, the Solver obtains the correct solution (Fig. 15.5)
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 Beyond obtaining the solution, the Solver also provides some useful summary reports. 
We will explore these in the engineering applications described in Chap. 16.

15.3.2 Excel for Nonlinear Optimization
The manner in which Solver is used for nonlinear optimization is similar to our previous 
applications in that the data are entered into spreadsheet cells. Once again, the basic strategy 
is to arrive at a single cell that is to be optimized as a function of variations of other cells on 
the spreadsheet. The following example illustrates how this can be done for the parachutist 
problem we set up in the introduction to this part of the book (recall Example PT4.1).

 EXAMPLE 15.4 Using Excel’s Solver for Nonlinear Constrained Optimization
Problem Statement. Recall from Example PT4.1 that we developed a nonlinear con-
strained optimization to minimize the cost for a parachute drop into a refugee camp. 
Parameters for this problem are

Parameter Symbol Value Unit

Total mass Mt 2000 kg
Acceleration due to gravity g 9.8 m/s2

Cost coefficient (constant) c0 200 $
Cost coefficient (length) c1 56 $/m
Cost coefficient (area) c2 0.1 $/m2

Critical impact velocity vc 20 m/s
Area effect on drag kc 3 kg/(s  m2)
Initial drop height z0 500 m

FIGURE 15.5
Excel spreadsheet showing solution to linear programming problem.
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Minimize C = n(200 + 56ℓ + 0.1A2)

subject to
υ ≤ 20
n ≥ 1

where n is an integer and all other variables are real. In addition, the following quantities 
are defined:

A = 2πr2

ℓ = √2r

c = 3A

m =
Mt

n
 (E15.4.1)

t = root[500 −
9.8m

c
 t +

9.8m2

c2  (1 − e−(c∕m)t)] (E15.4.2)

υ =
9.8m

c
 (1 − e−(c∕m)t)

Use Excel to solve this problem for the design variables r and n that minimize cost C.

Solution. Before implementation of this problem on Excel, we must first deal with the 
problem of determining the root in the above formulation [Eq. (E15.4.2)]. One method might 
be to develop a macro to implement a root-location method such as bisection or the secant 
method. (Note that we will illustrate how this is done in the next chapter in Sec. 16.3.)
 For the time being, an easier approach is possible by developing the following fixed-
point iteration solution to Eq. (E15.4.2):

ti+1 = [500 +
9.8m2

c2  (1 − e−(c∕m)ti)] 
c

9.8m
 (E15.4.3)

Thus, t can be adjusted until Eq. (E15.4.3) is satisfied. It can be shown that for the range 
of parameters used in the present problem, this formula always converges.
 Now, how can this equation be solved on a spreadsheet? As shown below, two cells 
can be set up to hold a value for t and for the right-hand side of Eq. (E15.4.3) [that is, f(t)].
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You can type Eq. (E15.4.3) into cell B21 so that it gets its time value from cell B20 and 
the other parameter values from cells elsewhere on the sheet (see below for how we set 
up the whole sheet). Then go to cell B20 and point its value to cell B21.
 Once you enter these formulations, you will immediately get the error message: 
“Cannot resolve circular references” because B20 depends on B21 and vice versa. Now, 
go to the Tools/Options selections from the menu and select Calculation. From the 
calculation dialogue box, check off “iteration” and hit “OK.” Immediately the spreadsheet 
will iterate these cells and the result will come out as

FIGURE 15.6
Excel spreadsheet set up for the nonlinear parachute optimization problem.

Thus, the cells will converge on the root. If you want to make it more precise, just strike 
the F9 key to make it iterate some more (the default is 100 iterations, which you can 
change if you wish).
 An Excel worksheet to calculate the pertinent values can then be set up as shown in 
Fig. 15.6. The unshaded cells are those containing numeric and labeling data. The shaded 
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B17 was computed with Eq. (E15.4.1) based on the values for Mt (B4) and n (E5). Note 
also that some cells are redundant. For example, cell E11 points back to cell E5. The 
information is repeated in cell E11 so that the structure of the constraints is evident from 
the sheet. Finally, recognize that the cell to be minimized is E15, which contains the total 
cost. The cells to be varied are E4:E5, which hold the radius and the number of parachutes.
 Once the spreadsheet is created, Solver is chosen from the Data tab. At this point a 
dialogue box will be displayed, querying you for pertinent information. The pertinent 
cells of the Solver dialogue box would be filled out as

 The constraints must be added one by one by selecting the Add button. This will 
open up a dialogue box that looks like

 As shown, the constraint that the actual impact velocity (cell E10) must be less than 
or equal to the required velocity (G10) can be added. After adding each constraint, the 
Add button can be selected. Note that the down arrow allows you to choose among 
several types of constraints (<=, >=, =, and integer). Thus, we can force the number of 
parachutes (E5) to be an integer.
 When all three constraints have been entered, the “OK” button is selected to return 
to the Solver Parameter box. When the “OK” button is selected, the Solver Results box 
will open with a report on the success of the operation. For the present case, the Solver 
obtains the correct solution as in Fig. 15.7.
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 Thus, we determine that the minimum cost of $4377.26 will occur if we break the 
load up into six parcels with a chute radius of 2.944 m. Beyond obtaining the solution, 
the Solver also provides some useful summary reports. We will explore these in the 
engineering applications described in Chap. 16.

FIGURE 15.7
Excel spreadsheet showing the solution for the nonlinear parachute optimization problem.

15.3.3 MATLAB
As summarized in Table 15.1, MATLAB software has built-in functions to perform 
optimization. The following examples illustrates how they can be used.

TABLE 15.1 MATLAB functions to implement optimization.

Function Description

fminbnd Minimize function of one variable with bound constraints
fminsearch Minimize function of several variables
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Problem Statement. Use the MATLAB fminbnd function to find the maximum of

f(x) = 2 sin x −
x2

2

within the interval xl = 0 and xu = 4. Recall that in Chap. 13, we used several methods 
to solve this problem for x = 1.4276 and f(x) = 1.7757.

Solution. First, we must create an M-file to hold the function.

function f=fx(x)
f = −(2*sin(x)−x^2/10)

Because we are interested in maximization, we enter the negative of the function. Then, 
we invoke the fminbnd function with

>> x=fminbnd('fx',0,4)

The result is

f =
   −1.7757

x =
    1.4275

 Note that additional arguments can be included. One useful addition is to set optimiza-
tion options such as error tolerance or maximum iterations. This is done with the optimset 
function, which was used previously in Example 7.6 and has the general format,

optimset('param1',value1,'param2',value2,...)

where parami is a parameter specifying the type of option and valuei is the value as-
signed to that option. For example, if you wanted to set the tolerance at 1 × 10−2,

optimset('TolX',le–2)

Thus, solving the present problem to a tolerance of 1 × 10−2 can be generated with

>> fminbnd('fx',0,4,optimset('TolX',le–2))

with the result

f =
   −1.7757

ans =
    1.4270
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A complete set of parameters can be found by invoking Help as in

>> Help optimset

 MATLAB has a variety of capabilities for dealing with multidimensional functions. 
Recall from Chap. 13 that our visual image of a one-dimensional search was like a roller 
coaster. For two-dimensional cases, the image becomes that of mountains and valleys. 
As in the following example, MATLAB’s graphic capabilities provide a handy means to 
visualize such functions.

 EXAMPLE 15.6 Visualizing a Two-Dimensional Function
Problem Statement. Use MATLAB’s graphical capabilities to display the following 
function and visually estimate its minimum in the range −2 ≤ x1 ≤ 0 and 0 ≤ x2 ≤ 3:

f(x1, x2) = 2 + x1 − x2 + 2x2
1 + 2x1x2 + x2

2

Solution. The following script generates contour and mesh plots of the function:

x=linspace(−2,0,40);y=linspace(0,3,40);
[X,Y] = meshgrid(x,y);
Z=2+X−Y+2*X.^2+2*X.*Y+Y.^2;
subplot(1,2,1);
cs=contour(X,Y,Z);clabel(cs);
xlabel('x_1');ylabel('x_2');
title('(a) Contour plot');grid;
subplot(1,2,2);
cs=surfc(X,Y,Z);
zmin=floor(min(Z));
zmax=ceil(max(Z));
xlabel('x_1');ylabel('x_2');zlabel('f(x_1,x_2)');
title('(b) Mesh plot');

As displayed in Fig. 15.8, both plots indicate that the function has a minimum value of 
about f(x1, x2) = 0 to 1 located at about x1 = −1 and x2 = 1.5.
 Standard MATLAB has a function fminsearch that can be used to determine the 
minimum of a multidimensional function. It is based on the Nelder-Mead method, which 
is a direct-search method that uses only function values (does not require derivatives) 
and handles nonsmooth objective functions. A simple expression of its syntax is

[xmin, fval] = fminsearch(function,x1,x2)

where xmin and fval are the location and value of the minimum, function is the name 
of the function being evaluated, and x1 and x2 are the bounds of the interval being 
searched.
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(a) Contour and (b) mesh plots of a two-dimensional function.
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 EXAMPLE 15.7 Using MATLAB for Multidimensional Optimization
Problem Statement. Use the MATLAB fminsearch function to find the maximum 
for the simple function we just graphed in Example 15.6.

f(x1, x2) = 2 + x1 − x2 + 2x 

2
1 + 2x1x2 + x2

2

Employ initial guesses of x1 = −0.5 and x2 = 0.5.

Solution. We can invoke the fminsearch function with

>> f=@(x) 2+x(1)−x(2)+2*x(1)^2+2*x(1)*x(2)+x(2)^2;
>> [x,fval] =fminsearch(f,[−0.5,0.5])

x =
   −1.0000   1.5000
fval =
    0.7500

Just as with fminbnd, arguments can be included in order to specify additional param-
eters of the optimization process. For example, the optimset function can be used to 
limit the maximum number of iterations

>> [x,fval] =fminsearch(f,[−0.5,0.5],optimset('MaxIter',2))
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with the result

Exiting: Maximum number of iterations has been exceeded
         − increase MaxIter option.
         Current function value: 1.225625
x =
   −0.5000  0.5250
fval =
    1.2256

Thus, because we have set a very stringent limit on the iterations, the optimization ter-
minates well before the maximum is reached.

15.3.4 Mathcad
Mathcad contains a numeric mode function called Find that can be used to solve up to 
50 simultaneous nonlinear algebraic equations with inequality constraints. The use of this 
function for unconstrained applications was described in Part Two. If Find fails to locate 
a solution that satisfies the equations and constraints, it returns the error message “Did 
not find solution.” However, Mathcad also contains a similar function called  Minerr. 
This function gives solution results that minimize the errors in the constraints even when 
exact solutions cannot be found. This function solves equations and accommodates sev-
eral constraints using the Levenberg-Marquardt method taken from the public-domain 
MINPACK algorithms developed and published by the Argonne National Laboratory.
 Let’s develop an example where Find is used to solve a system of nonlinear equa-
tions with constraints. Initial guesses of x = −1 and y = 1 are input using the definition 
symbol as shown in Fig. 15.9. The word “Given” then alerts Mathcad that what follows 
is a system of equations. Then we can enter the equations and the inequality constraint. 
Note that for this application, Mathcad requires the use of a symbolic equal sign (typed 
as [Ctrl]=) and > to separate the left and right sides of an equation. Now the vector 
consisting of xval and yval is computed using Find(x,y) and the values are shown using 
an equal sign.
 A graph that displays the equations and constraints as well as the solution can be 
placed on the worksheet by clicking on the desired location. This places a red crosshair 
at that location. Then use the Insert/Graph/X-Y Plot pull-down menu to place an empty 
plot on the worksheet with placeholders for the expressions to be graphed and for the 
ranges of the x and y axes. Four variables are plotted on the y axis as shown: the top 
and bottom halves of the equation for the circle, the linear function, and a vertical line 
to represent the x > 2 constraint. In addition, the solution is included as a point. Once 
the graph has been created, you can use the Format/Graph/X-Y Plot pull-down menu to 
vary the type of graph; change the color, type, and weight of the trace of the function; 
and add titles, labels, and other features. The graph and the numerical values for xval 
and yval nicely portray the solution as the intersection of the circle and the line in the 
region where x > 2.

 15.3 OPTIMIZATION WITH SOFTWARE PACKAGES 417

cha32077_ch15_395-420.indd   417 8/19/19   4:12 PM



418 CONSTRAINED OPTIMIZATION

FIGURE 15.9
Mathcad screen for a nonlinear constrained optimization problem.

PROBLEMS

15.1 A company makes two types of products, A and B. These 
products are produced during a 40-hr work week and then shipped 
out at the end of the week. They require 20 and 5 kg of raw material 
per kg of product, respectively, and the company has access to 9500 kg 
of raw material per week. Only one product can be created at a 
time, with production times for each of 0.04 and 0.12 hr, respec-
tively. The plant can only store 550 kg of total product per week. 
Finally, the company makes profits of $45 and $20 on each unit of 
A and B, respectively. Each unit of product is equivalent to 1 kg.
(a) Set up the linear programming problem to maximize profit.
(b) Solve the linear programming problem graphically.
(c) Solve the linear programming problem with the simplex method.
(d) Solve the problem with a software package.
(e) Evaluate which of the following options will raise profits the 

most: increasing raw material, storage, or production time.
15.2 Suppose that for Example 15.1, the gas-processing plant 
decides to produce a third grade of product with the following 
characteristics:

 Supreme

Raw gas 15 m3/tonne
Production time 12 hr/tonne
Storage  5 tonnes
Profit $250/tonne

In addition, suppose that a new source of raw gas has been discov-
ered so that the total available is doubled, to 154 m3/week.
(a) Set up the linear programming problem to maximize profit.
(b) Solve the linear programming problem with the simplex method.
(c) Solve the problem with a software package.
(d) Evaluate which of the following options will raise profits the 

most: increasing raw material, storage, or production time.
15.3 Consider the linear programming problem:

Maximize f (x, y) = 1.75x + 1.25y

S
O

F
T

W
A

R
E
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15.7 Consider the following constrained nonlinear optimization 
problem:

Minimize f (x, y) = (x − 3)2 + (y − 3)2

subject to

x + 2y = 4

(a) Use a graphical approach to estimate the solution.
(b) Use a software package (for example, Excel) to obtain a more 

accurate estimate.
15.8 Use a software package to determine the maximum of

f (x, y) = 2xy + 1.5y − 1.25x2 − 2y2

15.9 Use a software package to determine the maximum of

f (x, y) = 3.5x + 2y + x2 − x4 − 3xy − 3y2

15.10 Given the following function,

f (x, y) = −8x + x2 + 12y + 4y2 − 2xy

use a software package to determine the minimum:
(a) Graphically.
(b) Numerically.
(c) Substitute the result of (b) back into the function to determine 

the minimum f(x, y).
(d) Determine the Hessian and its determinant, and substitute the 

result of part (b) back into the latter to verify that a minimum 
has been found.

15.11 You are asked to design a covered conical pit to store 50 m3 
of waste liquid. Assume excavation costs at $100∕m3, side lining 
costs at $50∕m2, and cover cost at $25∕m2. Determine the dimen-
sions of the pit that minimize cost (a) if the side slope is uncon-
strained and (b) if the side slope must be less than 45°.
15.12 An automobile company has two versions of the same model 
car for sale: a two-door coupe and the full-size four door.
(a) Graphically determine how many cars of each design should be 

produced to maximize profit and what that profit is.
(b) Solve the same problem with Excel.

 Two Door Four Door Availability

Profit $13,500/car $15,000/car
Production time 15 h/car 20 h/car 8000 h/year
Storage 400 cars 350 cars
Consumer demand 700/car 500/car 240,000 cars

15.13 Og is the leader of the surprisingly mathematically ad-
vanced, though technologically run-of-the-mill, Calm Waters cave-
man tribe. He must decide on the number of stone clubs and stone 
axes to be produced for the upcoming battle against the neighboring 

subject to

1.2x + 2.25y ≤ 14
x + 1.1y ≤ 8
2.5x + y ≤ 9
x ≥ 0
y ≥ 0

Obtain the solution:
(a) Graphically.
(b) Using the simplex method.
(c) Using an appropriate software package (for example, Excel, 

MATLAB, or Mathcad).
15.4 Consider the linear programming problem:

Maximize f (x, y) = 6x + 8y

subject to

5x + 2y ≤ 40
6x + 6y ≤ 60
2x + 4y ≤ 32
x ≥ 0
y ≥ 0

Obtain the solution:
(a) Graphically.
(b) Using the simplex method.
(c) Using an appropriate software package (for example, Excel).
15.5 Use a software package (for example, Excel, MATLAB, 
Mathcad) to solve the following constrained nonlinear optimization 
problem:

Maximize f (x, y) = 1.2x + 2y − y3

subject to

2x + y ≤ 2
x ≥ 0
y ≥ 0

15.6 Use a software package (for example, Excel, MATLAB, or 
Mathcad) to solve the following constrained nonlinear optimization 
problem:

Maximize f (x, y) = 15x + 15y

subject to

x2 + y2 ≤ 1
x + 2y ≤ 2.1
x ≥ 0
y ≥ 0
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∙ Check whether the guesses bracket a maximum. If not, the func-
tion should not implement the algorithm, but should return an 
error message.

∙ Iterate until the relative error falls below a stopping criterion or 
exceeds a maximum number of iterations.

∙ Return both the optimal x and f(x).
∙ Use a bracketing approach (as in Example 13.2) to replace old 

values with new values.

15.17 The length of the longest ladder that can negotiate the corner 
depicted in Fig. P15.17 can be determined by computing the value 
of θ that minimizes the following function:

L(θ) =
w1

sin θ
+

w2

sin(π − α − θ)

For the case where w1 = 1 m and w2 = 2 m, use a numerical method 
(including software) to develop a plot of L versus a range of α’s 
from 45° to 135°.

Peaceful Sunset tribe. Experience has taught him that each club is 
good for, on the average, 0.45 kills and 0.65 maims, while each axe 
produces 0.70 kills and 0.35 maims. Production of a club requires 
5.1 lb of stone and 2.1 man-hours of labor while an axe requires 3.2 lb 
of stone and 4.3 man-hours of labor. Og’s tribe has 240 lb of stone 
available for weapons production, and a total of 200 man-hours of 
labor available before the expected time of this battle (that Og is sure 
will end war for all time). Og values a kill as worth two maims in 
quantifying the damage inflicted on the enemy, and he wishes to 
produce that mix of weapons that will maximize damage.
(a) Formulate this as a linear programming problem. Make sure to 

define your decision variables.
(b) Represent this problem graphically, making sure to identify all 

the feasible corner points and the infeasible corner points.
(c) Solve the problem graphically.
(d) Solve the problem using the computer.
15.14 Develop an M-file that is expressly designed to locate a 
maximum with the golden-section search algorithm. In other 
words, design the M-file so that it directly finds the maximum 
rather than finding the minimum of −f(x). Test your program with 
the same problem as in Example 13.1. The function should have the 
following features:

∙ Iterate until the relative error falls below a stopping criterion or 
exceeds a maximum number of iterations.

∙ Return both the optimal x and f(x).

15.15 Develop an M-file to locate a minimum with the golden-
section search. Rather than using the standard stopping criteria (as 
in Fig. 13.5), determine the number of iterations needed to attain a 
desired tolerance.
15.16 Develop an M-file to implement parabolic interpolation to 
locate a minimum. Test your program with the same problem as in 
Example 13.2. The function should have the following features:

∙ Base it on two initial guesses, and have the program generate the 
third initial value at the midpoint of the interval.

FIGURE P15.17
A ladder negotiating a corner formed by two hallways.
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16
Case Studies: Optimization

The purpose of this chapter is to use the numerical procedures discussed in Chaps. 13 
through 15 to solve actual engineering problems involving optimization. These prob-
lems are important because engineers are often called upon to come up with the “best” 
solution to a problem. Because many of these cases involve complex systems and in-
teractions, numerical methods and computers are often a necessity for developing op-
timal solutions.
 The following applications are typical of those that are routinely encountered during 
upper-class and graduate studies. Furthermore, they are representative of problems you 
will address professionally. The problems are drawn from the major discipline areas of 
engineering: chemical/bio, civil/environmental, electrical, and mechanical/aerospace.
 The first application, taken from chemical/bio engineering, deals with using nonlin-
ear constrained optimization to design an optimal cylindrical tank. The Excel Solver is 
used to develop the solution.
 Next, we use linear programming to assess a problem from civil/environmental en-
gineering: minimizing the cost of waste treatment to meet water-quality objectives in a 
river. In this example, we introduce the notion of shadow prices and their use in assess-
ing the sensitivity of a linear programming solution.
 The third application, taken from electrical engineering, involves maximizing the 
power across a potentiometer in an electric circuit. The solution involves one-dimensional 
unconstrained optimization. Aside from solving the problem, we illustrate how the Visual 
Basic macro language allows access to the golden-section search algorithm within the 
context of the Excel environment.
 Finally, the fourth application, taken from mechanical/aerospace engineering, 
 involves determining the equilibrium position of a multispring system based on the min-
imum potential energy.

 16.1 LEAST-COST DESIGN OF A TANK  
(CHEMICAL/BIO ENGINEERING)

Background. Chemical engineers (as well as other specialists such as mechanical and 
civil engineers) often encounter the general problem of designing containers to transport 
liquids and gases. Suppose that you are asked to determine the dimensions of a small 
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cylindrical tank to transport toxic waste that is to be mounted on the back of a pickup 
truck. Your overall objective will be to minimize the cost of the tank. However, aside 
from cost, you must ensure that it holds the required amount of liquid and that it does 
not exceed the dimensions of the truck’s bed. Note that because the tank will be carry-
ing toxic waste, the tank thickness is specified by regulations.
 A schematic of the tank and bed are shown in Fig. 16.1. As can be seen, the tank 
consists of a cylinder with two plates welded on each end.
 The cost of the tank involves two components: (1) material expense, which is based 
on weight, and (2) welding expense based on length of weld. Note that the latter involves 
welding both the interior and the exterior seams where the plates connect with the 
 cylinder. The data needed for the problem are summarized in Table 16.1.

Solution. The objective here is to construct a tank for a minimum cost. The cost is 
related to the design variables (length and diameter) as they affect the mass of the tank 
and the welding lengths. Further, the problem is constrained because the tank must  
(1) fit within the truck bed and (2) carry the required volume of material.

Lmax
Dmax

t
L

D

t

FIGURE 16.1
Parameters for determining the optimal dimensions of a cylindrical tank.

TABLE 16.1  Parameters for determining the optimal dimensions of a cylindrical tank used 
to transport toxic wastes.

Parameter Symbol Value Units

Required volume Vo 0.8 m3

Thickness t 3 cm
Density ρ 8000 kg/m3

Bed length Lmax 2 m
Bed width Dmax 1 m
Material cost cm 4.5 $/kg
Welding cost cw 20 $/m

cha32077_ch16_421-444.indd   422 8/19/19   3:50 PM
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 The cost consists of tank material and welding costs. Therefore, the objective 
 function can be formulated as minimizing

C = cm m + cw 
ℓw (16.1)

where C = cost ($), m = mass (kg), ℓw = weld length (m), and cm and cw = cost factors 
for mass ($/kg) and weld length ($/m), respectively.
 Next, we will formulate how the mass and weld length are related to the dimensions 
of the drum. First, the mass can be calculated as the volume of material times its density. 
The volume of the material used to create the side walls (that is, the cylinder) can be 
computed as

Vcylinder = Lπ[(
D

2
+ t)

2

− (
D

2 )
2

]

For each circular end plate, it is

Vplate = π (
D

2
+ t)

2

t

Thus, the mass is computed by

m = ρ{Lπ[(
D

2
+ t)

2

− (
D

2 )
2

] + 2π (
D

2
+ t)

2

t} (16.2)

where ρ = density (kg/m3).
 The weld length for attaching each plate is equal to the cylinder’s inside and outside 
circumference. For the two plates, the total weld length would be

ℓw = 2[2π (
D

2
+ t) + 2π 

D

2 ] = 4π(D + t) (16.3)

Given values for D and L (remember, thickness t is fixed by regulations), Eqs. (16.1) through 
(16.3) provide a means to compute cost. Also recognize that when Eqs. (16.2) and (16.3) 
are substituted into Eq. (16.1), the resulting objective function is nonlinear in the unknowns.
 Next, we can formulate the constraints. First, we must compute how much volume 
can be held within the finished tank,

V =
πD2

4
L

This value must be equal to the desired volume. Thus, one constraint is

πD2L

4
= Vo

where Vo is the desired volume (m3).
 The remaining constraints deal with ensuring that the tank will fit within the dimen-
sions of the truck bed,

L ≤ Lmax + 2t

D ≤ Dmax + 2t
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 The problem is now specified. Substituting the values from Table 16.1, it can be 
summarized as

Maximize C = 4.5m + 20ℓw

subject to

πD2L

4
= 0.8

L ≤ 2.06
D ≤ 1.06

where

m = 8000{Lπ[(
D

2
+ 0.03)

2

− (
D

2 )
2

] + 2π (
D

2
+ 0.03)

2

0.03}

and

ℓw = 4π(D + 0.03)

 The problem can now be solved in a number of ways. However, the simplest approach 
for a problem of this magnitude is to use a tool like the Excel Solver. The spreadsheet to 
accomplish this is shown in Fig. 16.2.
 For the case shown, we enter the upper limits for D and L. For this case, the volume 
is more than required (1.57 > 0.8).

FIGURE 16.2
Excel spreadsheet set up to 
evaluate the cost of a tank  
subject to a volume require-
ment and size constraints.
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 Once the spreadsheet is created, Solver is chosen from the Data tab. At this point a 
dialogue box will be displayed, querying you for pertinent information. The pertinent 
cells of the Solver dialogue box would be filled out as

 When the OK button is selected, a dialogue box will open with a report on the success 
of the operation. For the present case, the Solver obtains the correct solution, which is 
shown in Fig. 16.3. Notice that the optimal diameter is nudging up against the constraint 
of 1.06 m. Thus, if the required capacity of the tank were increased, we would run up 
against this constraint and the problem would reduce to a one-dimensional search for length.

FIGURE 16.3
Results of minimization. The 
price is reduced from $9154 to 
$5723 because of the smaller 
volume using dimensions of  
D = 0.98 m and L = 1.05 m.
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426 CASE STUDIES: OPTIMIZATION

 16.2 LEAST-COST TREATMENT OF WASTEWATER  
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. Wastewater discharges from big cities are often a major cause of river 
pollution. Figure 16.4 illustrates the type of system that an environmental engineer might 
confront. Several cities are located on a river and its tributary. Each generates pollution 
at a loading rate P that has units of milligrams per day (mg/d). The pollution loading is 
subject to waste treatment that results in a fractional removal x. Thus, the amount 
 discharged to the river is the excess not removed by treatment,

Wi = (1 − xi)Pi (16.4)

where Wi = waste discharge from the ith city.
 When the waste discharge enters the stream, it mixes with pollution from upstream 
sources. If complete mixing is assumed at the discharge point, the resulting concentration 
at the discharge point can be calculated by a simple mass balance,

ci =
Wi + Qu cu

Qi

 (16.5)

where Qu = flow (L/d), cu = concentration (mg/L) in the river immediately upstream of 
the discharge, and Qi = flow downstream of the discharge point (L/d).
 After the concentration at the mixing point is established, chemical and biological 
decomposition processes can remove some of the pollution as it flows downstream. For 
the present case, we will assume that this removal can be represented by a simple frac-
tional reduction factor R.
 Assuming that the headwaters (that is, the river system above cities 1 and 2) are 
pollution-free, the concentrations at the four nodes can be computed as

c1 =
(1 − x1)P1

Q13

c2 =
(1 − x2)P2

Q23

c3 =
R13 

Q13 
c1 + R23 Q23 c2 + (1 − x3)P3

Q34
 (16.6)

c4 =
R34 Q34 c3 + (1 − x4)P4

Q45

FIGURE 16.4
Four wastewater treatment 
plants discharging pollution to 
a river system. The river seg-
ments between the cities are 
labeled with circled numbers.
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 16.2 LEAST-COST TREATMENT OF WASTEWATER 427

 Next, it is recognized that the waste treatment costs a different amount, di ($10−6/mg) 
removed, at each of the facilities. Thus, the total cost of treatment (on a daily basis) can 
be calculated as

Z = d1 P1x1 + d2 P2x2 + d3 P3x3 + d4 
P4x4 (16.7)

where Z is total daily cost of treatment ($1000/d).
 The final piece in the “decision puzzle” involves environmental regulations. To pro-
tect the beneficial uses of the river (for example, boating, fisheries, bathing), regulations 
say that the pollution concentration must not exceed a water-quality standard of cs.
 Parameters for the river system in Fig. 16.4 are summarized in Table 16.2. Notice 
that there is a difference in treatment cost between the upstream (1 and 2) and the down-
stream cities (3 and 4) because of the outmoded nature of the downstream plants.
 The concentration can be calculated with Eq. (16.6) and the result listed in the shaded 
column for the case where no waste treatment is implemented (that is, all the x’s = 0). 
Notice that the standard of 20 mg/L is being violated at all mixing points.
 Use linear programming to determine the treatment levels that meet the water-quality 
standards for the minimum cost. Also, evaluate the impact of making the standard more 
stringent below city 3. That is, redo the exercise, but with the standards for segments 
3–4 and 4–5 lowered to 10 mg/L.

Solution. All the factors outlined above can be combined into the following linear 
programming problem:

Minimize Z = d1P1x1 + d2P2x2 + d3P3x3 + d4P4x4 (16.8)

subject to the constraints

(1 − x1)P1

Q13
≤ cs1

(1 − x2)P2

Q23
≤ cs2

R13Q13c1 + R23Q23c2 + (1 − x3)P3

Q34
≤ cs3 (16.9)

R34Q34c3 + (1 − x4)P4

Q45
≤ cs4

0 ≤ x1, x2, x3, x4 ≤ 1 (16.10)

TABLE 16.2  Parameters for four wastewater treatment plants discharging pollution to a river system,  
along with the resulting concentration (ci) for zero treatment. Flow, removal, and standards  
for the river segments are also listed.

 City Pi (mg/d) di ($10−6/mg) ci (mg/L) Segment Q (L/d) R cs (mg/L)

 1 1.00 × 109 2 100 1–3 1.00 × 107 0.5 20
 2 2.00 × 109 2 40 2–3 5.00 × 107 0.35 20
 3 4.00 × 109 4 47.3 3–4 1.10  × 108 0.6 20
 4 2.50 × 109 4 22.5 4–5 2.50 × 108  20
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428 CASE STUDIES: OPTIMIZATION

 Thus, the objective function is to minimize treatment cost [Eq. (16.8)] subject to the 
constraint that water-quality standards must be met for all parts of the system [Eq. (16.9)]. 
In addition, treatment cannot be negative or greater than 100% removal [Eq. (16.10)].
 The problem can be solved using a variety of packages. For the present application, 
we use the Excel spreadsheet. As seen in Fig. 16.5, these data along with the concentra-
tion calculations can be set up nicely in the spreadsheet cells.
 Once the spreadsheet is created, Solver is chosen from the Data tab. At this point a 
dialogue box will be displayed, querying you for pertinent information. The pertinent 
cells of the Solver dialogue box would be filled out as

FIGURE 16.5
Excel spreadsheet set up to 
evaluate the cost of waste 
water treatment on a regu-
lated river system. Column F 
contains the calculation of 
concentration according to 
Eq. (16.6). Cells F4 and H4 are 
highlighted to show the for-
mulas used to  calculate c1 
and treatment cost for city 1. 
In addition,  highlighted cell 
H9 shows the formula [Eq. 
(16.8)] for total cost, which is 
to be minimized.

Notice that not all the constraints are shown because the dialogue box displays only six 
constraints at a time.
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When the OK button is selected, a dialogue box will open with a report on the success of 
the operation. For the present case, the Solver obtains the correct solution, which is shown 
in Fig. 16.6. Before accepting the solution (by selecting the OK button on the Solver 
 Reports box), notice that three reports can be generated: Answer, Sensitivity, and Limits. 
Select the Sensitivity Report and then hit the OK button to accept the solution. The Solver 
will automatically generate a Sensitivity Report, as shown in Fig. 16.7.
 Now let us examine the solution (Fig. 16.6). Notice that the standard will be met at 
all the mixing points. In fact, the concentration at city 4 will actually be less than the 
standard (16.28 mg/L), even though no treatment would be required for city 4.
 As a final exercise, we can lower the standards for reaches 3–4 and 4–5 to 10 mg/L. 
Before doing this, we can examine the Sensitivity Report. For the present case, the key 
column of Fig. 16.7 is the one headed “Lagrange Multiplier” (aka the “shadow price”). 
The shadow price is a value that expresses the sensitivity of the objective function (in 
our case, cost) to a unit change of one of the constraints (water-quality standards). It 
therefore represents the additional cost that will be incurred by making the standards 
more stringent. For our example, it is revealing that the largest shadow price, −$440∕Δcs3, 
occurs for one of the standard changes (that is, downstream from city 3) that we are 
contemplating. This tips us off that our modification will be costly.
 This is confirmed when we rerun Solver with the new standards (that is, we lower 
cells G6 and G7 to 10). As seen in Table 16.3, the result is that treatment cost is increased 
from $12,600/day to $19,640/day. In addition, reducing the standard concentrations for 
the lower reaches means that city 4 must begin to treat its waste and city 3 must upgrade 
its treatment. Notice also that the treatment of the upstream cities is unaffected.

FIGURE 16.6
Results of minimization. The water-quality standards are met at a cost of $12,600/day. Notice  
that despite the fact that no treatment is required for city 4, the concentration at its mixing point  
actually exceeds the standard.
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430 CASE STUDIES: OPTIMIZATION

 16.3 MAXIMUM POWER TRANSFER FOR A CIRCUIT  
(ELECTRICAL ENGINEERING)
Background. The simple resistor circuit in Fig. 16.8 contains three fixed resistors and 
one adjustable resistor. Adjustable resistors are called potentiometers. The values for the 
parameters are V = 80 V, R1 = 8 Ω, R2 = 12 Ω, and R3 = 10 Ω. (a) Find the value of the 
adjustable resistance Ra that maximizes the power transfer across terminals 1 and 2. (b) 
Perform a sensitivity analysis to determine how the maximum power and the corresponding 
setting of the potentiometer (Ra) vary as V is varied over the range from 45 to 105 V.

FIGURE 16.7
Sensitivity Report for spread-
sheet set up to evaluate the 
cost of waste water treatment 
on a regulated river system.

TABLE 16.3  Comparison of two scenarios involving the impact of different regulations 
on treatment costs.

 Scenario 1: All cs = 20 Scenario 2: Downstream cs = 10

 City x c City x c

 1 0.8 20 1 0.8 20
 2 0.5 20 2 0.5 20
 3 0.5625 20 3 0.8375 10
 4 0 15.28 4 0.264 10

 Cost = $12,600 Cost = $19,640
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 16.3 MAXIMUM POWER TRANSFER FOR A CIRCUIT 431

Solution. An expression for power for the circuit can be derived from Kirchhoff’s laws as

P(Ra) =
[

VR3 Ra

R1(Ra + R2 + R3) + R3 Ra + R3 R2]
2

Ra

 (16.11)

Substituting the parameter values gives the plot shown in Fig. 16.9. Notice that a maximum 
power transfer occurs at a resistance of about 16 Ω.
 We will solve this problem in two ways with the Excel spreadsheet. First, we will 
employ trial-and-error and the Solver option. Then, we will develop a Visual Basic macro 
program to perform the sensitivity analysis.
 (a) An Excel spreadsheet to implement Eq. (16.11) is shown in Fig. 16.10. As in-
dicated, Eq. (16.11) can be entered into cell B9. Then the value of Ra (cell B8) can be 
varied in a trial-and-error fashion until a minimum drag was determined. For this ex-
ample, the result is a power of 30.03 W and a potentiometer setting of Ra = 16.44 Ω.
 A superior approach involves using the Solver option from the spreadsheet’s Data 
tab. When Solver is selected, a dialogue box will be displayed, querying you for pertinent 
information. The pertinent cells of the Solver dialogue box would be filled out as

R3

1

2

V
+

R2R1

Ra
FIGURE 16.8
A resistor circuit with an  
adjustable resistor, or  
potentiometer.

50 100

40

0
0

Ra

P(Ra)

20

Maximum
power

FIGURE 16.9
A plot of power transfer across 
terminals 1-2 from Fig. 16.8 as a 
function of the potentiometer 
resistance Ra.

Set target cell: B9

Equal to ● max  min  equal to 0

By changing cells B8
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432 CASE STUDIES: OPTIMIZATION

When the OK button is selected, a dialogue box will open with a report on the success 
of the operation. For the present case, the Solver obtains the same correct solution shown 
in Fig. 16.10.
 (b) Now, although the foregoing approach is excellent for a single evaluation, it is 
not convenient for cases where multiple optimizations would be employed. Such would 
be the case for the second part of this application, where we are interested in determin-
ing how the maximum power varies for different voltage settings. Of course, the Solver 
could be invoked multiple times for different parameter values, but this would be inef-
ficient. A preferable course would involve developing a macro function to come up with 
the optimum.
 Such a function is shown in Fig. 16.11. Notice how closely it resembles the golden-
section-search pseudocode previously presented in Fig. 13.5. In addition, notice that a 
function must also be defined to compute power according to Eq. (16.11).
 An Excel spreadsheet utilizing this macro to evaluate the sensitivity of the solution 
to voltage is given in Fig. 16.12. A column of values is set up that spans the range of 
V’s (that is, from 45 to 105 V). A function call to the macro is written in cell B9 that 
references the adjacent value of V (the 45 in A9). In addition, the other parameters in 
the function argument are also included. Notice that, whereas the reference to V is rela-
tive, the references to the lower and upper guesses and the resistances are absolute (that 
is, they include a leading $). This was done so that when the formula is copied down, 
the absolute references stay fixed, whereas the relative reference corresponds to the volt-
age in the same row. A similar strategy is used to place Eq. (16.11) in cell C9.
 When the formulas are copied downward, the result is as shown in Fig. 16.12. The 
maximum power can be plotted to visualize the impact of voltage variations. As seen in 
Fig. 16.13, the power increases with V.
 The results for the corresponding potentiometer settings (Ra) are more interesting. 
The spreadsheet indicates that the same setting, 16.44 Ω, results in maximum power. 
Such a result might be difficult to intuit based on casual inspection of Eq. (16.11).

FIGURE 16.10
Excel determination of maximum power across a potentiometer using trial-and-error.
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Option Explicit

Function Golden(xlow, xhigh, R1, R2, R3, V)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim fx As Double, xL As Double, xU As Double, d As Double, x1 as Double
Dim x2 As Double, f1 As Double, f2 As Double, xopt As Double
Const R As Double = (5 ^ 0.5 − 1) / 2
maxit = 50
es = 0.001
xL = xlow
xU = xhigh
iter = 1
d = R * (xU − xL)
x1 = xL + d
x2 = xU − d
f1 = f(x1, R1, R2, R3, V)
f2 = f(x2, R1, R2, R3, V)
If f1 > f2 Then
  xopt = x1
  fx = f1
Else
  xopt = x2
  fx = f2
End If
Do
  d = R * d
  If f1 > f2 Then
    xL = x2
    x2 = x1
    x1 = xL + d
    f2 = f1
    f1 = f(x1, R1, R2, R3, V)
  Else
    xU = x1
    x1 = x2
    x2 = xU − d
    f1 = f2
    f2 = f(x2, R1, R2, R3, V)
  End If
  iter = iter + 1
  If f1 > f2 Then
    xopt = x1
    fx =f1
Else
    xopt = x2
    fx = f2
  End If
  If xopt <> 0 Then ea = (1 − R) * Abs((xU − xL) / xopt) * 100
  If ea <= es Or iter >= maxit Then Exit Do
Loop
Golden = xopt
End Function

Function f(Ra, R1, R2, R3, V)
f = (V * R3 * Ra / (R1 * (Ra + R2 + R3) + R3 * Ra + R3 * R2)) ^ 2 / Ra
END FUNCTION

FIGURE 16.11
Excel macro written in Visual 
Basic to determine a maximum 
with the golden-section 
search.
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434 CASE STUDIES: OPTIMIZATION

FIGURE 16.13
Results of sensitivity analysis of the effect of voltage variations on maximum power.
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 16.4 EQUILIBRIUM AND MINIMUM POTENTIAL ENERGY 
(MECHANICAL/AEROSPACE ENGINEERING)
Background. As shown in Fig. 16.14a, an unloaded spring can be attached to a wall 
mount. When a horizontal force is applied, the spring stretches. The displacement is related 
to the force by Hooke’s law, F = kx. The potential energy of the deformed state consists 
of the difference between the strain energy of the spring and the work done by the force,

PE(x) = 0.5k x2 − F x (16.12)

 Equation (16.12) defines a parabola. Since the potential energy will be at a minimum 
at equilibrium, the solution for displacement can be viewed as a one-dimensional optimization 

FIGURE 16.12
Excel spreadsheet to implement a sensitivity analysis of the maximum power to variations of  
voltage. This routine accesses the macro function for golden-section search from Fig. 16.11.

 =(A9*$B$5*B9/($B$3*(B9+$B$4+$B$5)+$B$5*B9+$B$3*$B$4))^2/B9

= Golden($B$6,$B$7,$B$3,$B$4,$B$5,A9)

Call to Visual Basic 
macro function

Power calculation

  A B C D
 1 Maximum Power Transfer
 2
 3 R1 8
 4 R2 12
 5 R3 10
 6 Rmin 0.1
 7 Rmax 100
 8 V Ra P(Ra)
 9 45 16.44444 9.501689
 10 60 16.44444 16.89189
 11 75 16.44444 26.39358
 12 90 16.44444 38.00676
 13 105 16.44444 51.73142
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problem. Because this equation is so easy to differentiate, we can solve for the displacement 
as x = F∕k. For example, if k = 2 N/cm and F = 5 N, x = 5N∕(2 N/cm)∕5 = 2.5 cm.
 A more interesting two-dimensional case is shown in Fig. 16.15. In this system, there 
are two degrees of freedom in that the system can move both horizontally and vertically. 
In the same way that we approached the one-dimensional system, the equilibrium defor-
mations are the values of x1 and x2 that minimize the potential energy,

PE(x1, x2) = 0.5ka(√x2
1 + (La − x2)2 − La)2

               + 0.5kb(√x2
1 + (Lb + x2)2 − Lb)2 − F1x1 − F2x2 

(16.13)

If the parameters are ka = 9 N/cm, kb = 2 N/cm, La = 10 cm, Lb = 10 cm, F1 = 2 N, 
and F2 = 4 N, solve for the displacements and the potential energy.

Background. We can use a variety of software tools to solve this problem. For example, 
using MATLAB, an M-file can be developed to hold the potential energy function,

function p=PE(x,ka,kb,La,Lb,F1,F2)
PEa=0.5*ka*(sqrt(x(1)^2+(La-x(2))^2)-La)^2;
PEb=0.5*kb*(sqrt(x(1)^2+(Lb+x(2))^2)-Lb)^2;
W=F1*x(1)+F2*x(2);
p=PEa+PEb-W;

The solution can then be obtained with the fminsearch function,

>> ka=9;kb=2;La=10;Lb=10;F1=2;F2=4;
>> [x,f] =fminsearch(@PE,[−0.5,0.5],[],ka,kb,La,Lb,F1,F2)
x = 
   4.9523       1.2769
f = 
   −9.6422

Thus, at equilibrium, the potential energy is −9.6422 N cm. The connecting point is located 
4.9523 cm to the right and 1.2759 cm above its original position.

FIGURE 16.14
(a) An unloaded spring at-
tached to a wall mount. (b) Ap-
plication of a horizontal force 
stretches the spring where 
the relationship between 
force and displacement is de-
scribed by Hooke’s law.

k
(a)

(b)

x

F

FIGURE 16.15
A two-spring system: (a) unloaded, and (b) loaded.
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 16.4 EQUILIBRIUM AND MINIMUM POTENTIAL ENERGY 435

cha32077_ch16_421-444.indd   435 8/19/19   3:51 PM



436 CASE STUDIES: OPTIMIZATION

PROBLEMS

Chemical/Bio Engineering
16.1 Design the optimal cylindrical container (Fig. P16.1) that is 
open at one end and has walls of negligible thickness. The con-
tainer is to hold 0.2 m3. Design it so that the areas of its bottom and 
sides are minimized.
16.2 (a) Design the optimal conical container (Fig. P16.2) that has 
a cover and has walls of negligible thickness. The container is to 
hold 0.2 m3. Design it so that the areas of its top and sides are mini-
mized. (b) Repeat (a) but for a conical container without a cover.
16.3 Design the optimal cylindrical tank with dished ends 
(Fig. P16.3). The container is to hold 0.2 m3 and has walls of negli-
gible thickness. Note that the area and volume of each of the dished 
ends can be computed with

A = π(h2 + r2)  V =
πh(h2 + 3r2)

6

(a) Design the tank so that its surface area is minimized. Interpret 
the result.

(b) Repeat part (a), but add the constraint L ≥ 2h.

FIGURE P16.1
A cylindrical container with no lid.

h

rOpen

FIGURE P16.2
A conical container with a lid.

h

rLid

FIGURE P16.3

L

h

r

16.4 The specific growth rate g of a yeast that produces an antibi-
otic is a function of the food concentration c,

g =
2c

4 + 0.8c + c2 + 0.2c3

As depicted in Fig. P16.4, growth goes to zero at very low concen-
trations due to food limitation. It also goes to zero at high concen-
trations due to toxicity effects. Find the value of c at which growth 
is a maximum.
16.5 A chemical plant makes three major products on a weekly 
basis. Each of these products requires a certain quantity of raw 
chemical and different production times, and yields different 
profits. The pertinent information is in Table P16.5. Note that 
there is sufficient warehouse space at the plant to store a total of 
450 kg/week.

FIGURE P16.4
The specific growth rate of a yeast that produces an antibiotic 
versus the food concentration.
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 PROBLEMS 437

that the initial cost of the system is a function of the conversion xA. 
Find the conversion that will result in the lowest-cost system. C is a 
proportionality constant.

Cost = C[(
1

(1 − xA)2)
0.6

+ 6(
1
xA

)
0.6

]

16.9 In Prob. 16.8, only one reactor is used. If two reactors are 
used in series, the governing equation for the system changes. Find 
the conversions for both reactors (xA1 and xA2) such that the total 
cost of the system is minimized.

Cost =

C[(
xA1

xA2(1 − xA1)2)
0.6

+ (
1 − (xA1

xA2
)

(1 − xA2)2)
0.6

+ 6(
1

xA2)
0.6

]

16.10 For the reaction

2A + B ⇔ C

equilibrium can be expressed as follows:

K =
[C]

[A]2[B]
=

[C]
[A0 − 2C]2[B0 − C]

If K = 2 M−1, the initial concentration of A (A0) can be varied. The 
initial concentration of B is fixed by the process, B0 = 100. A costs 
$1/M and C sells for $10/M. What would be the optimum initial 
concentration of A to use such that the profits would be maximized?
16.11 A chemical plant requires 106 L/day of a solution. Three sources 
are available at different prices and supply rates. Each source also has 
a different concentration of an impurity that must be kept below a 
minimum level to prevent interference with the chemical. The data for 
the three sources are summarized in the following table. Determine the 
amount from each source to meet the requirements at the least cost.

 Source 1 Source 2 Source 3 Required

Cost ($∕L) 0.50 1.00 1.20 minimize
Supply (105 L∕day) 20 10 5 ≥10
Concentration (mg∕L) 135 100 75 ≤100

(a) Set up a linear programming problem to maximize profit.
(b) Solve the linear programming problem with the simplex method.
(c) Solve the problem with a software package.
(d) Evaluate which of the following options will raise profits the 

most: increasing raw chemical, production time, or storage.
16.6 Recently chemical engineers have become involved in the 
area known as waste minimization. This involves the operation of a 
chemical plant so that impacts on the environment are minimized. 
Suppose a refinery develops a product Z1 made from two raw 
 materials X and Y. The production of 1 metric tonne of the product 
involves 1 tonne of X and 2.5 tonnes of Y and produces 1 tonne of a 
liquid waste W. The engineers have come up with three alternative 
ways to handle the waste:

∙ Produce a tonne of a secondary product Z2 by adding an addi-
tional tonne of X to each tonne of W.

∙ Produce a tonne of another secondary product Z3 by adding an 
additional tonne of Y to each tonne of W.

∙ Treat the waste so that it is permissible to discharge it.

The products yield profits of $2000, −$75, and $250/tonne for Z1, 
Z2, and Z3, respectively. Note that producing Z2 actually  creates a 
loss. The treatment process costs $300/tonne. In addition, the com-
pany has access to a limit of 7500 and 12,500 tonnes of X and Y, 
respectively, during the production period. Determine how much of 
the products and waste must be created in order to maximize profit.
16.7 A mixture of benzene and toluene are to be separated in a flash 
tank. At what temperature should the tank be operated to get the 
highest purity toluene in the liquid phase (maximizing xT)? The pres-
sure in the flash tank is 800 mm Hg. The units for Antoine’s equation 
are mm Hg and °C for pressure and temperature, respectively:

xB PsatB + xT PsatT = P

log10 (PsatB) = 6.905 −
1211

T + 221

log10 (PsatT) = 6.953 −
1344

T + 219

16.8 A compound A will be converted into B in a stirred tank  reactor. 
The product B and unreacted A are purified in a separation unit. 
 Unreacted A is recycled to the reactor. A process engineer has found 

TABLE P16.5

    Resource 
 Product 1 Product 2 Product 3 Availability

Raw chemical 6 kg/kg 4 kg/kg 12 kg/kg 2500 kg
Production time 0.05 hr/kg 0.1 hr/kg 0.2 hr/kg 55 hr/week
Profit $30/kg $30/kg $35/kg
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Given H = 2.5 mm, L = 10 mm, d1 = 1 mm, and d2 = 0.75 mm, 
determine the angle that minimizes RABC.
16.16 You are asked to design a right circular cone (Fig. P16.16) to 
hold a specified volume of liquid while minimizing the amount of 
paper used to construct its surface area. The surface area and vol-
ume can be computed as a function of the cone’s top radius, r (m), 
and height, h (m),

A = πr√r2 + h2   V =
πr2 h

3

(a) Given V = 160 cm3, compute the height and radius that mini-
mizes area, (b) compute the corresponding angle θ for this opti-
mal solution, and (c) determine whether the result of (b) always 
holds.

16.12 You must design a triangular open channel to carry a waste 
stream from a chemical plant to a waste stabilization pond 
(Fig.  P16.12). The mean velocity increases with the hydraulic 
 radius Rh = A∕p, where A is the cross-sectional area and p equals 
the wetted perimeter. Because the maximum flow rate corresponds 
to the maximum velocity, the optimal design amounts to minimiz-
ing the wetted perimeter. Determine the dimensions to minimize 
the wetted perimeter for a given cross-sectional area. Are the rela-
tive dimensions universal?
16.13 As an agricultural engineer, you must design a trapezoidal 
open channel to carry irrigation water (Fig. P16.13). Determine the 
optimal dimensions to minimize the wetted perimeter for a cross-
sectional area of 100 m2. Are the relative dimensions universal?
16.14 Find the optimal dimensions for a heated cylindrical tank 
designed to hold 10 m3 of fluid. The ends and sides cost $200/m2 
and $100/m2, respectively. In addition, a coating is applied to the 
entire tank area at a cost of $50/m2.
16.15 As depicted in Fig. P16.15, a blood vessel branches from an 
artery at an angle θ. Under steady, laminar flow conditions, the re-
sistance for blood flowing along the path ABC, RABC, can be com-
puted based on the Hagen-Poiseuille law as

RABC = K(
L1

d4
1

+
L2

d4
2
)

where K = a constant parameter, d1 and d2 = diameters of the artery 
and the vessel, respectively, and L1 and L2 = lengths of the artery 
and the vessel, respectively, which are related to the angle by

L1 = L − H cot θ   L2 = H csc θ

FIGURE P16.12
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θ θ

FIGURE P16.13
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FIGURE P16.15
A blood vessel branching at an angle θ from an artery.
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FIGURE P16.16 
A right circular cone.

Civil/Environmental Engineering
16.17 A finite-element model of a cantilever beam subject to load-
ing and moments (Fig. P16.17) is given by optimizing

f(x, y) = 5x2 − 5xy + 2.5y2 − x − 1.5y
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The actual stress is given by

σ =
P

A
=

P

πdt

The buckling stress can be shown to be

σb =
πEI

H2dt

where E = modulus of elasticity and I = second moment of the area 
of the cross section. Calculus can be used to show that

I =
π

8
 dt(d2 + t2)

Finally, diameters of available pipes are between d1 and d2 and 
thicknesses between t1 and t2. Develop and solve this problem by 
determining the values of d and t that minimize the cost. Note that 
H = 275 cm, P = 2000 kg, E = 900,000 kg/cm2, d1 = 1 cm, d2 = 
10 cm, t1 = 0.1 cm, and t2 = 1 cm.
16.19 The Streeter-Phelps model can be used to compute the 
 dissolved oxygen concentration in a river below a point discharge 
of sewage (Fig. P16.19),

o = os −
kd Lo

kd + ks − ka

 (e−ka
 
t − e−(kd+ks)t) −

Sb

ka

(1 − e−ka
 
t) 

(P16.19)

where o = dissolved oxygen concentration (mg/L), os = oxygen 
saturation concentration (mg/L), t = travel time (d), Lo = biochem-
ical oxygen demand (BOD) concentration at the mixing point 
(mg/L), kd = rate of decomposition of BOD (d−1), ks = rate of set-
tling of BOD (d−1), ka = re-aeration rate (d−1), and Sb = sediment 
oxygen demand (mg/L/d).

As indicated in Fig. P16.19, Eq. (P16.19) describes an oxygen 
“sag” that reaches a critical minimum level oc some travel time tc 
below the point discharge. This point is called “critical” because it 

where x = end displacement and y = end moment. Find the values 
of x and y that minimize f(x, y).
16.18 Suppose that you are asked to design a column to support 
a compressive load P, as shown in Fig. P16.18a. The column 
has a cross section shaped as a thin-walled pipe, as shown in 
Fig. P16.18b.

The design variables are the mean pipe diameter d and the wall 
thickness t. The cost of the pipe is computed by

Cost = f (t, d) = c1W + c2d

where c1 = 4 and c2 = 2 are cost factors and W = weight of the pipe,

W = π dt Hρ

where ρ = density of the pipe material = 0.0025 kg/cm3. The col-
umn must support the load under compressive stress and not buckle. 
Therefore,

Actual stress (σ) ≤ maximum compressive yield stress
= σy = 550 kg/cm2

Actual stress ≤ buckling stress

15 20

8

12

0
0

t (d)
5

4

10

o
(mg/L) o

os

tc

oc

FIGURE P16.19
A dissolved oxygen “sag” below a point discharge of sewage 
into a river.

FIGURE P16.17
A cantilever beam.

x

y

FIGURE P16.18
(a) A column supporting a compressive load P. (b) The column 
has a cross section shaped as a thin-walled pipe.
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t
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is the beam length. If the volume of beam V cannot exceed 0.075 m3, 
find the largest height L that can be utilized and the correspond-
ing radius.
16.23 The Splash River has a flow rate of 2 × 106 m3/d, of which 
up to 70% can be diverted into two channels where it flows through 
Splish County. These channels are used for transportation, irriga-
tion, and electric power generation, with the latter two being 
sources of revenue. The transportation use requires a minimum di-
verted flow rate of 0.3 × 106 m3/d for Channel 1 and 0.2 × 106 m3/d 
for Channel 2. For political reasons it has been decided that the 
absolute difference between the flow rates in the two channels can-
not exceed 40% of the total flow diverted into the channels. The 
Splish County Water Management Board has also limited mainte-
nance costs for the channel system to be no more than $1.8 × 106 
per year. Annual maintenance costs are estimated based on the 
daily flow rate. Channel 1 costs per year are estimated by multiply-
ing $1.1 by the flow in m3/d; while for Channel 2 the multiplication 
factor is $1.4 per m3/d. Electric power production revenue is also 
estimated based on daily flow rate. For Channel 1 this is $4.0 per 
m3/d, while for Channel 2 it is $3.0 per m3/d. Annual revenue from 
irrigation is also estimated based on daily flow rate, but the flow 
rates must first be corrected for water loss in the channels previous 
to delivery for irrigation. This loss is 30% in Channel 1 and 20% in 
Channel 2. In both channels the revenue is $3.2 per m3/d. Deter-
mine the flows in the channels that maximize profit.
16.24 Determine the beam cross-sectional areas that result in the 
minimum weight for the truss we studied in Sec. 12.2 (Fig. 12.4). 
The critical buckling and maximum tensile strengths of compres-
sion and tension members are 10 and 20 ksi, respectively. The 
truss is to be constructed of steel (density = 3.5 lb/ft-in2). Note 
that the length of the horizontal member (2) is 50 ft. Also, recall 
that the stress in each member is equal to the force divided 
by cross-sectional area. Set up the problem as a linear program-
ming problem. Obtain the solution graphically and with the 
 Excel Solver.
16.25 Figure P16.25 shows a pinned-fixed beam subject to a uni-
form load. The equation for the resulting deflection is

y = − 

w

48EI
 (2x4 − 3Lx3 + L3x)

Develop a MATLAB script that uses fminbnd to (a) generate a 
labeled plot of deflection versus distance and (b) determine the 

represents the location where biota that depend on oxygen (like 
fish) would be the most stressed. Determine the critical travel time 
and concentration, given the following values:

os = 10 mg/L  kd = 0.2 d−1   ka = 0.8 d−1

ks = 0.06 d−1  Lo = 50 mg/L   Sb = 1 mg/L/d

16.20 The two-dimensional distribution of pollutant concentration 
in a channel can be described by

 c(x, y) = 7.7 + 0.15x + 0.22y − 0.05x2 
 − 0.016y2 − 0.007x y

Determine the exact location of the peak concentration given the 
function and the knowledge that the peak lies within the bounds 
−10 ≤ x ≤ 10 and 0 ≤ y ≤ 20.
16.21 The flow Q (m3/s) in an open channel can be predicted with 
the Manning equation,

Q =
1
n

 Ac R2∕3 S1∕2

where n = Manning roughness coefficient (a dimensionless num-
ber used to parameterize the channel friction), Ac = cross-sectional 
area of the channel (m2), S = channel slope (dimensionless, meter 
drop per meter length), and R = hydraulic radius (m), which is re-
lated to more fundamental parameters by R = Ac∕P, where P = 
wetted perimeter (m). As the name implies, the wetted perimeter is 
the length of the channel sides and bottom that is under water. For 
example, for a rectangular channel, it is defined as P = B + 2H, 
where H = depth (m). Suppose that you are using this formula to 
design a lined canal (note that farmers line canals to minimize leak-
age losses).
(a) Given the parameters n = 0.03, S = 0.0004, and Q = 1 m3/s, 

determine the values of B and H that minimize the wetted pe-
rimeter. Note that such a calculation would minimize cost if 
lining costs were much larger than excavation costs.

(b) Repeat part (a), but include the cost of excavation. To do this, 
minimize the following cost function

C = c1  
Ac + c2 

P

where c1 is a cost factor for excavation = $100/m2 and c2 is a 
cost factor for lining = $50/m.

(c) Discuss the implications of your results.
16.22 A cylindrical beam carries a compression load P = 3000 kN. 
To prevent the beam from buckling, this load must be less than a 
critical load,

Pc =
π2EI

L2

where E = Young’s modulus = 200 × 109 N/m2, I = πr4∕4 (the 
area moment of inertia for a cylindrical beam of radius r), and L 

FIGURE P16.25
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x from the center of the ring (Fig. P16.28). The force exerted on the 
charge by the ring is given by

F =
1

4πe0
 

q Qx

(x2 + a2)3∕2

where e0 = 8.85 × 10−12 C2∕(N m2), q = Q = 2 × 10−5 C, and a = 
0.9 m. Determine the distance x where the force is a maximum.

 location and magnitude of the maximum deflection. Employ initial 
guesses of 0 and L and use optimset to display the iterations. 
Use the following parameter values in your computation (making 
sure that you use consistent units): L = 400 cm, E = 52,000 kN/cm2, 
I = 32,000 cm4, and w = 4 kN/cm.
16.26 As depicted in Fig. P16.26, a mobile fire hose projects a 
stream of water onto the roof of a building. At what angle, θ, and 
how far from the building, x1, should the hose be placed in order to 
maximize the coverage of the roof, that is, to maximize x2 – x1? 
Note that the water velocity leaving the nozzle has a constant value 
of 3 m/s regardless of the angle, and the other parameter values are 
h1 = 0.06 m, h2 = 0.2 m, and L = 0.12 m. (Hint: The coverage is 
maximized for the trajectory that just clears the top front corner. 
That is, we want to choose an x1 and θ that just clear the top corner 
while maximizing x2 – x1.)
16.27 Because many pollutants enter lakes (and other bodies of 
water for that matter) at their peripheries, an important water-quality 
problem involves modeling the distribution of contaminants in the 
vicinity of a waste discharge or a river. For a vertically well-mixed, 
constant-depth layer, the steady-state distribution of a pollutant re-
acting with first-order decay is represented by

0 = − Ux 

∂c

∂x
+ E(

∂2c

∂x2 +
∂2c

∂y2) − kc

where the x and y axes are defined to be parallel and perpendicular 
to the shoreline, respectively (Fig. P16.27). The parameters and 
variables are Ux = the water velocity along the shoreline (m/d), 
c = concentration, E = the turbulent diffusion coefficient, and k = 
the first-order decay rate. For the case where a constant loading, W, 
enters at (0, 0), the solution for the concentration at any coordinate 
is given by

c = 2{c(x,  y) + ∑
∞

n=1
[c(x,  y + 2nY ) − c(x,  y − 2nY)]}

where

c(x,  y) =
W

πHE
 eUxx/(2E)K0(√(x2 + y2)[

k

E
+ (

Ux

2E)
2

])

where Y = the width, H = depth, and K0 = the modified Bessel func-
tion of the second kind. Develop a MATLAB script to generate a 
contour plot of concentration for a section of a lake with Y = 4.8 km 
and a length from X = –2.4 to 2.4 km using Δx = Δy = 0.32 km. 
Employ the following parameters for your calculation: W =  
1.2 × 1012, H = 20, E = 5 × 106, Ux = 5 × 103, k = 1, and n = 3.

Electrical Engineering
16.28 A total charge Q is uniformly distributed around a ring-
shaped conductor with radius a. A charge q is located at a distance 

h2

h1

x2

x1

L
θ

FIGURE P16.26

FIGURE P16.27
Plan view of a section of a lake with a point source of pollut-
ant entering at the middle of the lower boundary.
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If there are $127,000 worth of capital and 4270 hr of labor 
available each day, how many of each device should be pro-
duced per day to maximize profit?

(b) Repeat the problem, but now assume that the profit for each 
printer sold Pp depends on the number of printers produced 
Xp, as in

Pp = 400 − Xp

16.32 A manufacturer provides specialized microchips. During the 
next 3 months, its sales, costs, and available time will be as follows:

 Month 1 Month 2 Month 3

Chips required 1000 2500 2200
Cost regular time ($/chip) 100 100 125
Cost overtime ($/chip) 110 120 125
Regular operation time (hr) 2400 2400 2400
Overtime (hr) 720 720 720

There are no chips in stock at the beginning of the first month. It 
takes 1.6 hr of production time to produce a chip and costs $5 to 
store a chip from one month to the next. Determine a production 
schedule that meets the demand requirements, does not exceed the 
monthly production time limitations, and minimizes cost. Note that 
no chips should be in stock at the end of the 3 months.
16.33 For the LCR circuit in Fig. P16.33, the charge on the capaci-
tor can be computed with

q = q0e
−Rt∕(2L)

 cos[√
1

LC
− (

R

2L)
2

 t]

Determine the time and magnitude of the minimum capacitor 
charge given the following parameter values: q0 = 10 A, L = 5 H, 
C = 10–4 F, and R = 100 Ω.

16.29 A system consists of two power plants that must deliver 
loads over a transmission network. The costs of generating power at 
plants 1 and 2 are given by

F1 = 2p1 + 2
F2 = 10p2

where p1 and p2 = power produced by plant 1 and plant 2, respec-
tively. The losses of power due to transmission L are given by

L1 = 0.2p1 + 0.1p2

L2 = 0.2p1 + 0.5p2

The total demand for power is 30, and p1 must not exceed 42. 
Determine the power generation needed to meet demand while 
minimizing cost using an optimization routine such as that found 
in, for example, Excel, MATLAB, or Mathcad software.
16.30 The torque transmitted to an induction motor is a function of 
the slip between the rotation of the stator field and the rotor speed s 
where slip is defined as

s =
n − nR

n

where n = revolutions per second of rotating stator speed and nR = 
rotor speed. Kirchhoff’s laws can be used to show that the torque 
(expressed in dimensionless form) and slip are related by

T =
15(s − s2)

(1 − s) (4s2 − 3s + 4)
Figure P16.30 shows this function. Use a numerical method to 
determine the slip at which the maximum torque occurs.

FIGURE P16.30
Torque transmitted to an inductor as a function of slip.
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Mechanical/Aerospace Engineering
16.34 The total drag on an airfoil can be estimated by

D = 0.01σ V 
2 +

0.95
σ

 (
W

V )
2

 Friction Lift

16.31
(a) A computer equipment manufacturer produces scanners and 

printers. The resources needed for producing these devices and 
the corresponding profits are

Device Capital ($/unit) Labor (hr/unit) Profit ($/unit)

Scanner 300 20 500
Printer 400 10 375
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forcing function F = 100 N, and the parameter ka = 20 and kb = 
15 N/m.
16.39 Recent interest in competitive and recreational cycling has 
meant that engineers have directed their skills toward the design 
and testing of mountain bikes (Fig. P16.39a). Suppose that you 
are given the task of predicting the horizontal and vertical 

where D = drag, σ = ratio of air density between the flight altitude 
and sea level, W = weight, and V = velocity. As seen in Fig. P16.34, 
the two factors contributing to drag are affected differently as 
 velocity increases. Whereas friction drag increases with velocity, 
the drag due to lift decreases. The combination of the two factors 
leads to a minimum drag.
(a) If σ = 0.6 and W = 16,000, determine the minimum drag and 

the velocity at which it occurs.
(b) In addition, develop a sensitivity analysis to determine how this 

optimum varies in response to a range of W = 12,000 to 20,000 
with σ = 0.6.

16.35 Roller bearings are subject to fatigue failure caused by large 
contact loads F (Fig. P16.35).

The problem of finding the location of the maximum stress along 
the x axis can be shown to be equivalent to maximizing the function

f (x) =
0.4

√1 + x2
− √1 + x2 (1 −

0.4
1 + x2) + x

Find the value of x that maximizes f(x).

FIGURE P16.38
Two frictionless masses connected to a wall by a pair of linear 
elastic springs.

ka kb
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FIGURE P16.34
Plot of drag versus velocity for an airfoil.
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FIGURE P16.35
Roller bearings.
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16.36 An aerospace company is developing a new fuel additive 
for commercial airliners. The additive is composed of three ingre-
dients: X, Y, and Z. For peak performance, the total amount of 
additive must be at least 6 mL/L of fuel. For safety reasons, the 
sum of the highly flammable X and Y ingredients must not exceed 
2.5 mL/L. In addition, the amount of the X ingredient must always 
be equal to or greater than the amount of Y, and the amount of Z 
must be greater than half of Y. If the cost per mL for the ingredi-
ents X, Y, and Z is $0.05, $0.025, and $0.15, respectively, deter-
mine the minimum cost mixture for each liter of fuel.
16.37 A manufacturing firm produces four types of automobile 
parts. Each is first fabricated and then finished. The required 
worker hours and profit for each part are

 Part

 A B C D

Fabrication time (hr/100 units) 2.5 1.5 2.75 2
Finishing time (hr/100 units) 3.5 3 3 2
Profit ($/100 units) 375 275 475 325

The capacities of the fabrication and finishing shops over the next 
month are 640 and 960 hours, respectively. Determine how many of 
each part should be produced in order to maximize profit.
16.38 In a similar fashion to the case study described in Sec. 
16.4, develop the potential energy function for the system de-
picted in Fig. P16.38. Develop contour and surface plots in 
MATLAB. Minimize the potential energy function in order to 
determine the equilibrium displacements x1 and x2 given the 
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where W = the jet’s weight (N), ρ = air density (kg/m3), v = velocity 
(m/s), and A = wing planform area (m2). The drag force can then be 
computed as

FD = W 

CD

CL

Use these formulas to determine the optimal steady cruise velocity 
for a 670 kN jet flying at 10 km above sea level. Employ the 
 following parameters in your computation: A = 150 m2, AR = 6.5, 
CD0 = 0.018, and ρ = 0.413 kg/m3.
16.41 Develop a MATLAB script to generate a plot of the optimal 
velocity of the jet from Prob. 16.40 versus elevation above sea 
level. Employ a mass of 68,300 kg for the jet. Note that the gravita-
tional acceleration at 45° latitude can be computed as a function of 
elevation with

g(h) = 9.8066(
re

re + h)
2

where g(h) = gravitational acceleration (m/s2) at elevation h (m) 
above sea level and re = Earth’s mean radius (= 6.371 × 106 m). In 
addition, air density as a function of elevation can be calculated with

ρ(h) = −9.57926 × 10−14(h3) + 4.71260 × 10−9(h2)
             −1.18951 × 10−4(h) + 1.22534

Employ the other parameters from Prob. 16.40, and design the plot 
for elevations ranging from h = 0 to 12 km above sea level.

 displacement of a bike bracketing system in response to a force. 
Assume that the forces you must analyze can be simplified as de-
picted in Fig. P16.39b. You are interested in testing the response of 
the truss to a force exerted in any number of directions designated 
by the angle θ. The parameters for the problem are E = Young’s 
modulus = 2 × 1011 Pa, A = cross-sectional area = 0.0001 m2, w = 
width = 0.44 m, ℓ = length = 0.56 m, and h = height = 0.5 m. The 
displacements x and y can be found by determining the values that 
yield a minimum potential energy. Determine the displacements 
for a force of 10,000 N and a range of θ’s from 0° (horizontal) to 
90° (vertical).
16.40 For a jet in steady, level flight, thrust balances drag and lift 
balances weight (Fig. P16.40). Under these conditions, the optimal 
cruise velocity occurs when the ratio of drag force to velocity is 
minimized. The drag, CD, can be computed as

CD = CD0 +
C2

L

π  ·  AR

where CD0 = drag coefficient at zero lift, CL = the lift coefficient, 
and AR = the aspect ratio. For steady, level flight, the lift coeffi-
cient can be computed as

CL =
2W

ρv2
 A

Lift

Thrust

Weight (gravity)

Drag

FIGURE P 16.40
The four major forces on a jet in steady, level flight.

FIGURE P16.39
(a) A mountain bike along with (b) a free-body diagram for a 
part of the frame.
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EPILOGUE: PART FOUR

The epilogues of other parts of this book contain a discussion and a tabular summary 
of the trade-offs among various methods as well as important formulas and relationships. 
Most of the methods of this part are quite complicated and, consequently, cannot be 
summarized with simple formulas and tabular summaries. Therefore, we deviate some-
what here by providing the following narrative discussion of trade-offs and further refer-
ences.

 PT4.4 TRADE-OFFS
Chapter 13 dealt with finding the optimum of an unconstrained function of a single vari-
able. The golden-section search method is a bracketing method requiring that an interval 
containing a single optimum be known. It has the advantage that it minimizes function 
evaluations and always converges. Parabolic interpolation also works best when imple-
mented as a bracketing method, although it can also be programmed as an open method. 
However, in such cases, it may diverge. Both the golden-section search and parabolic 
interpolation do not require derivative evaluations. Thus, they are both appropriate meth-
ods when the bracket can be readily defined and function evaluations are costly.
 Newton’s method is an open method not requiring that an optimum be bracketed. It 
can be implemented in a closed-form representation when first and second derivatives can 
be determined analytically. It can also be implemented in a fashion similar to the secant 
method with finite-difference representations of the derivatives. Although Newton’s method 
converges rapidly near the optimum, it is often divergent for poor guesses. Convergence is 
also dependent on the nature of the function.
 Finally, hybrid approaches are available that orchestrate various methods to attain 
both reliability and efficiency. Brent’s method does this by combining the reliable golden-
section search with speedy parabolic interpolation.
 Chapter 14 covered two general types of methods to solve multidimensional uncon-
strained optimization problems. Direct methods such as random searches and univariate 
searches do not require the evaluation of the function’s derivatives and are often ineffi-
cient. However they also provide a tool to find global rather than local optima. Pattern 
search methods like Powell’s method can be very efficient and also do not require de-
rivative evaluation.
 Gradient methods use either first or sometimes second derivatives to find the opti-
mum. The method of steepest ascent/descent provides a reliable but sometimes slow 
approach. In contrast, Newton’s method often converges rapidly when the starting point 
is in the vicinity of a root, but sometimes suffers from divergence. The Marquardt method 
uses the steepest descent method at a starting location far away from the optimum and 
switches to Newton’s method near the optimum in an attempt to take advantage of the 
strengths of each method.
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 The Newton method can be computationally costly because it requires computation 
of both the gradient vector and the Hessian matrix. Quasi-Newton approaches attempt 
to circumvent these problems by using approximations to reduce the number of matrix 
evaluations (particularly the evaluation, storage, and inversion of the Hessian).
 Research investigations continue today that explore the characteristics and respective 
strengths of various hybrid and tandem methods. Some examples are the Fletcher-Reeves 
conjugate gradient method and Davidon-Fletcher-Powell quasi-Newton methods.
 Chapter 15 was devoted to constrained optimization. For linear problems, linear pro-
gramming based on the simplex method provides an efficient means to obtain solutions. 
Approaches such as the generalized reduced gradient (GRG) method are available to solve 
nonlinear constrained problems.
 Software packages include a wide variety of optimization capabilities. As described 
in Chap. 15, Excel, MATLAB software, and Mathcad all have built-in search capabilities 
that can be used for both one-dimensional and multidimensional problems routinely en-
countered in engineering and science.

 PT4.5 ADDITIONAL REFERENCES
General overviews of optimization including some algorithms can be found in Press et 
al. (2007) and Moler (2004). For multidimensional problems, additional information can 
be found in Dennis and Schnabel (1996), Fletcher (1980, 1981), Gill et al. (1981), and 
Luenberger (1984).
 In addition, there are a number of advanced methods that are well suited for specific 
problem contexts. For example, genetic algorithms use strategies inspired by evolutionary 
biology such as inheritance, mutation, and selection. Because they do not make assump-
tions regarding the underlying search space, such evolutionary algorithms are often use-
ful for large problems with many local optima. Related techniques include simulated 
annealing and Tabu search. Hillier and Lieberman (2005) provide overviews of these and 
a number of other advanced techniques.
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PA R T  F I V E

 PT5.1 MOTIVATION
Data are often given for discrete values along a continuum. However, you may require 
estimates at points between the discrete values. The present part of this book describes 
techniques to fit curves to such data to obtain intermediate estimates. In addition, you 
may require a simplified version of a complicated function. One way to do this is to 
compute values of the function at a number of discrete values along the range of interest. 
Then, a simpler function may be derived to fit these values. Both of these applications 
are known as curve fitting.
 There are two general approaches for curve fitting that are distinguished from each 
other on the basis of the amount of error associated with these data. First, where these 
data exhibit a significant degree of error, or “noise,” the strategy is to derive a single 
curve that represents the general trend of the data. Because any individual data point 
may be incorrect, we make no effort to intersect every point. Rather, the curve is designed 
to follow the pattern of the points taken as a group. One approach of this nature is called 
least-squares regression (Fig. PT5.1a).
 Second, where these data are known to be very precise, the basic approach is to fit 
a curve or a series of curves that pass directly through each of the points. Such data 
usually originate from tables. Examples are values for the density of water or for the 
heat capacity of gases as a function of temperature. The estimation of values between 
well-known discrete points is called interpolation (Fig. PT5.1b and c).

PT5.1.1 Noncomputer Methods for Curve Fitting
The simplest method for fitting a curve to data is to plot the points and then sketch a 
line that visually conforms to these data. Although this is a valid option when quick 
estimates are required, the results are dependent on the subjective viewpoint of the per-
son sketching the curve.
 For example, Fig. PT5.1 shows sketches developed from the same set of data by 
three engineers. The first did not attempt to connect the points, but rather, characterized 
the general upward trend of these data with a straight line (Fig. PT5.1a). The second 
engineer used straight-line segments, or linear interpolation, to connect the points 

CURVE FITTING
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(Fig.  PT5.1b). This is a very common practice in engineering. If the values are truly 
close to being linear or are spaced closely, such an approximation provides estimates that 
are adequate for many engineering calculations. However, where the underlying relation-
ship is highly curvilinear or the data are widely spaced, significant errors can be intro-
duced by such linear interpolation. The third engineer used curves to try to  capture the 
meanderings suggested by these data (Fig. PT5.1c). A fourth or fifth engineer would 
likely develop alternative fits. Obviously, our goal here is to develop systematic and 
objective methods for the purpose of deriving such curves.

PT5.1.2 Curve Fitting and Engineering Practice
Your first exposure to curve fitting may have been to determine intermediate values from 
tabulated data—for instance, from interest tables for engineering economics or from 
steam tables for thermodynamics. Throughout the remainder of your career, you will 
have frequent occasion to estimate intermediate values from such tables.

FIGURE PT5.1
Three attempts to fit a “best” curve through five data points. (a) Least-squares regression,  
(b) linear interpolation, and (c) curvilinear interpolation.

f (x)

x(a)

f (x)
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f (x)
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 Although many of the widely used engineering properties have been tabulated, there 
are a great many more that are not available in this convenient form. Special cases and 
new problem contexts often require that you measure your own data and develop your 
own predictive relationships. Two types of applications are generally encountered when 
fitting experimental data: trend analysis and hypothesis testing.
 Trend analysis is the process of using the pattern of the data to make predictions. 
For cases where the data are measured with high precision, you might utilize interpolat-
ing polynomials. Imprecise data are often analyzed with least-squares regression.
 Trend analysis may be used to predict or forecast values of the dependent variable. 
This can involve extrapolation beyond the limits of the observed data or interpolation within 
the range of the data. All fields of engineering commonly involve problems of this type.
 A second engineering application of experimental curve fitting is hypothesis testing. 
Here, an existing mathematical model is compared with measured data. If the model 
coefficients are unknown, it may be necessary to determine values that best fit the 
observed data. On the other hand, if estimates of the model coefficients are already 
available, it may be appropriate to compare predicted values of the model with observed 
values to test the adequacy of the model. Often, alternative models are compared and 
the “best” one is selected on the basis of empirical observations.
 In addition to the above engineering applications, curve fitting is important in other 
numerical methods such as integration and the approximate solution of differential equa-
tions. Finally, curve-fitting techniques can be used to derive simple functions to approx-
imate complicated functions.

 PT5.2 MATHEMATICAL BACKGROUND
The prerequisite mathematical background for interpolation is found in the material on 
Taylor series expansions and finite divided differences introduced in Chap. 4. Least-
squares regression requires additional information from the field of statistics. If you are 
familiar with the concepts of the mean, standard deviation, residual sum of the squares, 
normal distribution, and confidence intervals, feel free to skip the following pages and 
proceed directly to PT5.3. If you are unfamiliar with these concepts or are in need of a 
review, the following material is designed as a brief introduction to these topics.

PT5.2.1 Simple Statistics
Suppose that in the course of an engineering study, several measurements were made 
of a particular quantity. For example, Table PT5.1 contains 24 readings of the coeffi-
cient of thermal expansion of a structural steel. Taken at face value, these data provide 

TABLE PT5.1  Measurements of the coefficient of thermal expansion of structural steel 
[× 10−6 in∕(in °F)].

6.495 6.595 6.615 6.635 6.485 6.555
6.665 6.505 6.435 6.625 6.715 6.655
6.755 6.625 6.715 6.575 6.655 6.605
6.565 6.515 6.555 6.395 6.775 6.685
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a limited amount of information—that is, that the values range from a minimum of 
6.395 to a maximum of 6.775. Additional insight can be gained by summarizing these 
data in one or more well-chosen statistics that convey as much information as possible 
about specific characteristics of the data set. These descriptive statistics are most often 
selected to represent (1) the location of the center of the distribution of these data and 
(2) the degree of spread of the data set.
 The most common location statistic is the arithmetic mean. The arithmetic mean (y) 
of a sample is defined as the sum of the individual data points (yi) divided by the num-
ber of points (n), or

y =
Σyi

n
 (PT5.1)

where the summation (and all the succeeding summations in this introduction) is from 
i = 1 through n.
 The most common measure of spread for a sample is the standard deviation (sy) 
about the mean,

sy = √
St

n − 1
 (PT5.2)

where St is the total sum of the squares of the residuals between the data points and the 
mean, or

St = Σ (yi − y)2 (PT5.3)

Thus, if the individual measurements are spread out widely around the mean, St (and, 
consequently, sy) will be large. If they are grouped tightly, the standard deviation will be 
small. The spread can also be represented by the square of the standard deviation, which 
is called the variance:

s2
y =

Σ (yi − y)2

n − 1
 (PT5.4)

 Note that the denominator in both Eqs. (PT5.2) and (PT5.4) is n − 1. The quantity 
n − 1 is referred to as the degrees of freedom. Hence St and sy are said to be based  
on n − 1 degrees of freedom. This nomenclature derives from the fact that the sum of the 
quantities upon which St is based (that is, y − y1, y − y2, … , y − yn) is zero. Consequently, 
if y is known and n − 1 of the values are specified, the remaining value is fixed. Thus, 
only n − 1 of the values are said to be freely determined. Another justification for dividing 
by n − 1 is the fact that there is no such thing as the spread of a single data point. For 
the case where n = 1, Eqs. (PT5.2) and (PT5.4) yield a meaningless result of infinity.
 It should be noted that an alternative, more convenient formula is available to com-
pute the standard deviation,

s2
y =

Σy2
i − ( Σyi)2∕n

n − 1

This version does not require precomputation of y and yields the same result as 
Eq. (PT5.4).
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 A final statistic that has utility in quantifying the spread of data is the coefficient of 
variation (c.v.). This statistic is the ratio of the standard deviation to the mean. As such, 
it provides a normalized measure of the spread. It is often multiplied by 100 so that it 
can be expressed in the form of a percentage:

c.v. =
sy

y
 100% (PT5.5)

Notice that the coefficient of variation is similar in spirit to the percent relative error (εt) 
discussed in Sec. 3.3. That is, it is the ratio of a measure of error (sy) to an estimate of 
the true value (y).

 EXAMPLE PT5.1 Simple Statistics of a Sample
Problem Statement. Compute the mean, variance, standard deviation, and coefficient 
of variation for the data in Table PT5.1.

TABLE PT5.2  Computations for statistics for the readings of the coefficient of thermal 
expansion. The frequencies and bounds are developed to construct the 
histogram in Fig. PT5.2.

 Interval

    Lower Upper 
 i yi (yi − y‾)2 Frequency Bound Bound

 1 6.395 0.042025 1 6.36 6.40
 2 6.435 0.027225 1 6.40 6.44
 3 6.485 0.013225
 4 6.495 0.011025 

4 6.48 6.52
 5 6.505 0.009025
 6 6.515 0.007225
 7 6.555 0.002025
 8 6.555 0.002025 

2 6.52 6.56

 9 6.565 0.001225
 10 6.575 0.000625 3 6.56 6.60
 11 6.595 0.000025
 12 6.605 0.000025
 13 6.615 0.000225
 14 6.625 0.000625 5 6.60 6.64
 15 6.625 0.000625
 16 6.635 0.001225
 17 6.655 0.003025
 18 6.655 0.003025 3 6.64 6.68
 19 6.665 0.004225
 20 6.685 0.007225
 21 6.715 0.013225 3 6.68 6.72
 22 6.715 0.013225
 23 6.755 0.024025 1 6.72 6.76
 24 6.775 0.030625 1 6.76 6.80

 Σ   158.4 0.217000
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Solution. These data are added (Table PT5.2), and the results are used to compute the 
mean [Eq. (PT5.1)]

y =
158.4

24
= 6.6

As in Table PT5.2, the sum of the squares of the residuals is 0.217000, which can be 
used to compute the standard deviation [Eq. (PT5.2)]:

sy = √
0.217000
24 − 1

= 0.097133

the variance [Eq. (PT5.4)]:

s2
y = 0.009435

and the coefficient of variation [Eq. (PT5.5)]:

c.v. =
0.097133

6.6
100% = 1.47%

PT5.2.2 The Normal Distribution
Another characteristic that bears on the present discussion is the data distribution—that is, 
the shape with which the given data are spread around the mean. A histogram provides a 
simple visual representation of the distribution. As seen in Table PT5.2, the histogram is 
constructed by sorting the measurements into intervals. The units of measurement are plot-
ted on the abscissa and the frequency of occurrence of each interval is plotted on the 
ordinate. Thus, five of the measurements fall between 6.60 and 6.64. As in Fig. PT5.2, the 
histogram suggests that most of these data are grouped close to the mean value of 6.6.
 If we have a very large set of data, the histogram often can be approximated by a 
smooth curve. The symmetric, bell-shaped curve superimposed on Fig. PT5.2 is one such 
characteristic shape—the normal distribution. Given enough additional measurements, 
the histogram for this particular case could eventually approach the normal distribution.
 The concepts of the mean, standard deviation, residual sum of the squares, and 
normal distribution all have great relevance to engineering practice. A very simple exam-
ple is their use to quantify the confidence that can be ascribed to a particular measure-
ment. If a quantity is normally distributed, the range defined by y − sy to y + sy will 
encompass approximately 68 percent of the total measurements. Similarly, the range 
defined by y − 2sy to y + 2sy will encompass approximately 95 percent.
 For example, for the data in Table PT5.1 (y = 6.6 and sy = 0.097133), we can make the 
statement that approximately 95 percent of the readings should fall between 6.405734 and 
6.794266. If someone told us that they had measured a value of 7.35, we would suspect that 
the measurement might be erroneous. The following section elaborates on such evaluations.

PT5.2.3 Estimation of Confidence Intervals
As should be clear from the previous sections, one of the primary aims of statistics is 
to estimate the properties of a population based on a limited sample drawn from that 
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population. Clearly, it is impossible to measure the coefficient of thermal expansion for 
every piece of structural steel that has ever been produced. Consequently, as seen in 
Tables PT5.1 and PT5.2, we can randomly make a number of measurements and, on the 
basis of the sample, attempt to characterize the properties of the entire population.
 Because we “infer” properties of the unknown population from a limited sample, 
the endeavor is called statistical inference. Because the results are often reported as 
estimates of the population parameters, the process is also referred to as estimation.
 We have already shown how we estimate the central tendency (sample mean, y) and 
spread (sample standard deviation and variance) of a limited sample. Now, we will briefly 
describe how we can attach probabilistic statements to the quality of these estimates. In 
particular, we will discuss how we can define a confidence interval around our estimate 
of the mean. We have chosen this particular topic because of its direct relevance to the 
regression models we will be describing in Chap. 17.
 Note that in the following discussion, the nomenclature y and sy refer to the sample 
mean and standard deviation, respectively. The nomenclature μ and σ refer to the popu-
lation mean and standard deviation, respectively. The former are sometimes referred to 
as the “estimated” mean and standard deviation, whereas the latter are sometimes called 
the “true” mean and standard deviation.
 An interval estimator gives the range of values within which the parameter is 
expected to lie with a given probability. Such intervals are described as being one-sided 
or two-sided. As the name implies, a one-sided interval expresses our confidence that 
the parameter estimate is less than or greater than the true value. In contrast, the two-
sided interval deals with the more general proposition that the estimate agrees with the 
truth with no consideration to the sign of the discrepancy. Because it is more general, 
we will focus on the two-sided interval.

FIGURE PT5.2
A histogram used to depict the distribution of data. As the number of data points increases, the 
histogram could approach the smooth, bell-shaped curve called the normal distribution.
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 A two-sided interval can be described by the statement

P{L ≤ μ ≤ U} = 1 − α

which reads, “the probability that the true mean of y, μ, falls within the bound from 
L  to U is 1 − α.” The quantity α is called the significance level. So the problem of 
defining a confidence interval reduces to estimating L and U. Although it is not abso-
lutely necessary, it is customary to view the two-sided interval with the α probability 
distributed evenly as α∕2 in each tail of the distribution, as in Fig. PT5.3.
 If the true variance of the distribution of y, σ2, is known (which is not usually the 
case), statistical theory states that the sample mean y comes from a normal distribution 
with mean μ and variance σ2∕n (Box PT5.1). In the case illustrated in Fig. PT5.3, we 
really do not know μ. Therefore, we do not know where the normal curve is exactly 
located with respect to y. To circumvent this dilemma, we compute a new quantity, the 
standard normal estimate,

z =
y − μ

σ∕√n
 (PT5.6)

which represents the normalized distance between y and μ. According to statistical theory, 
this quantity should be normally distributed with a mean of 0 and a variance of 1. 
 Furthermore, the probability that z would fall within the unshaded region of Fig. PT5.3 

FIGURE PT5.3
A two-sided confidence interval. The abscissa scale in (a) is written in the natural units of the 
random variable y. The normalized version of the abscissa in (b) has the mean at the origin and 
scales the axis so that the standard deviation corresponds to a unit value.
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should be 1 − α. Therefore, the statement can be made that

y − μ

σ∕√n
< −zα∕2  or  

y − μ

σ∕√n
> zα∕2

with a probability of α.
 The quantity zα∕2 is a standard normal random variable. This is the distance measured 
along the normalized axis above and below the mean that encompasses 1 − α probability 
(Fig. PT5.3b). Values of zα∕2 are tabulated in statistics books (for example, Milton and 
Arnold 2002). They can also be calculated using functions on software packages like 
Excel, MATLAB, and Mathcad. As an example, for α = 0.05 (in other words, defining 
an interval encompassing 95%), zα∕2 is equal to about 1.96. This means that an interval 
around the mean of width ±1.96 times the standard deviation will encompass approxi-
mately 95% of the distribution.
 These results can be rearranged to yield

L ≤ μ ≤ U

 Box PT5.1 A Little Statistics

Most engineers take several courses to become proficient at sta-
tistics. Because you may not have taken such a course yet, we 
would like to mention a few ideas that might make this present 
section more coherent.
 As we have stated, the “game” of inferential statistics as-
sumes that the random variable you are sampling, y, has a true 
mean (μ) and variance (σ2). Further, in the present discussion, 
we also assume that it has a particular distribution: the normal 
distribution. The variance of this normal distribution has a finite 
value that specifies the “spread” of the normal distribution. If 
the variance is large, the distribution is broad. Conversely, if the 
variance is small, the distribution is narrow. Thus, the true vari-
ance quantifies the intrinsic uncertainty of the random variable.
 In the game of statistics, we take a limited number of mea-
surements of a random variable, called a sample. From this sam-
ple, we can compute an estimated mean (y) and variance (s2

y). 
The more measurements we take, the better the estimates ap-
proximate the true values. That is, as n → ∞, y → μ and s2

y → σ2.
 Suppose that we take n samples and compute an estimated 
mean y1. Then, we take another n samples and compute another, 
y2. We can keep repeating this process until we have generated 
a sample of means: y1, y2, y3, … , ym, where m is large. We can 
then develop a histogram of these means and determine a “dis-
tribution of the means,” as well as a “mean of the means” and a 
“standard deviation of the means.” Now the question arises: 
Does this new distribution of means and its statistics behave in 
a predictable fashion?

 There is an extremely important theorem known as the Cen-
tral Limit Theorem that speaks directly to this question. It can be 
stated as

 Let y1, y2, . . . , yn be a random sample of size n from a distri-
bution with mean μ and variance σ2. Then, for large n, y is ap-
proximately normal with mean μ and variance σ2∕n. 
Furthermore, for large n, the random variable (y − μ)∕(σ∕√n) 
is approximately standard normal.

 Thus, the theorem states the remarkable result that the 
distribution of means will always be normally distributed re-
gardless of the underlying distribution of the random vari-
ables! It also yields the expected result that given a sufficiently 
large sample, the mean of the means should converge on the 
true population mean μ.
 Further, the theorem says that as the sample size gets larger, 
the variance of the means should approach zero. This makes 
sense, because if n is small, our individual estimates of the mean 
should be poor and the variance of the means should be large. 
As n increases, our estimates of the mean will improve and 
hence their spread should shrink. The Central Limit Theorem 
neatly defines exactly how this shrinkage relates to both the true 
variance and the sample size, that is, as σ2∕n.
 Finally, the theorem states the important result that we have 
given as Eq. (PT5.6). As is shown in this section, this result is 
the basis for constructing confidence intervals for the mean.
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with a probability of 1 − α, where

L = y −
σ

√n
 zα∕2  U = y +

σ

√n
 zα∕2 (PT5.7)

 Now, although the foregoing provides an estimate of L and U, it is based on knowl-
edge of the true variance σ. For our case, we know only the estimated variance sy. A 
straightforward alternative would be to develop a version of Eq. (PT5.6) based on sy,

t =
y − μ

sy∕√n
 (PT5.8)

 Even when we sample from a normal distribution, this fraction will not be normally 
distributed, particularly when n is small. It was found by W. S. Gossett that the random 
variable defined by Eq. (PT5.8) follows the so-called Student-t distribution, or simply, t 
distribution. For this case,

L = y −
sy

√n
 tα∕2,n−1  U = y +

sy

√n
 tα∕2,n−1 (PT5.9)

where tα∕2, n−1 is the standard random variable for the t distribution for a probability of 
α∕2. As was the case for zα∕2, values are tabulated in statistics books and can also be 
calculated using software packages and libraries. For example, if α = 0.05 and n = 20, 
tα∕2, n−1 = 2.086.
 The t distribution can be thought of as a modification of the normal distribution that 
accounts for the fact that we have an imperfect estimate of the standard deviation. When 
n is small, it tends to be flatter than the normal (see Fig. PT5.4). Therefore, for small 

FIGURE PT5.4
Comparison of the normal distribution with the t distribution for n = 3 and n = 6. Notice how the 
t distribution is generally flatter.
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numbers of measurements, it yields wider and hence more conservative confidence inter-
vals. As n grows larger, the t distribution converges on the normal.

 EXAMPLE PT5.2 Confidence Interval on the Mean
Problem Statement. Determine the mean and the corresponding 95% confidence inter-
val for the data from Table PT5.1. Perform three estimates based on (a) the first 8, (b) the 
first 16, and (c) all 24 measurements.

Solution. (a) The mean and standard deviation for the first 8 values are

y =
52.72

8
= 6.59  sy = √

347.4814 − (52.72)2∕8
8 − 1

= 0.089921

The appropriate t statistic can be calculated as

t0.05∕2, 8−1 = t0.025, 7 = 2.364623

which can be used to compute the interval:

L = 6.59 −
0.089921

√8
2.364623 = 6.5148

U = 6.59 +
0.089921

√8
2.364623 = 6.6652

or

6.5148 ≤ μ ≤ 6.6652

FIGURE PT5.5
Estimates of the mean and 95% confidence intervals for samples of different size.

6.606.556.50
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6.706.65

n = 24

n = 16

y–

n = 8
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Thus, based on the first eight measurements, we conclude that there is a 95% probabil-
ity that the true mean falls within the range 6.5148 to 6.6652.
 The two other cases for (b) 16 values and (c) 24 values can be calculated in a 
similar fashion and the results tabulated along with case (a) as

 n y‾ sy tα∕2,n−1 L U

 8 6.5900 0.089921 2.364623 6.5148 6.6652
 16 6.5794 0.095845 2.131451 6.5283 6.6304

  24 6.6000 0.097133 2.068655 6.5590 6.6410

These results, which are also summarized in Fig. PT5.5, indicate the expected outcome 
that the confidence interval becomes more narrow as n increases. Thus, the more mea-
surements we take, our estimate of the true value becomes more refined.

 The above is just one simple example of how statistics can be used to make judg-
ments regarding uncertain data. These concepts will also have direct relevance to our 
discussion of regression models. You can consult any basic statistics book (for example, 
Milton and Arnold 2002) to obtain additional information on the subject.

 PT5.3 ORIENTATION
Before we proceed to numerical methods for curve fitting, some orientation might be 
helpful. The following is intended as an overview of the material discussed in Part Five. 
In addition, we have formulated some objectives to help focus your efforts when study-
ing the material.

PT5.3.1 Scope and Preview
Figure PT5.6 provides a visual overview of the material to be covered in Part Five. 
Chapter 17 is devoted to least-squares regression. We will first learn how to fit the 
“best” straight line through a set of uncertain data points. This technique is called lin-
ear regression. Besides discussing how to calculate the slope and intercept of this 
straight line, we also present quantitative and visual methods for evaluating the validity 
of the results.
 In addition to fitting a straight line, we also present a general technique for fitting 
a “best” polynomial. Thus, you will learn to derive a parabolic, cubic, or higher-order 
polynomial that optimally fits uncertain data. Linear regression is a subset of this more 
general approach, which is called polynomial regression.
 The next topic covered in Chap. 17 is multiple linear regression. It is designed for 
the case where the dependent variable y is a linear function of two or more independent 
variables x1, x2, . . . , xm. This approach has special utility for evaluating experimental 
data where the variable of interest is dependent on a number of different factors.
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 After multiple regression, we illustrate how polynomial and multiple regression are 
both subsets of a general linear least-squares model. Among other things, this will allow 
us to introduce a concise matrix representation of regression and discuss its general 
statistical properties.

FIGURE PT5.6
Schematic of the organization of the material in Part Five: Curve Fitting.
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460 CURVE FITTING

 Finally, the last section of Chap. 17 is devoted to nonlinear regression. This approach 
is designed to compute a least-squares fit of a nonlinear equation to data.
 In Chap. 18, the alternative curve-fitting technique called interpolation is 
described. As discussed previously, interpolation is used for estimating intermediate 
values between precise data points. In Chap. 18, polynomials are derived for this 
purpose. We introduce the basic concept of polynomial interpolation by using straight 
lines and parabolas to connect points. Then, we develop a generalized procedure for 
fitting an nth-order  polynomial. Two formats are presented for expressing these poly-
nomials in equation form. The first, called Newton’s interpolating polynomial, is pref-
erable when the appropriate order of the polynomial is unknown. The second, called 
the Lagrange interpolating polynomial, has advantages when the proper order is 
known beforehand.
 The next-to-last section of Chap. 18 presents an alternative technique for fitting 
precise data points. This technique, called spline interpolation, fits polynomials to data 
but in a piecewise fashion. As such, it is particularly well-suited for fitting data that are 
generally smooth but exhibit abrupt local changes. Finally, we provide a brief introduc-
tion to multidimensional interpolation.
 Chapter 19 deals with the Fourier transform approach to curve fitting where periodic 
functions are fit to data. Our emphasis in this chapter will be on the fast Fourier trans-
form. At the end of this chapter, we also include an overview of several software pack-
ages that can be used for curve fitting. These are Excel, MATLAB, and Mathcad.
 Chapter 20 is devoted to engineering applications that illustrate the utility of the 
numerical methods in engineering problem contexts. Examples are drawn from the four 
major specialty areas of chemical, civil, electrical, and mechanical engineering. In addi-
tion, some of the applications illustrate how software packages can be applied for engi-
neering problem solving.
 Finally, an epilogue is included at the end of Part Five. It contains a summary of 
the important formulas and concepts related to curve fitting as well as a discussion of 
trade-offs among the techniques and suggestions for future study.

PT5.3.2 Goals and Objectives
Study Objectives. After completing Part Five, you should have greatly enhanced your 
capability to fit curves to data. In general, you should have mastered the techniques, have 
learned to assess the reliability of the answers, and be capable of choosing the preferred 
method (or methods) for any particular problem. In addition to these general goals, the 
specific concepts in Table PT5.3 should be assimilated and mastered.

Computer Objectives. You have been provided with simple computer algorithms to 
implement the techniques discussed in Part Five. You may also have access to software 
packages and libraries. All have utility as learning tools.
 Pseudocode algorithms are provided for most of the methods in Part Five. This 
information will allow you to expand your software library to include techniques beyond 
polynomial regression. For example, you may find it useful from a professional view-
point to have software to implement multiple linear regression, Newton’s interpolating 
polynomial, cubic spline interpolation, and the fast Fourier transform.
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 In addition, one of your most important goals should be to master several of the 
general-purpose software packages that are widely available. In particular, you should 
become adept at using these tools to implement numerical methods for engineering 
problem solving.

TABLE PT5.3 Specific study objectives for Part Five.

 1. Understand the fundamental difference between regression and interpolation and realize why 
confusing the two could lead to serious problems.

 2. Understand the derivation of linear least-squares regression and be able to assess the reliability 
of the fit using graphical and quantitative assessments.

 3. Know how to linearize data by transformation.
 4. Understand situations where polynomial, multiple, and nonlinear regression are appropriate.
 5. Be able to recognize general linear models, understand the general matrix formulation of linear 

least squares, and know how to compute confidence intervals for parameters.
 6. Understand that there is one and only one polynomial of degree n or less that passes exactly 

through n + 1 points.
 7. Know how to derive the first-order Newton’s interpolating polynomial.
 8. Understand the analogy between Newton’s polynomial and the Taylor series expansion and how 

it relates to the truncation error.
 9. Recognize that the Newton and Lagrange equations are merely different formulations of the 

same interpolating polynomial and understand their respective advantages and disadvantages.
 10. Realize that more accurate results are generally obtained if data used for interpolation are 

centered around and close to the unknown point.
 11. Realize that data points do not have to be equally spaced or in any particular order for either 

the Newton or Lagrange polynomials.
 12. Know why equispaced interpolation formulas have utility.
 13. Recognize the liabilities and risks associated with extrapolation.
 14. Understand why spline functions have utility for data with local areas of abrupt change.
 15. Understand how interpolating polynomials can be applied in two dimensions.
 16. Recognize how the Fourier series is used to fit data with periodic functions.
 17. Understand the difference between the frequency and time domains.
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C H A P T E R

17
Least-Squares Regression

Where substantial error is associated with data, polynomial interpolation is inappropriate 
and may yield unsatisfactory results when used to predict intermediate values. Experi-
mental data are often of this type. For example, Fig. 17.1a shows seven experimentally 
derived data points exhibiting significant variability. Visual inspection of these data sug-
gests a positive relationship between y and x. That is, the overall trend indicates that 
higher values of y are associated with higher values of x. Now, if a sixth-order interpo-
lating polynomial is fitted to these data (Fig. 17.1b), it will pass exactly through all of 
the points. However, because of the variability in these data, the curve oscillates widely 
in the interval between the points. In particular, the interpolated values at x = 1.5 and 
x = 6.5 appear to be well beyond the range suggested by these data.
 A more appropriate strategy for such cases is to derive an approximating function 
that fits the shape or general trend of the data without necessarily matching the indi-
vidual points. Figure 17.1c illustrates how a straight line can be used to generally char-
acterize the trend of these data without passing through any particular point.
 One way to determine the line in Fig. 17.1c is to visually inspect the plotted data 
and then sketch a “best” line through the points. Although such “eyeball” approaches 
have commonsense appeal and are valid for “back-of-the-envelope” calculations, they are 
deficient because they are arbitrary. That is, unless the points define a perfect straight 
line (in which case, interpolation would be appropriate), different analysts would draw 
different lines.
 To remove this subjectivity, some criterion must be devised to establish a basis for 
the fit. One way to do this is to derive a curve that minimizes the discrepancy between 
the data points and the curve. A technique for accomplishing this objective, called least-
squares regression, will be discussed in the present chapter.

 17.1 LINEAR REGRESSION
The simplest example of a least-squares approximation is fitting a straight line to a set 
of paired observations: (x1, y1), (x2, y2), . . . , (xn, yn). The mathematical expression for 
the straight line is

y = a0 + a1x + e (17.1)
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 17.1 LINEAR REGRESSION 463

where a0 and a1 are coefficients representing the intercept and the slope, respectively, 
and e is the error, or residual, between the model and the observations, which can be 
represented by rearranging Eq. (17.1) as

e = y − a0 − a1x

Thus, the error, or residual, is the discrepancy between the true value of y and the ap-
proximate value, a0 + a1x, predicted by the linear equation.

y

x

(a)

5
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0

y

x

(b)
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y

x
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5
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0

FIGURE 17.1
(a) Data exhibiting significant 
error. (b) Polynomial fit 
 oscillating beyond the range 
of the data. (c) More satisfac-
tory result using the least-
squares fit.
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464 LEAST-SQUARES REGRESSION

17.1.1 Criteria for a “Best” Fit
One strategy for fitting a “best” line through the data would be to minimize the sum of 
the residual errors for all the available data, as in

∑
n

i=1
ei =∑

n

i=1
(yi − a0 − a1 xi) (17.2)

where n = total number of points. However, this is an inadequate criterion, as illustrated 
by Fig. 17.2a which depicts the fit of a straight line to two points. Obviously, the best 

FIGURE 17.2
Examples of some criteria for “best fit” that are inadequate for regression: (a) minimizes the 
sum of the residuals, (b) minimizes the sum of the absolute values of the residuals, and  
(c) minimizes the maximum error of any individual point.
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 17.1 LINEAR REGRESSION 465

fit is the line connecting the points. However, any straight line passing through the mid-
point of the connecting line (except a perfectly vertical line) results in a minimum value 
of Eq. (17.2) equal to zero because the errors cancel.
 Therefore, another logical criterion might be to minimize the sum of the absolute 
values of the discrepancies, as in

∑
n

i=1
∣ei∣ =∑

n

i=1
∣yi − a0 − a1xi∣

Figure 17.2b demonstrates why this criterion is also inadequate. For the four points 
shown, any straight line falling within the dashed lines will minimize the sum of the 
absolute values. Thus, this criterion also does not yield a unique best fit.
 A third strategy for fitting a best line is the minimax criterion. In this tech-
nique, the line is chosen that minimizes the maximum distance that an individual 
point falls from the line. As depicted in Fig. 17.2c, this strategy is ill-suited for 
regression because it gives undue influence to an outlier, that is, a single point 
with a large error. It should be noted that the minimax principle is sometimes 
well-suited for fitting a simple function to a complicated function (Carnahan, 
 Luther, and Wilkes 1969).
 A strategy that overcomes the shortcomings of the aforementioned approaches is to 
minimize the sum of the squares of the residuals between the measured y and the y 
calculated with the linear model,

Sr =∑
n

i=1
e2

i =∑
n

i=1
(yi, measured − yi, model)2 =∑

n

i=1
(yi − a0 − a1xi)2 (17.3)

This criterion has a number of advantages, including the fact that it yields a unique line 
for a given set of data. Before discussing these properties, we will present a technique 
for determining the values of a0 and a1 that minimize the result of Eq. (17.3).

17.1.2 Least-Squares Fit of a Straight Line
To determine values for a0 and a1, Eq. (17.3) is differentiated with respect to each coef-
ficient:

∂Sr

∂a0
= −2∑ (yi − a0 − a1xi)

∂Sr

∂a1
= −2∑ [(yi − a0 − a1xi)xi]

Note that we have simplified the summation symbols; unless otherwise indicated, all 
summations are from i = 1 to n. Setting these derivatives equal to zero will result in a 
minimum Sr. If this is done, the equations can be expressed as

0 =∑yi −∑a0 −∑a1xi

0 =∑yi xi −∑a0 xi −∑a1x
2
i
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466 LEAST-SQUARES REGRESSION

Now, realizing that Σa0 = na0, we can express the equations as a set of two simultaneous 
linear equations with two unknowns (a0 and a1):

na0 + (∑xi)a1 =∑yi (17.4)

(∑xi)a0 + (∑x2
i )a1 =∑xi yi (17.5)

These are called the normal equations. They can be solved simultaneously

a1 =
nΣ xi yi − Σxi Σyi

nΣ x2
i − (Σxi)2  (17.6)

This result can then be used in conjunction with Eq. (17.4) to solve for

a0 = y − a1x (17.7)

where y and x are the means of y and x, respectively.

 EXAMPLE 17.1 Linear Regression
Problem Statement. Fit a straight line to the x and y values in the first two columns 
of Table 17.1.

Solution. The following quantities can be computed:

n = 7 ∑xi yi = 119.5 ∑x2
i = 140

∑xi = 28 x =
28
7

= 4

∑yi = 24 y =
24
7

= 3.428571

Using Eqs. (17.6) and (17.7),

a1 =
7(119.5) − 28(24)

7(140) − (28)2 = 0.8392857

a0 = 3.428571 − 0.8392857(4) = 0.07142857

TABLE 17.1 Computations for an error analysis of the linear fit.

xi yi (yi − y) (yi − a0 − a1xi )2

  1 0.5 8.5765 0.1687
2 2.5 0.8622 0.5625
3 2.0 2.0408 0.3473
4 4.0 0.3265 0.3265
5 3.5 0.0051 0.5896
6 6.0 6.6122 0.7972
7  5.5  4.2908 0.1993
Σ 24.0 22.7143 2.9911
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17.1.3 Quantification of Error of Linear Regression
Any line other than the one computed in Example 17.1 results in a larger sum of the 
squares of the residuals. Thus, the line is unique and in terms of our chosen criterion is 
a “best” line through the points. A number of additional properties of this fit can be 
elucidated by examining more closely the way in which residuals were computed. Recall 
that the sum of the squares is defined as [Eq. (17.3)]

Sr =∑
n

i=1
 e

2
i =∑

n

i=1
(yi − a0 − a1xi)2 (17.8)

 Notice the similarity between Eqs. (PT5.3) and (17.8). In the former case, the square 
of the residual represented the square of the discrepancy between the data and a single 
estimate of the measure of central tendency—the mean. In Eq. (17.8), the square of the 
residual represents the square of the vertical distance between the data and another mea-
sure of central tendency—the straight line (Fig. 17.3).
 The analogy can be extended further for cases where (1) the spread of the points 
around the line is of similar magnitude along the entire range of the data and (2) the 
distribution of these points about the line is normal. It can be demonstrated that if these 
criteria are met, least-squares regression will provide the best (that is, the most likely) 
estimates of a0 and a1 (Draper and Smith 1981). This is called the maximum likelihood 

Therefore, the least-squares fit is

y = 0.07142857 + 0.8392857x

The line, along with the data, is shown in Fig. 17.1c.

FIGURE 17.3
The residual in linear regression represents the vertical distance between a data point and 
the straight line.
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468 LEAST-SQUARES REGRESSION

principle in statistics. In addition, if these criteria are met, a “standard deviation” for the 
regression line can be determined as [compare with Eq. (PT5.2)]

sy∕x = √
Sr

n − 2
 (17.9)

where sy∕x is called the standard error of the estimate. The subscript notation “y∕x” desig-
nates that the error is for a predicted value of y corresponding to a particular value of x. 
Also, notice that we now divide by n − 2 because two data-derived estimates—a0 and 
a1—were used to compute Sr; thus, we have lost two degrees of freedom. As in our discus-
sion of the standard deviation in PT5.2.1, another justification for dividing by n − 2 is that 
there is no such thing as the “spread of data” around a straight line connecting two points. 
Thus, for the case where n = 2, Eq. (17.9) yields a meaningless result of infinity.
 Just as was the case with the standard deviation, the standard error of the estimate 
quantifies the spread of the data. However, sy/x quantifies the spread around the regres-
sion line, as shown in Fig. 17.4b, in contrast to the original standard deviation sy, which  
quantified the spread around the mean (Fig. 17.4a).
 The above concepts can be used to quantify the “goodness” of our fit. This is par-
ticularly useful for comparison of several regressions (Fig. 17.5). To do this, we return 
to the original data and determine the total sum of the squares around the mean for the 
dependent variable (in our case, y). As was the case for Eq. (PT5.3), this quantity is 
designated St. This is the magnitude of the residual error associated with the dependent 
variable prior to regression. After performing the regression, we can compute Sr, the sum 
of the squares of the residuals around the regression line. This characterizes the residual 
error that remains after the regression. It is, therefore, sometimes called the unexplained 

FIGURE 17.4
Regression data showing (a) the spread of the data around the mean of the dependent variable  
and (b) the spread of the data around the best-fit line. The reduction in the spread in going from  
(a) to (b), as indicated by the bell-shaped curves at the right, represents the improvement due to  
linear regression.

(a) (b)

cha32077_ch17_462-495.indd   468 8/22/19   11:56 AM



 17.1 LINEAR REGRESSION 469

sum of the squares. The difference between the two quantities, St − Sr, quantifies the 
improvement, or error reduction, due to describing the data in terms of a straight line 
rather than as an average value. Because the magnitude of this quantity is scale-dependent, 
the difference is normalized to St to yield

r2 =
St − Sr

St

 (17.10)

where r2 is called the coefficient of determination and r is the correlation coefficient 
(=√r2). For a perfect fit, Sr = 0 and r = r2 = 1, signifying that the line explains 100 
percent of the variability of the data. For r = r2 = 0, Sr = St and the fit represents no 
improvement. An alternative formulation for r that is more convenient for computer 
implementation is

r =
nΣxi 

yi − (Σxi) (Σyi)
√nΣx2

i − (Σxi)2 √nΣy2
i − (Σyi)2 (17.11)

y

x

(a)

y

x

(b)

FIGURE 17.5
Examples of linear regression with (a) small and (b) large residual errors.
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 EXAMPLE 17.2 Estimation of Errors for the Linear Least-Squares Fit
Problem Statement. Compute the total standard deviation, the standard error of the 
estimate, and the correlation coefficient for the data in Example 17.1.

Solution. The summations are performed and presented in Table 17.1. The standard 
deviation is [Eq. (PT5.2)]

sy = √
22.7143
7 − 1

= 1.9457

and the standard error of the estimate is [Eq. (17.9)]

sy∕x = √
2.9911
7 − 2

= 0.7735

Thus, because sy∕x < sy, the linear regression model has merit. The extent of the improve-
ment is quantified by [Eq. (17.10)]

r2 =
22.7143 − 2.9911

22.7143
= 0.868

or

r = √0.868 = 0.932

These results indicate that 86.8% of the original uncertainty has been explained by the 
linear model.

 Before proceeding to the computer program for linear regression, a word of caution 
is in order. Although the correlation coefficient provides a handy measure of goodness-
of-fit, you should be careful not to ascribe more meaning to it than is warranted. Just 
because r is “close” to 1 does not mean that the fit is necessarily “good.” For example, 
it is possible to obtain a relatively high value of r when the underlying relationship 
between y and x is not even linear. Draper and Smith (1981) provide guidance and ad-
ditional material regarding assessment of results for linear regression. In addition, at the 
minimum, you should always inspect a plot of the data along with your regression curve. 
As described in the next section, software packages include such a capability.

17.1.4 Computer Program for Linear Regression
It is a relatively trivial matter to develop pseudocode for linear regression (Fig. 17.6). 
As mentioned above, a plotting option is critical to the effective use and interpretation 
of regression. Such capabilities are included in popular packages like MATLAB software 
and Excel. If your computer language has plotting capabilities, we recommend that you 
expand your program to include a plot of y versus x, showing both the data and the 
regression line. The inclusion of the capability will greatly enhance the utility of the 
program in problem-solving contexts.
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 EXAMPLE 17.3 Linear Regression Using the Computer
Problem Statement. We can use software based on Fig. 17.6 to solve a hypothesis-
testing problem associated with the falling parachutist discussed in Chap. 1. A theoreti-
cal mathematical model for the velocity of the parachutist was given as the following 
[Eq. (1.10)]:

υ(t) =
gm

c
 (1 − e(−c∕m)t)

where υ = velocity (m/s), g = gravitational constant (9.8 m/s2), m = mass of the para-
chutist, equal to 68.1 kg, and c = drag coefficient of 12.5 kg/s. The model predicts the 
velocity of the parachutist as a function of time, as described in Example 1.1.
 An alternative empirical model for the velocity of the parachutist is given by

υ(t) =
gm

c
 (

t

3.75 + t) (E17.3.1)

 Suppose that you would like to test and compare the adequacy of these two math-
ematical models. This might be accomplished by measuring the actual velocity of the 

SUB Regress(x, y, n, al, a0, syx, r2)

  sumx = 0: sumxy = 0: st = 0
  sumy = 0: sumx2 = 0: sr = 0
  DOFOR i = 1, n
    sumx = sumx + xi
    sumy = sumy + yi
    sumxy = sumxy + xi*yi
    sumx2 = sumx2 + xi*xi
  END DO
  xm = sumx∕n
  ym = sumy∕n
  a1 = (n*sumxy − sumx*sumy)∕(n*sumx2 − sumx*sumx)
  a0 = ym − a1*xm
  DOFOR i = 1, n
    st = st + (yi − ym)2

    sr = sr + (yi − a1*xi − a0)2

  END DO
  syx = (sr∕(n − 2))0.5

  r2 = (st − sr)∕st

END Regress

FIGURE 17.6
Algorithm for linear regression.
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parachutist at known values of time and comparing these results with the predicted ve-
locities according to each model.
 Such an experimental-data-collection program was implemented, and the results are 
listed in column (a) of Table 17.2. Computed velocities for each model are listed in 
columns (b) and (c).

Solution. The adequacy of the models can be tested by plotting the model-calculated 
velocity versus the measured velocity. Linear regression can be used to calculate the 
slope and the intercept of the plot. This line will have a slope of 1, an intercept of 0, 
and r2 = 1 if the model matches the data perfectly. A significant deviation from these 
values can be used as an indication of the inadequacy of the model.
 Figure 17.7a and b are plots of the line and data for the regressions of columns (b) 
and (c), respectively, versus column (a). For the first model [Eq. (1.10) as depicted in 
Fig. 17.7a],

υmodel = −0.859 + 1.032υmeasure

and for the second model [Eq. (E17.3.1) as depicted in Fig. 17.7b],

υmodel = 5.776 + 0.752υmeasure

These plots indicate that the linear regression between these data and each of the models 
is highly significant. Both models match the data with a correlation coefficient of greater 
than 0.99.
 However, the model described by Eq. (1.10) conforms to our hypothesis test criteria 
much better than that described by Eq. (E17.3.1) because the slope and intercept are 
more nearly equal to 1 and 0, respectively. Thus, although each plot is well described 
by a straight line, Eq. (1.10) appears to be a better model than Eq. (E17.3.1).

TABLE 17.2 Measured and calculated velocities for the falling parachutist.

 Measured v, Model-calculated v, Model-calculated v, 
 m/s m/s [Eq. (1.10)]  m/s [Eq. (E17.3.1)]  
Time, s (a) (b) (c)

 1 10.00 8.953 11.240
 2 16.30 16.405 18.570
 3 23.00 22.607 23.729
 4 27.50 27.769 27.556
 5 31.00 32.065 30.509
 6 35.60 35.641 32.855
 7 39.00 38.617 34.766
 8 41.50 41.095 36.351
 9 42.90 43.156 37.687
 10 45.00 44.872 38.829
 11 46.00 46.301 39.816
 12 45.50 47.490 40.678
 13 46.00 48.479 41.437
 14 49.00 49.303 42.110
 15 50.00 49.988 42.712

cha32077_ch17_462-495.indd   472 8/22/19   11:56 AM



 17.1 LINEAR REGRESSION 473

 Model testing and selection are common and extremely important activities per-
formed in all fields of engineering. The background material provided in this chapter, 
together with your software, should allow you to address many practical problems of this 
type.

55

30Y

5 30
X
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5
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5 30
X
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FIGURE 17.7
(a) Results using linear regression to compare predictions computed with the theoretical 
model [Eq. (1.10)] versus measured values. (b) Results using linear regression to compare pre-
dictions computed with the empirical model [Eq. (E17.3.1)] versus measured values.

 There is one shortcoming with the analysis in Example 17.3. The example was un-
ambiguous because the empirical model [Eq. (E17.3.1)] was clearly inferior to Eq. (1.10). 
Thus, the slope and intercept for the former were so much closer to the desired result of 
1 and 0, that it was obvious which model was superior.
 However, suppose that the slope were 0.85 and the intercept were 2. Obviously this 
would make the conclusion that the slope and intercept were 1 and 0 open to debate. 

(a)

(b)
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474 LEAST-SQUARES REGRESSION

Clearly, rather than relying on a subjective judgment, it would be preferable to base such 
a conclusion on a quantitative criterion.
 This can be done by computing confidence intervals for the model parameters in the 
same way that we developed confidence intervals for the mean in Sec. PT5.2.3. We will 
return to this topic later in this chapter.

17.1.5 Linearization of Nonlinear Relationships
Linear regression provides a powerful technique for fitting a best line to data. However, 
it is predicated on the fact that the relationship between the dependent and independent 
variables is linear. This is not always the case, and the first step in any regression 
analysis should be to plot and visually inspect the data to ascertain whether a linear 
model applies. For example, Fig. 17.8 shows some data whose plot is obviously curvi-
linear. In some cases, techniques such as polynomial regression, which is described in 
Sec. 17.2, are appropriate. For others, transformations can be used to express the data 
in a form that is compatible with linear regression.
 One example is the exponential model,

y = α1e
β1x (17.12)

FIGURE 17.8
(a) Data that are ill-suited for linear least-squares regression. (b) Indication that a parabola is 
 preferable.
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where α1 and β1 are constants. This model is used in many fields of engineering to 
characterize quantities that increase (positive β1) or decrease (negative β1) at a rate that 
is directly proportional to their own magnitude. For example, population growth or ra-
dioactive decay can exhibit such behavior. As depicted in Fig. 17.9a, the equation rep-
resents a nonlinear relationship (for β1 ≠ 0) between y and x.
 Another example of a nonlinear model is the simple power equation,

y = α2xβ2 (17.13)

where α2 and β2 are constant coefficients. This model has wide applicability in all fields 
of engineering. As depicted in Fig. 17.9b, the graph of this equation (for β2 ≠ 0 or 1) 
is nonlinear.

FIGURE 17.9
(a) The exponential equation, (b) the power equation, and (c) the saturation-growth-rate  
equation. Parts (d ), (e), and (f ) are linearized versions of these equations that result  
from simple transformations.
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476 LEAST-SQUARES REGRESSION

 A third example of a nonlinear model is the saturation-growth-rate equation [recall 
Eq. (E17.3.1)],

y = α3 

x

β3 + x
 (17.14)

where α3 and β3 are constant coefficients. This model, which is particularly well-suited for 
characterizing population growth rate under limiting conditions, also represents a nonlinear 
relationship between y and x (Fig. 17.9c) that levels off, or “saturates,” as x increases.
 Nonlinear regression techniques are available to fit these equations to experimental 
data directly. (Note that we will discuss nonlinear regression in Sec. 17.5.) However, a 
simpler alternative is to use mathematical manipulations to transform the equations into 
a linear form. Then, simple linear regression can be employed to fit the equations to data.
 For example, Eq. (17.12) can be linearized by taking its natural logarithm to yield

ln y = ln α1 + β1x ln e

But because ln e = 1,

ln y = ln α1 + β1x (17.15)

Thus, a plot of ln y versus x will yield a straight line with a slope of β1 and an intercept 
of ln α1 (Fig. 17.9d).
 Equation (17.13) is linearized by taking its base-10 logarithm to give

log y = β2 log x + log α2 (17.16)

Thus, a plot of log y versus log x will yield a straight line with a slope of β2 and an 
intercept of log α2 (Fig. 17.9e).
 Equation (17.14) is linearized by inverting it to give

1
y

=
β3

α3
 
1
x

+
1
α3

 (17.17)

Thus, a plot of 1∕y versus l∕x will be linear, with a slope of β3∕α3 and an intercept of 
1∕α3 (Fig. 17.9f ).
 In their transformed forms, these models allow us to use linear regression to evaluate 
the constant coefficients. They could then be transformed back to their original state and used 
for predictive purposes. Example 17.4 illustrates this procedure for Eq. (17.13). In addition, 
Sec. 20.4 provides a more sophisticated engineering example of the same sort of computation.

 EXAMPLE 17.4 Linearization of a Power Equation
Problem Statement. Fit Eq. (17.13) to the data in Table 17.3 using a logarithmic 
transformation of the data.

Solution. Figure 17.10a is a plot of the original data in its untransformed state. Figure 
17.10b shows the plot of the transformed data. A linear regression of the log-transformed 
data yields the result

log y = 1.75 log x − 0.300

cha32077_ch17_462-495.indd   476 8/22/19   11:57 AM
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TABLE 17.3 Data to be fit to the power equation.

x y log x log y

  1 0.5 0 −0.301
2 1.7 0.301 0.226
3 3.4 0.477 0.534
4 5.7 0.602 0.753
5 8.4 0.699 0.922

FIGURE 17.10
(a) Plot of untransformed data with the power equation that fits these data. (b) Plot of 
 transformed data used to determine the coefficients of the power equation.
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478 LEAST-SQUARES REGRESSION

17.1.6 General Comments on Linear Regression
Before proceeding to curvilinear and multiple linear regression, we must emphasize the 
introductory nature of the foregoing material on linear regression. We have focused on 
the simple derivation and practical use of equations to fit data. You should be cognizant 
of the fact that there are theoretical aspects of regression that are of practical importance 
but are beyond the scope of this book. For example, some statistical assumptions that 
are inherent in the linear least-squares procedures are

1. Each x has a fixed value; it is not random and is known without error.
2. The y values are independent random variables and all have the same variance.
3. The y values for a given x must be normally distributed.

 Such assumptions are relevant to the proper derivation and use of regression. For 
example, the first assumption means that (1) the x values must be error-free and (2) the 
regression of y versus x is not the same as x versus y (try Prob. 17.4 at the end of the 
chapter). You are urged to consult other references such as Draper and Smith (1981) to 
appreciate aspects and nuances of regression that are beyond the scope of this book.

 17.2 POLYNOMIAL REGRESSION
In Sec. 17.1, a procedure was developed to derive the equation of a straight line using 
the least-squares criterion. Some engineering data, although exhibiting a marked pattern 
such as seen in Fig. 17.8, are poorly represented by a straight line. For these cases, a 
curve would be better suited to fit these data. As discussed in the previous section, one 
method to accomplish this objective is to use transformations. Another alternative is to 
fit polynomials to the data using polynomial regression.
 The least-squares procedure can be readily extended to fit the data to a higher-order 
polynomial. For example, suppose that we fit a second-order polynomial or quadratic:

y = a0 + a1x + a2x2 + e

For this case the sum of the squares of the residuals is [compare with Eq. (17.3)]

Sr =∑
n

i=1
(yi − a0 − a1xi − a2x2

i )2 (17.18)

Following the procedure of the previous section, we take the derivative of Eq. (17.18) 
with respect to each of the unknown coefficients of the polynomial, as in

∂Sr

∂a0
= −2∑ (yi − a0 − a1xi − a2x2

i )

Thus, the intercept, log α2, equals −0.300, and therefore, by taking the antilogarithm, we 
get α2 = 10−0.3 = 0.5. The slope is β2 = 1.75. Consequently, the power equation is

y = 0.5x1.75

This curve, as plotted in Fig. 17.10a, indicates a good fit.
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∂Sr

∂a1
= −2∑xi(yi − a0 − a1xi − a2x

2
i )

∂Sr

∂a2
= −2∑x2

i (yi − a0 − a1xi − a2x
2
i )

These equations can be set equal to zero and rearranged to develop the following set of 
normal equations:

 (n)a0 + (∑xi)a1 + (∑x2
i )a2 =∑yi

 (∑xi)a0 + (∑x2
i )a1 + (∑x3

i )a2 =∑xiyi  (17.19)

 (∑x2
i )a0 + (∑x3

i )a1 + (∑x4
i )a2 =∑x2

i yi

where all summations are from i = 1 through n. Note that the above three equations are 
linear and have three unknowns: a0, a1, and a2. The coefficients of the unknowns can be 
calculated directly from the observed data.
 For this case, we see that the problem of determining a least-squares second-order 
polynomial is equivalent to solving a system of three simultaneous linear equations. 
Techniques to solve such equations were discussed in Part Three.
 The two-dimensional case can be easily extended to an mth-order polynomial:

y = a0 + a1x + a2x
2 + … + amxm + e

The foregoing analysis can be easily extended to this more general case. Thus, we can 
recognize that determining the coefficients of an mth-order polynomial is equivalent to 
solving a system of m + 1 simultaneous linear equations. For this case, the standard error 
is formulated as

sy/x = √
Sr

n − (m + 1)
 (17.20)

This quantity is divided by n − (m + 1) because (m + 1) data-derived coefficients—a0, 
a1, . . . , am—were used to compute Sr; thus, we have lost m + 1 degrees of freedom. 
In addition to the standard error, a coefficient of determination can also be computed 
for polynomial regression with Eq. (17.10).

 EXAMPLE 17.5 Polynomial Regression
Problem Statement. Fit a second-order polynomial to the data in the first two columns 
of Table 17.4.

Solution. From the given data,

m = 2  ∑xi = 15  ∑x4
i = 979

n = 6  ∑yi = 152.6  ∑xiyi = 585.6

x = 2.5  ∑x2
i = 55  ∑x2

i yi = 2488.8

y = 25.433  ∑x3
i = 225
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480 LEAST-SQUARES REGRESSION

Therefore, the simultaneous linear equations are

[
6 15 55
15 55 225
55 225 979]{

a0

a1

a2
} = {

152.6
585.6
2488.8}

Solving these equations through a technique such as Gauss elimination gives a0 = 2.47857,  
a1 = 2.35929, and a2 = 1.86071. Therefore, the least-squares quadratic equation for this case is

y = 2.47857 + 2.35929x + 1.86071x2

The standard error of the estimate based on the regression polynomial is [Eq. (17.20)]

sy∕x = √
3.74657
6 − 3

= 1.12

TABLE 17.4 Computations for an error analysis of the quadratic least-squares fit.

 xi yi (yi − y)2 (yi − a0 − a1xi − a2xi
2)2

 0 2.1 544.44 0.14332
 1 7.7 314.47 1.00286
 2 13.6 140.03 1.08158
 3 27.2 3.12 0.80491
 4 40.9 239.22 0.61951
 5 61.1 1272.11 0.09439

 Σ 152.6 2513.39 3.74657

FIGURE 17.11
Fit of a second-order polynomial.
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The coefficient of determination is

r2 =
2513.39 − 3.74657

2513.39
= 0.99851

and the correlation coefficient is r = 0.99925.
 These results indicate that 99.851% of the original uncertainty has been explained 
by the model. This result supports the conclusion that the quadratic equation represents 
an excellent fit, as is also evident from Fig. 17.11.

17.2.1 Algorithm for Polynomial Regression
An algorithm for polynomial regression is delineated in Fig. 17.12. Note that the primary 
task is the generation of the coefficients of the normal equations [Eq. (17.19)]. (Pseudocode 
for accomplishing this is presented in Fig. 17.13.) Then, techniques from Part Three can 
be applied to solve these simultaneous equations for the coefficients.
 A potential problem associated with implementing polynomial regression on the 
computer is that the normal equations tend to be ill-conditioned. This is particularly 
true for higher-order versions. For these cases, the computed coefficients may be highly 
susceptible to round-off error, and consequently, the results can be inaccurate. Among 
other things, this problem is related to the structure of the normal equations and to the 
fact that for higher-order polynomials the normal equations can have very large and very 
small coefficients. This is because the coefficients are summations of the data raised 
to powers.
 Although the strategies for mitigating round-off error discussed in Part Three, such as 
pivoting, can help to partially remedy this problem, a simpler alternative is to use a com-
puter with higher precision. Fortunately, most practical problems are limited to lower-order 
polynomials for which round-off is usually negligible. In situations where higher-order 
versions are required, other alternatives are available for certain types of data. However, 
these techniques (such as orthogonal polynomials) are beyond the scope of this book. The 
reader should consult texts on regression, such as Draper and Smith (1981), for additional 
information regarding the problem and possible alternatives.

FIGURE 17.12
Algorithm for implementation of polynomial and multiple linear regression.

Step 1: Input order of polynomial to be fit, m.
Step 2: Input number of data points, n.
Step 3:  If n < m + 1, print out an error message that regression is impossible and terminate 

the process. If n ≥ m + 1, continue.
Step 4: Compute the elements of the normal equation in the form of an augmented matrix.
Step 5:  Solve the augmented matrix for the coefficients a0, a1, a2, . . . , am using an 

elimination method.
Step 6: Print out the coefficients.
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482 LEAST-SQUARES REGRESSION

 17.3 MULTIPLE LINEAR REGRESSION
A useful extension of linear regression is the case where y is a linear function of two or 
more independent variables. For example, y might be a linear function of x1 and x2, as in

y = a0 + a1x1 + a2x2 + e

Such an equation is particularly useful when fitting experimental data, where the variable 
being studied is often a function of two other variables. For this two-dimensional case, 
the regression “line” becomes a “plane” (Fig. 17.14).

DOFOR i = 1, order + 1
  DOFOR j = 1, i
    k = i + j − 2
    sum = 0
    DOFOR ℓ = 1, n
      sum = sum + xℓ

k

    END DO
    ai,j = sum
    aj,i = sum
  END DO
  sum = 0
  DOFOR ℓ = 1, n
    sum = sum + yℓ · xℓ

i−1

  END DO
  ai,order+2 = sum
END DO

FIGURE 17.13
Pseudocode to assemble the  
elements of the normal  
equations for polynomial  
regression.

FIGURE 17.14
Graphical depiction of multiple 
linear regression where y is a 
linear function of x1 and x2.
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 As with the previous cases, the “best” values of the coefficients are determined by 
setting up the sum of the squares of the residuals,

Sr = ∑
n

i=1
(yi − a0 − a1x1i − a2x2i)2 (17.21)

and differentiating with respect to each of the unknown coefficients,

∂Sr

∂a0
= −2∑ (yi − a0 − a1x1i − a2x2i)

∂Sr

∂a1
= −2∑x1i 

(yi − a0 − a1x1i − a2x2i)

∂Sr

∂a2
= −2∑x2i 

(yi − a0 − a1x1i − a2x2i)

The coefficients yielding the minimum sum of the squares of the residuals are obtained 
by setting the partial derivatives equal to zero and expressing the result in matrix form as

[
n Σx1i Σx2i

Σx1i Σx2
1i Σx1i 

x2i

Σx2i Σx1ix2i Σx2
2i

] = {
a0

a1

a2
} = {

Σyi

Σx1i 
yi

Σx2i 
yi

}  (17.22)

 EXAMPLE 17.6 Multiple Linear Regression
Problem Statement. The following data were calculated from the equation y = 5 + 
4x1 − 3x2:

x1 x2 y

0 0 5
2 1 10
2.5 2 9
1 3 0
4 6 3
7 2 27

Use multiple linear regression to fit these data.

Solution. The summations required to develop Eq. (17.22) are computed in Table 17.5. 
The result is

[
6 16.5 14

16.5 76.25 48
14 48 54]{

a0

a1

a2
} = {

54
243.5
100 }

This equation can be solved using a method such as Gauss elimination to give

a0 = 5 a1 = 4 a2 = −3

which are consistent with the original equation from which these data were derived.
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 The foregoing two-dimensional case can be easily extended to m dimensions, as in

y = a0 + a1x1 + a2x2 + … + amxm + e

where the standard error is formulated as

sy∕x = √
Sr

n − (m + 1)

and the coefficient of determination is computed as in Eq. (17.10). An algorithm to set 
up the normal equations is listed in Fig. 17.15.
 Although there may be certain cases where a variable is linearly related to two or 
more other variables, multiple linear regression has additional utility in the derivation of 
power equations of the general form

y = a0 
xa1

1 xa2
2  … xam

m

TABLE 17.5 Computations required to develop the normal equations for Example 17.6.

 y x1 x2 x 1
2 x 2

2 x1x2 x1y x2y

 5 0 0 0 0 0 0 0
 10 2 1 4 1 2 20 10
 9 2.5 2 6.25 4 5 22.5 18
 0 1 3 1 9 3 0 0
 3 4 6 16 36 24 12 18
 27 7 2 49 4 14 189 54

Σ 54 16.5 14 76.25 54 48 243.5 100

DOFOR i = 1, order + 1
  DOFOR j = 1, i
    sum = 0
    DOFOR ℓ = 1, n
      sum = sum + xi−1,ℓ · xj−1,ℓ

    END DO
    ai,j = sum
    aj,i = sum
  END DO
  sum = 0
  DOFOR ℓ = 1, n
    sum = sum + yℓ · xi−1,ℓ

  END DO
  ai,order+2 = sum
END DO

FIGURE 17.15
Pseudocode to assemble the  elements of the normal equations for multiple regression. Note 
that aside from storing the independent variables in x1,i, x2,i, etc., 1’s must be stored in x0,i for 
this algorithm to work.
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Such equations are extremely useful when fitting experimental data. To use multiple 
linear regression, the equation is transformed by taking its logarithm to yield

log y = log a0 + a1 log x1 + a2 log x2 + … + am log xm

 This transformation is similar in spirit to the one used in Sec. 17.1.5 and Example 17.4 
to fit a power equation when y was a function of a single variable x. Section 20.4 provides 
an example of such an application for two independent variables.

 17.4 GENERAL LINEAR LEAST SQUARES
To this point, we have focused on the mechanics of obtaining least-squares fits of some 
simple functions to data. Before turning to nonlinear regression, there are several issues 
that we would like to discuss to enrich your understanding of the preceding material.

17.4.1 General Matrix Formulation for Linear Least Squares
In the preceding pages, we have introduced three types of regression: simple linear, 
polynomial, and multiple linear. In fact, all three belong to the following general linear 
least-squares model:

y = a0 
z0 + a1z1 + a2z2 + … + am 

zm + e (17.23)

where z0, z1, . . . , zm are m + 1 basis functions. It can easily be seen how simple and 
multiple linear regression fall within this model—that is, z0 = 1, z1 = x1, z2 = x2, . . . , 
zm = xm. Further, polynomial regression is also included if the basis functions are simple 
monomials as in z0 = x0 = 1, z1 = x, z2 = x2, . . . , zm = xm.
 Note that the terminology “linear” refers only to the model’s dependence on its 
parameters—that is, the a’s. As in the case of polynomial regression, the functions them-
selves can be highly nonlinear. For example, the z’s can be sinusoids, as in

y = a0 + a1 cos(ωt) + a2 sin(ωt)

Such a format is the basis of Fourier analysis described in Chap. 19.
 On the other hand, a simple-looking model like

f(x) = a0(1 − e−a1x)

is truly nonlinear because it cannot be manipulated into the format of Eq. (17.23). We 
will turn to such models at the end of this chapter.
 For the time being, Eq. (17.23) can be expressed in matrix notation as

{Y} = [Z]{A} + {E} (17.24)

where [Z] is a matrix of the calculated values of the basis functions at the measured 
values of the independent variables,

[Z] =

[

z01 z11 … zm1

z02 z12 … zm2

. . ·

. . ·

. . ·
z0n z1n … zmn

]
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486 LEAST-SQUARES REGRESSION

where m is the number of variables in the model and n is the number of data points. Be-
cause n ≥ m + 1, you should recognize that most of the time, [Z] is not a square matrix.
 The column vector {Y} contains the observed values of the dependent variable

{Y}T =⌊y1 y2 … yn⌋

The column vector {A} contains the unknown coefficients

{A}T =⌊a0 a1 … am⌋

and the column vector {E} contains the residuals

{E}T =⌊e1 e2 … en⌋

 As was done throughout this chapter, the sum of the squares of the residuals for this 
model can be defined as

Sr =∑
n

i=1(
yi −∑

m

j=0
ajzji)

2

This quantity can be minimized by taking its partial derivative with respect to each of 
the coefficients and setting the resulting equations equal to zero. The outcome of this 
process is the normal equations that can be expressed concisely in matrix form as

[[Z]T[Z]]{A} = {[Z ]T{Y}} (17.25)

It can be shown that Eq. (17.25) is, in fact, equivalent to the normal equations developed 
previously for simple linear, polynomial, and multiple linear regression.
 Our primary motivation for the foregoing has been to illustrate the unity among the 
three approaches and to show how they can all be expressed simply in the same matrix 
notation. The matrix notation will also have relevance when we turn to nonlinear regres-
sion in the last section of this chapter.
 From Eq. (PT3.6), recall that the matrix inverse can be employed to solve Eq. (17.25), 
as in

{A} = [[Z]T[Z]]−1{[Z]T{Y}} (17.26)

As we have learned in Part Three, this is an inefficient approach for solving a set of 
simultaneous equations. However, from a statistical perspective, there are a number of 
reasons why we might be interested in obtaining the inverse and examining its coeffi-
cients. These reasons will be discussed next.

17.4.2 Statistical Aspects of Least-Squares Theory
In Sec. PT5.2.1, we reviewed a number of descriptive statistics that can be used to describe 
a sample. These included the arithmetic mean, the standard deviation, and the variance.
 Aside from yielding a solution for the regression coefficients, the matrix formula-
tion of Eq. (17.26) provides estimates of their statistics. It can be shown (Draper and 
Smith 1981) that the diagonal and off-diagonal terms of the matrix [[Z]T[Z]]−1 give, 
respectively, the variances and the covariances1 of the a’s. If the diagonal elements of 
1The covariance is a statistic that measures the dependency of one variable on another. Thus, cov(x, y) indicates 
the dependency of x and y. For example, cov(x, y) = 0 would indicate that x and y are totally independent.
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[[Z]T[Z]]−1 are designated as z−1
i,i , then

var(ai−1) = z−1
i,i s2

y∕x (17.27)

and

cov(ai−1, aj−1) = z−1
i, js

2
y∕x (17.28)

 These statistics have a number of important applications. For our present purposes, 
we will illustrate how they can be used to develop confidence intervals for the intercept 
and slope.
 Using an approach similar to that in Sec. PT5.2.3, it can be shown that lower and upper 
bounds on the intercept can be formulated as (see Milton and Arnold 2002, for details)

L = a0 − tα∕2, n−2  s(a0)  U = a0 + tα∕2, n−2  s(a0) (17.29)

where s(aj) = the standard error of coefficient aj = √var(aj). In a similar manner, lower 
and upper bounds on the slope can be formulated as

L = a1 − tα∕2, n−2 s(a1)  U = a1 + tα∕2, n−2 s(a1) (17.30)

The following example illustrates how these intervals can be used to make quantitative 
inferences related to linear regression.

 EXAMPLE 17.7 Confidence Intervals for Linear Regression
Problem Statement. In Example 17.3, we used regression to develop the following 
relationship between measurements and model predictions:

y = −0.859 + 1.032x

where y = the model predictions and x = the measurements. We concluded that there was a 
good agreement between the two because the intercept was approximately equal to 0 and the 
slope approximately equal to 1. Recompute the regression but use the matrix approach to 
estimate standard errors for the parameters. Then employ these errors to develop confidence 
intervals, and use these to make a probabilistic statement regarding the goodness of fit.

Solution. These data can be written in matrix format for simple linear regression as

[Z] =

[

1 10
1 16.3
1 23
. .
. .
. .
1 50

]
  {Y} =

{

8.953
16.405
22.607

.

.

.
49.988

}
Matrix transposition and multiplication can then be used to generate the normal equations,

[[Z]T[Z]]  {A} = {[Z]T{Y}}

 [
15 548.3

548.3 22191.21]{
a0

a1}
= {

552.741
22421.43}
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Matrix inversion can be used to obtain the slope and intercept:

 {A} = [[Z ]T[Z ]]−1 {[Z]T{Y}}

 = [
0.688414 −0.01701
−0.01701 0.000465]{

552.741
22421.43} = {

−0.85872
1.031592}

Thus, the intercept and the slope are determined as a0 = −0.85872 and a1 = 1.031592, 
respectively. These values in turn can be used to compute the standard error of the estimate 
as sy∕x = 0.863403. This value can be used along with the diagonal elements of the 
matrix inverse to calculate the standard errors of the coefficients,

s(a0) = √z−1
11 s2

y∕x = √0.688414(0.863403)2 = 0.716372

s(a1) = √z−1
22 s2

y∕x = √0.000465(0.863403)2 = 0.018625

 The statistic, tα∕2,n−1 needed for a 95% confidence interval with n − 2 = 15 − 2 = 13 
degrees of freedom can be determined from a statistics table or using software. We used 
an Excel function, TINV, to come up with the proper value, as in

=TINV(0.05,13)

which yielded a value of 2.160368. Equations (17.29) and (17.30) can then be used to 
compute the confidence intervals as

 a0 = −0.85872 ± 2.160368(0.716372)
 = −0.85872 ± 1.547627 = [−2.40634, 0.688912]

 a1 = 1.031592 ± 2.160368(0.018625)
 = 1.031592 ± 0.040237 = [0.991355, 1.071828]

 Notice that the desired values (0 for intercept and slope and 1 for the intercept) fall 
within the intervals. On the basis of this analysis we could make the following statement 
regarding the slope: We have strong grounds for believing that the slope of the true re-
gression line lies within the interval from 0.991355 to 1.071828. Because 1 falls within 
this interval, we also have strong grounds for believing that the result supports the agree-
ment between the measurements and the model. Because zero falls within the intercept 
interval, a similar statement can be made regarding the intercept.

 As mentioned previously in Sec. 17.2.1, the normal equations are notoriously ill-
conditioned. Hence, if solved with conventional techniques such as LU decomposition, 
the computed coefficients can be highly susceptible to round-off error. As a conse-
quence, more sophisticated orthogonalization algorithms, such as QR factorization, are 
available to circumvent the problem. Because these techniques are beyond the scope of 
this book, the reader should consult texts on regression, such as Draper and Smith 
(1981), for additional information regarding the problem and possible alternatives. 
Moler (2004) also provides a nice discussion of the topic with emphasis on the nu-
merical methods.
 The foregoing is a limited introduction to the rich topic of statistical inference and 
its relationship to regression. There are many subleties that are beyond the scope of this 
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book. Our primary motivation has been to illustrate the power of the matrix approach to 
general linear least squares. In addition, it should be noted that software packages such 
as Excel, MATLAB, and Mathcad can generate least-squares regression fits along with 
information relevant to inferential statistics. We will explore some of these capabilities 
when we describe these packages at the end of Chap. 19.

 17.5 NONLINEAR REGRESSION
There are many cases in engineering where nonlinear models must be fit to data. In the 
present context, these models are defined as those that have a nonlinear dependence on 
their parameters. For example,

f(x) = a0(1 − e−a1x) + e (17.31)

This equation cannot be manipulated so that it conforms to the general form of Eq. (17.23).
 As with linear least squares, nonlinear regression is based on determining the values 
of the parameters that minimize the sum of the squares of the residuals. However, for 
the nonlinear case, the solution must proceed in an iterative fashion.
 The Gauss-Newton method is one algorithm for minimizing the sum of the squares 
of the residuals between data and nonlinear equations. The key concept underlying the 
technique is that a Taylor series expansion is used to express the original nonlinear equa-
tion in an approximate, linear form. Then, least-squares theory can be used to obtain new 
estimates of the parameters that move in the direction of minimizing the residuals.
 To illustrate how this is done, first the relationship between the nonlinear equation 
and the data can be expressed generally as

yi = f(xi; a0, a1, … , am) + ei

where yi = a measured value of the dependent variable, f(xi ; a0, a1, … , am) = the equa-
tion that is a function of the independent variable xi and a nonlinear function of the 
parameters a0, a1, … , am, and ei = a random error. For convenience, this model can be 
expressed in abbreviated form by omitting the parameters,

yi = f(xi) + ei (17.32)

 The nonlinear model can be expanded in a Taylor series around the parameter values 
and curtailed after the first derivative. For example, for a two-parameter case,

f(xi)j+1 = f(xi)j +
∂f(xi)j

∂a0
 Δa0 +

∂f(xi)j

∂a1
 Δa1 (17.33)

where j = the initial guess, j + 1 = the prediction, Δa0 = a0, j+1 − a0, j, and Δa1 = a1, j+1 − a1, j. 
Thus, we have linearized the original model with respect to the parameters. Equation 
(17.33) can be substituted into Eq. (17.32) to yield

yi − f(xi)j =
∂f(xi)j

∂a0
 Δa0 +

∂f(xi)j

∂a1
 Δa1 + ei

or in matrix form [compare with Eq. (17.24)],

{D} = [Zj]{ΔA} + {E} (17.34)
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490 LEAST-SQUARES REGRESSION

Here [Zj] is the matrix of partial derivatives of the function evaluated at the initial guess j,

[Zj] =

[

∂f1∕∂a0 ∂f1∕∂a1

∂f2∕∂a0 ∂f2∕∂a1

. .

. .

. .
∂fn∕∂a0 ∂fn∕∂a1

]
where n = the number of data points and ∂fi∕∂ak = the partial derivative of the function 
with respect to the kth parameter evaluated at the ith data point. The vector {D} contains 
the differences between the measurements and the function values,

{D} =

{

y1 − f(x1)
y2 − f(x2)

.

.

.
yn − f(xn)

}
and the vector {ΔA} contains the changes in the parameter values,

{ΔA} =

{

Δa0

Δa1

.

.

.
Δam

}
Applying linear least-squares theory to Eq. (17.34) results in the following normal equa-
tions [recall Eq. (17.25)]:

[[Zj]T[Zj]]{ΔA} = {[Zj]T{D}} (17.35)

Thus, the approach consists of solving Eq. (17.35) for {ΔA}, which can be employed to 
compute improved values for the parameters, as in

a0, j+1 = a0, j + Δa0

and

a1, j+1 = a1, j + Δa1

This procedure is repeated until the solution converges—that is, until

∣εa∣ k = ∣ ak, j+1 − ak, j

ak, j+1
∣ 100% (17.36)

falls below an acceptable stopping criterion.
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 EXAMPLE 17.8 Gauss-Newton Method
Problem Statement. Fit the function f(x; a0, a1) = a0(1 − e−a1x) to these data:

x 0.25 0.75 1.25 1.75 2.25

y 0.28 0.57 0.68 0.74 0.79

Use initial guesses of a0 = 1.0 and a1 = 1.0 for the parameters. Note that for these 
guesses, the initial sum of the squares of the residuals is 0.0248.

Solution. The partial derivatives of the function with respect to the parameters are

∂f

∂a0
= 1 − e−a1x (E17.8.1)

and

∂f

∂a1
= a0xe−a1x (E17.8.2)

Equations (E17.8.1) and (E17.8.2) can be used to evaluate the matrix:

[Z0] =

[

0.2212 0.1947
0.5276 0.3543
0.7135 0.3581
0.8262 0.3041
0.8946 0.2371

]
This matrix multiplied by its transpose results in

[Z0]T[Z0] = [
2.3193 0.9489
0.9489 0.4404]

which in turn can be inverted to yield

[[Z0]T[Z0]]−1 = [
3.6397 −7.8421

−7.8421 19.1678]

The vector {D} consists of the differences between the measurements and the model 
predictions,

{D} =

{

0.28 − 0.2212
0.57 − 0.5276
0.68 − 0.7135
0.74 − 0.8262
0.79 − 0.8946

}
=

{

0.0588
0.0424

−0.0335
−0.0862
−0.1046

}
It is multiplied by [Z0]T to give

[Z0]T{D} = [
−0.1533
−0.0365]
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The vector {ΔA} is then calculated by solving Eq. (17.35) for

ΔA = {
−0.2714

0.5019}

which can be added to the initial parameter guesses to yield

{
a0

a1}
= {

1.0
1.0} + {

−0.2714
0.5019} = {

0.7286
1.5019}

Thus, the improved estimates of the parameters are a0 = 0.7286 and a1 = 1.5019. The 
new parameters result in a sum of the squares of the residuals equal to 0.0242. Equation 
(17.36) can be used to compute ε0 and ε1 as 37% and 33%, respectively. The computation 
would then be repeated until these values fell below the prescribed stopping criterion. 
The final result is a0 = 0.79186 and a1 = 1.6751. These coefficients give a sum of the 
squares of the residuals of 0.000662.

 A potential problem with the Gauss-Newton method as developed to this point is 
that the partial derivatives of the function may be difficult to evaluate. Consequently, 
many computer programs use difference equations to approximate the partial derivatives. 
One such equation is

∂fi

∂ak

 ≅  
f(xi; a0, … , ak + δak, … , am) − f(xi; a0, … , ak, … , am)

δak

 (17.37)

where δ = a small fractional perturbation.
 The Gauss-Newton method has a number of other possible shortcomings:

1. It may converge slowly.
2. It may oscillate widely, that is, continually change directions.
3. It may not converge at all.

Modifications of the method (Booth and Peterson 1958; Hartley 1961) have been devel-
oped to remedy the shortcomings.
 In addition, although there are several approaches expressly designed for regres-
sion, a more general approach is to use nonlinear optimization routines as described 
in Part Four. To do this, a guess for the parameters is made, and the sum of the 
squares of the residuals is computed. For example, for Eq. (17.31) it would be com-
puted as

Sr =∑
n

i=1
[yi − a0(1 − e−a1xi)]2 (17.38)

Then, the parameters would be adjusted systematically to minimize Sr using search tech-
niques of the type described previously in Chap. 14. We will illustrate how this is done 
when we describe software applications at the end of Chap. 19.
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PROBLEMS

17.1 Given these data

  0.90 1.42                1.30 1.55                1.63
   1.32                1.35                1.47 1.95                1.66
   1.96                 1.47 1.92                1.35 1.05
   1.85                 1.74 1.65                1.78                 1.71
  2.29                1.82 2.06               2.14                 1.27

determine (a) the mean, (b) the standard deviation, (c) the variance, 
(d) the coefficient of variation, and (e) the 95% confidence interval 
for the mean. (f) Construct a histogram using a range from 0.6 to 
2.4 with intervals of 0.2.
17.2 Given these data

28.65    26.55    26.65 27.65 27.35 28.35 26.85
   28.65 29.65 27.85 27.05    28.25 28.85    26.75
    27.65    28.45    28.65    28.45     31.65 26.35      27.75

29.25     27.65    28.65 27.65    28.55     27.65     27.25

determine (a) the mean, (b) the standard deviation, (c) the variance, 
(d) the coefficient of variation, and (e) the 90% confidence interval 
for the mean. (f) Construct a histogram. Use a range from 26 to 32 
with increments of 0.5. (g) Assuming that the distribution is normal 
and that your estimate of the standard deviation is valid, compute 
the range (that is, the lower and the upper values) that encompasses 
68% of the readings. Determine whether this is a valid estimate for 
the data in this problem.
17.3 Use least-squares regression to fit a straight line to

x 0 2 4 6 9 11 12 15 17 19

y 4 6 7 6 9 8 8 10 12 12

Along with the slope and intercept, compute the standard error of 
the estimate and the correlation coefficient. Plot the data and the 
regression line. Then repeat the problem, but regress x versus y—
that is, switch the variables. Interpret your results.
17.4 Use least-squares regression to fit a straight line to

x 6 7 11 15 17 21 23 29 29 37 39

y 29 21 29 14 21 15 7 7 13 0 3

Along with the slope and the intercept, compute the standard error of 
the estimate and the correlation coefficient. Plot the data and the re-
gression line. If someone made an additional measurement of x = 10, 
y = 10, would you suspect, based on a visual assessment and the 
standard error, that the measurement was valid or faulty? Justify your 
conclusion.
17.5 Using the same approach as was employed to derive Eqs. (17.15) 
and (17.16), derive the least-squares fit of the following model:

y = a1x + e

That is, determine the slope that results in the least-squares fit for a 
straight line with a zero intercept. Fit the following data with this 
model and display the result graphically:

x 2 4 6 7 10 11 14 17 20

y 1 2 5 2 8 7 6 9 12

17.6 Use least-squares regression to fit a straight line to

x 1 2 3 4 5 6 7 8 9

y 1 1.5 2 3 4 5 8 10 13

(a) Along with the slope and intercept, compute the standard error 
of the estimate and the correlation coefficient. Plot the data and 
the straight line. Assess the fit.

(b) Recompute (a), but use polynomial regression to fit a parabola 
to the data. Compare the results with those of (a).

17.7 Fit the following data with (a) a saturation-growth-rate model, 
(b) a power equation, and (c) a parabola. In each case, plot the data 
and the equation.

x 0.75 2 3 4 6 8 8.5

y 1.2 1.95 2 2.4 2.5 2.7 2.6

17.8 Fit the following data with the power model (y = axb). Use the 
resulting power equation to predict y at x = 9:

x 2.5 3.5 5 6 7.5 10 12.5 15 17.5 20

y 13 11 8.5 8.2 7 6.2 5.2 4.8 4.6 4.3

17.9 Fit an exponential model to

x 0.4 0.8 1.2 1.6 2 2.3

y 800 980 1500 1945 2900 3600

Plot the data and the equation on both standard and semilogarithmic 
graph paper.
17.10 Rather than using the base-e exponential model [Eq. (17.12)], 
a common alternative is to use a base-10 model,

y = α510β5x

When used for curve fitting, this equation yields identical results 
to the base-e version, but the value of the exponent parameter (β5) 
will differ from that estimated with Eq. (17.12) (β1). Use the base-10 
version to solve Prob. 17.9. In addition, develop a formulation to 
relate β1 to β5.
17.11 Beyond the examples in Fig. 17.10, there are other models 
that can be linearized using transformations. For example,

y = α4xeβ4x

cha32077_ch17_462-495.indd   493 8/22/19   11:57 AM



494 LEAST-SQUARES REGRESSION

Develop plots of your fit along with the data for both the original 
and the linearized equations. 

t 0 0.5 1 1.5 2 3 4 5

c 3.26 2.09 1.62 1.48 1.17 1.06 0.9 0.85

17.16 The following data are provided:

x 1 2 3 4   5

y 2.2 2.8 3.6 4.5    5.5

You want to use least-squares regression to fit these data with the 
following model:

y = a + bx +
c

x

Determine the coefficients by setting up and solving Eq. (17.25).
17.17 Given these data

x 5 10 15 20 25 30 35 40 45 50

y 17 24 31 33 37 37 40 40 42 41

use least-squares regression to fit (a) a straight line, (b) a power 
equation, (c) a saturation-growth-rate equation, and (d) a parabola. 
Plot the data along with all the curves. Is any one of the curves 
 superior? If so, justify.
17.18 Fit a cubic equation to the following data:

x 3 4 5 7 8 9 11 12

y 1.6 3.6 4.4 3.4 2.2 2.8 3.8 4.6

Along with the coefficients, determine r2 and sy∕x.
17.19 Use multiple linear regression to fit

x1 0 1 1 2 2 3 3 4 4

x2 0 1 2 1 2 1 2 1 2

y 15.1 17.9 12.7 25.6 20.5 35.1 29.7 45.4 40.2

Compute the coefficients, the standard error of the estimate, and 
the correlation coefficient.
17.20 Use multiple linear regression to fit

x1 0 0 1 2 0 1 2 2 1

x2 0 2 2 4 4 6 6 2 1

y 14 21 11 12 23 23 14 6 11

Compute the coefficients, the standard error of the estimate, and 
the correlation coefficient.
17.21 Use nonlinear regression to fit a parabola to the following 
data:

x 0.2 0.5 0.8 1.2 1.7 2 2.3

y 500 700 1000 1200 2200 2650 3750

Linearize this model and use it to estimate α4 and β4 based on the 
following data. Develop a plot of your fit along with the data.

x 0.1 0.2 0.4 0.6 0.9 1.3 1.5 1.7     1.8

y 0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28  0.18

17.12 An investigator has reported the data tabulated below for an 
experiment to determine the growth rate of bacteria k (per day) as a 
function of oxygen concentration c (mg/L). It is known that such 
data can be modeled by the following equation:

k =
kmaxc

2

cs + c2

where cs and kmax are parameters. Use a transformation to linearize 
this equation. Then use linear regression to estimate cs and kmax and 
predict the growth rate at c = 2 mg/L.

c 0.5 0.8 1.5 2.5      4

k 1.1 2.4 5.3 7.6     8.9

17.13 An investigator has reported the data tabulated below. It is 
known that such data can be modeled by the following equation:

x = e(y−b)∕a

where a and b are parameters. Use a transformation to linearize this 
equation and then employ linear regression to determine a and b. 
Based on your analysis, predict y at x = 2.6.

x 1 2 3 4    5

y 1 3.8 5.9 7    8

17.14 It is known that the data tabulated below can be modeled by 
the following equation:

y = (
a + √x

b√x
 )

2

Use a transformation to linearize this equation and then employ 
linear regression to determine the parameters a and b. Based on 
your analysis, predict y at x = 1.6.

x 0.5 1 2 3    4

y 10.4 5.8 3.3 2.4    2

17.15 The following model applies to third-order chemical reac-
tions in batch reactors:

c = c0 

1
√1 + 2kc2

0t

where c = concentration (mg/L), c0 = initial concentration (mg/L), 
k = reaction rate (L2/(mg2 d)), and t = time (d). Linearize this 
model and use it to estimate k and c0 based on the following data. 
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17.29 An object is suspended in a wind tunnel and the force mea-
sured for various levels of wind velocity. The results are tabulated 
below.

v, m/s 10 20 30 40 50 60 70 80

F, N 25 70 380 550 610 1220 830 1450

Use least-squares regression to fit these data with (a) a straight line, 
(b) a power equation based on log transformations, and (c) a power 
model based on nonlinear regression. Display the results graphically.
17.30 Fit a power model to the data from Prob. 17.29, but use 
 natural logarithms to perform the transformations.
17.31 Derive the least-squares fit of the following model:

y = a1x + a2x
2 + e

That is, determine the coefficients that result in the least-squares fit 
for a second-order polynomial with a zero intercept. Test the ap-
proach by using it to fit the data from Prob. 17.29.
17.32 In Prob. 17.11 we used transformations to linearize and fit 
the following model:

y = α4xeβ4x

Use nonlinear regression to estimate α4 and β4 based on the follow-
ing data. Develop a plot of your fit along with the data.

x 0.1 0.2 0.4 0.6 0.9 1.3 1.5 1.7 1.8

y 0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28 0.18

17.33 Table P17.33 lists the 2015 world record times and holders 
for outdoor running. Note that all but the 100 m and the marathon 
(42,195 m) are run on oval tracks. Fit a power model for each gender 
and use it to predict the record time for a half marathon (21,097.5 m). 
Note that the actual records for the half marathon are 3503 s (Tadese) 
and 3909 s (Kiplagat) for men and women, respectively.

17.22 Use nonlinear regression to fit a saturation-growth-rate 
equation to the data in Prob. 17.17.
17.23 Recompute the regression fits from Probs. (a) 17.3 and  
(b) 17.18 using the matrix approach. Estimate the standard errors 
and develop 90% confidence intervals for the coefficients.
17.24 Develop, debug, and test a program in either a high-level 
language or a macro language of your choice to implement linear 
regression. Among other things: (a) include statements to docu-
ment the code and (b) determine the standard error and the coeffi-
cient of determination.
17.25 A material is tested for cyclic fatigue failure, whereby a 
stress, in MPa, is applied to the material and the number of cycles 
needed to cause failure is measured. The results are in the table 
below. When a log-log plot of stress versus cycles is generated, the 
data trend shows a linear relationship. Use least-squares regression 
to determine a best-fit equation for these data.

# of cycles 1 10 100 1000 10,000 100,000 1,000,000

Stress, MPa 1100 1000 925 800 625 550 420

17.26 The following data show the relationship between the vis-
cosity of SAE 70 oil and temperature. After taking the log of the 
data, use linear regression to find the equation of the line that best 
fits the data and the r2 value.

Temperature, °C 26.67 93.33 148.89 315.56

Viscosity, μ, N s/m2 1.35 0.085 0.012 0.00075

17.27 The data below represent the bacterial growth in a liquid 
culture over a number of days.

Day 0 4 8 12 16 20

106 organisms 67 84 98 125 149 185

Find a best-fit equation to the data trend. Try several possibilities—
linear, parabolic, and exponential. Use the software package of 
your choice to find the best equation to predict the amount of bac-
teria after 40 days.
17.28 The concentration of E. coli bacteria in a swimming area is 
monitored after a storm:

t (hr) 4 8 12 16 20 24

c (CFU∕100 mL) 1600 1320 1000 890 650 560

The time is measured in hours following the end of the storm and 
the unit CFU is a “colony forming unit.” Use these data to estimate 
(a) the concentration at the end of the storm (t = 0) and (b) the time 
at which the concentration will reach 200 CFU∕100 mL. Note that 
your choice of model should be consistent with the fact that nega-
tive concentrations are impossible and that the bacteria concentra-
tion always decreases with time.

TABLE P17.33  World record times and holders for 
outdoor running in 2015

  Men’s  Women’s 
Event (m) Time (s) record holder Time (s) record holder

 100 9.58 Bolt 10.49 Griffith-Joyner
 200 19.19 Bolt 21.34 Griffith-Joyner
 400 43.18 Johnson 47.60 Koch
 800 100.90 Rudisha 113.28 Kratochvilova
 1000 131.96 Ngeny 148.98 Masterkova
 1500 206.00 El Guerrouj 230.07 Dibaba
 2000 284.79 El Guerrouj 325.35 O’Sullivan
 5000 757.40 Bekele 851.15 Dibaba
 10,000 1577.53 Bekele 1771.78 Wang
 20,000 3386.00 Gebrselassie 3926.60 Loroupe
 42,195 7377.00 Kimetto 8125.00 Radcliffe
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18
Interpolation

You will frequently have occasion to estimate intermediate values between precise data 
points. The most common method used for this purpose is polynomial interpolation. 
Recall that the general formula for an nth-order polynomial is

f(x) = a0 + a1x + a2x
2 + … + anx

n (18.1)

For n + 1 data points, there is one and only one polynomial of order n that passes through 
all the points. For example, there is only one straight line (that is, a first-order polyno-
mial) that connects two points (Fig. 18.1a). Similarly, only one parabola connects a set 
of three points (Fig. 18.lb). Polynomial interpolation consists of determining the unique 
nth-order polynomial that fits n + 1 data points. This polynomial then provides a formula 
to compute intermediate values.
 Although there is one and only one nth-order polynomial that fits n + 1 points, there 
are a variety of mathematical formats in which this polynomial can be expressed. In this 
chapter, we will describe two alternatives that are well-suited for computer implementa-
tion: the Newton and the Lagrange polynomials.

FIGURE 18.1
Examples of interpolating polynomials: (a) first-order (linear) connecting two points, (b) sec-
ond-order (quadratic or parabolic) connecting three points, and (c) third-order (cubic) con-
necting four points.

(a) (b) (c)
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 18.1 NEWTON’S DIVIDED-DIFFERENCE INTERPOLATING 
POLYNOMIALS
As stated above, there are a variety of alternative forms for expressing an interpolating 
polynomial. Newton’s divided-difference interpolating polynomial is among the most 
popular and useful forms. Before presenting the general equation, we will introduce the 
first- and second-order versions because of their simple visual interpretation.

18.1.1 Linear Interpolation
The simplest form of interpolation is to connect two data points with a straight line. This tech-
nique, called linear interpolation, is depicted graphically in Fig. 18.2. From similar triangles,

f1(x) − f(x0)
x − x0

=
f(x1) − f(x0)

x1 − x0

which can be rearranged to yield

f1(x) = f(x0) +
f(x1) − f(x0)

x1 − x0
 (x − x0) (18.2)

which is a linear-interpolation formula. The notation f1(x) designates that this is a first-
order interpolating polynomial. Notice that besides representing the slope of the line 
connecting the points, the term [ f(x1) − f(x0)]∕(x1 − x0) is a finite-divided-difference 

FIGURE 18.2
Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles 
used to derive the linear-interpolation formula [Eq. (18.2)].

f (x)

xx1xx0

f (x1)

f (x0)

f1(x)
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approximation of the first derivative [recall Eq. (4.17)]. In general, the smaller the inter-
val between the data points, the better the approximation. This is due to the fact that, as 
the interval decreases, a continuous function will be better approximated by a straight 
line. This characteristic is demonstrated in the following example.

 EXAMPLE 18.1 Linear Interpolation
Problem Statement. Estimate the natural logarithm of 2 using linear interpolation. 
First, perform the computation by interpolating between ln 1 = 0 and ln 6 = 1.791759. 
Then, repeat the procedure, but use a smaller interval from ln 1 to ln 4 (1.386294). Note 
that the true value of ln 2 is 0.6931472.

Solution. We use Eq. (18.2) and a linear interpolation for ln 2 from x0 = 1 to x1 = 6 
to give

f1(2) = 0 +
1.791759 − 0

6 − 1
 (2 − 1) = 0.3583519

which represents an error of εt = 48.3%. Using the smaller interval from x0 = 1 to x1 = 4 
yields

f1(2) = 0 +
1.386294 − 0

4 − 1
 (2 − 1) = 0.4620981

Thus, using the shorter interval reduces the percent relative error to εt = 33.3%. Both 
interpolations are shown in Fig. 18.3, along with the true function.

FIGURE 18.3
Two linear interpolations to estimate ln 2. Note how the smaller interval provides a better  
estimate.

f (x)

f (x) = ln x

f1(x)
True
value

Linear estimates

x50

2

0

1
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18.1.2 Quadratic Interpolation
The error in Example 18.1 resulted from our approximating a curve with a straight line. 
Consequently, a strategy for improving the estimate is to introduce some curvature into 
the line connecting the points. If three data points are available, this can be accomplished 
with a second-order polynomial (also called a quadratic polynomial, or a parabola). A 
particularly convenient form for this purpose is

f2(x) = b0 + b1(x − x0) + b2(x − x0) (x − x1) (18.3)

Note that although Eq. (18.3) might seem to differ from the general polynomial [Eq. (18.1)], 
the two equations are equivalent. This can be shown by multiplying the terms in 
Eq.  (18.3) to yield

f2(x) = b0 + b1x − b1x0 + b2x
2 + b2x0x1 − b2xx0 − b2xx1

or, collecting terms,

f2(x) = a0 + a1x + a2x
2

where

a0 = b0 − b1x0 + b2x0x1

a1 = b1 − b2x0 − b2x1

a2 = b2

Thus, Eqs. (18.1) and (18.3) are alternative, equivalent formulations of the unique second-
order polynomial joining the three points.
 A simple procedure can be used to determine the values of the coefficients. For b0, 
Eq. (18.3) with x = x0 can be used to compute

b0 = f(x0) (18.4)

Equation (18.4) can be substituted into Eq. (18.3), which can be evaluated at x = x1 for

b1 =
f(x1) − f(x0)

x1 − x0
 (18.5)

Finally, Eqs. (18.4) and (18.5) can be substituted into Eq. (18.3), which can be evaluated 
at x = x2 and solved (after some algebraic manipulations) for

b2 =

f(x2) − f(x1)
x2 − x1

−
f(x1) − f(x0)

x1 − x0

x2 − x0
 (18.6)

 Notice that, as was the case with linear interpolation, b1 still represents the slope of 
the line connecting points x0 and x1. Thus, the first two terms of Eq. (18.3) are equiva-
lent to linear interpolation from x0 to x1, as specified previously in Eq. (18.2). The last 
term, b2(x − x0)(x − x1), introduces the second-order curvature into the formula.
 Before illustrating how to use Eq. (18.3), we should examine the form of the coef-
ficient b2. It is very similar to the finite-divided-difference approximation of the second 
derivative introduced previously in Eq. (4.24). Thus, Eq. (18.3) is beginning to manifest 
a structure that is very similar to the Taylor series expansion. This observation will be 
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explored further when we relate Newton’s interpolating polynomials to the Taylor series 
in Sec. 18.1.4. But first, we will do an example that shows how Eq. (18.3) is used to 
interpolate among three points.

 EXAMPLE 18.2 Quadratic Interpolation
Problem Statement. Fit a second-order polynomial to the three points used in  
Example 18.1:

x0 = 1  f(x0) = 0
x1 = 4  f(x1) = 1.386294
x2 = 6  f(x2) = 1.791759

Use the polynomial to evaluate ln 2.

Solution. Applying Eq. (18.4) yields

b0 = 0

Equation (18.5) yields

b1 =
1.386294 − 0

4 − 1
= 0.4620981

and Eq. (18.6) gives

b2 =

1.791759 − 1.386294
6 − 4

− 0.4620981

6 − 1
= −0.0518731

FIGURE 18.4
The use of quadratic interpolation to estimate ln 2. The linear interpolation from x = 1 to 4 is 
also included for comparison.

f (x)

f (x) = ln x

f2(x)

True
value

Linear estimate

Quadratic estimate

x50
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Substituting these values into Eq. (18.3) yields the quadratic formula

f2(x) = 0 + 0.4620981(x − 1) − 0.0518731(x − 1)(x − 4)

which can be evaluated at x = 2 to give

f2(2) = 0.5658444

which represents a relative error of εt = 18.4%. Thus, the curvature introduced by the 
quadratic formula (Fig. 18.4) improves the interpolation compared with the result obtained 
using straight lines in Example 18.1 and Fig. 18.3.

18.1.3 General Form of Newton’s Interpolating Polynomials
The preceding analysis can be generalized to fit an nth-order polynomial to n + 1 data 
points. The nth-order polynomial is

fn(x) = b0 + b1(x − x0) + … + bn(x − x0) (x − x1) … (x − xn−1) (18.7)

As was done previously with the linear and quadratic interpolations, data points can be 
used to evaluate the coefficients b0, b1, . . . , bn. For an nth-order polynomial, n + 1 data 
points are required: [x0, f(x0)], [x1, f(x1)], . . . , [xn, f(xn)]. We use these data points and 
the following equations to evaluate the coefficients:

b0 = f(x0)  (18.8)

b1 = f [x1, x0]  (18.9)

b2 = f [x2, x1, x0] (18.10)

    .
    .
    .
bn = f [xn, xn−1, … , x1, x0] (18.11)

where the bracketed function evaluations are finite divided differences. For example, the 
first finite divided difference is represented generally as

f [xi, xj] =
f(xi) − f(xj)

xi − xj
 (18.12)

The second finite divided difference, which represents the difference of two first divided 
differences, is expressed generally as

f [xi, xj, xk] =
f [xi, xj] − f [xj, xk]

xi − xk
 (18.13)

Similarly, the nth finite divided difference is

f [xn, xn−1, … , x1, x0] =
f [xn, xn−1, … , x1] − f [xn−1, xn−2, … , x0]

xn − x0
 (18.14)

cha32077_ch18_496-534.indd   501 9/3/19   2:20 PM



502 INTERPOLATION

 These differences can be used to evaluate the coefficients in Eqs. (18.8) through 
(18.11), which can then be substituted into Eq. (18.7) to yield the interpolating 
polynomial

 fn(x) = f(x0) + (x − x0)
 
f [x1, x0] + (x − x0) (x − x1)

 
f [x2, x1, x0]

          + … + (x − x0) (x − x1) … (x − xn−1)
 
f [xn, xn−1, … , x0] (18.15)

which is called Newton’s divided-difference interpolating polynomial. It should be noted 
that it is not necessary that the data points used in Eq. (18.15) be equally spaced or that 
the abscissa values necessarily be in ascending order, as illustrated in the following 
 example. Also, notice how Eqs. (18.12) through (18.14) are recursive—that is, higher-
order differences are computed by taking differences of lower-order differences (Fig. 18.5). 
This property will be exploited when we develop an efficient computer program in 
Sec. 18.1.5 to implement the method.

 EXAMPLE 18.3 Newton’s Divided-Difference Interpolating Polynomials
Problem Statement. In Example 18.2, data points at x0 = 1, x1 = 4, and x2 = 6 were 
used to estimate ln 2 with a parabola. Now, adding a fourth point, [x3 = 5; f(x3) = 1.609438], 
estimate ln 2 with a third-order Newton’s interpolating polynomial.

Solution. The third-order polynomial, Eq. (18.7) with n = 3, is

f3(x) = b0 + b1(x − x0) + b2(x − x0) (x − x1) + b3(x − x0) (x − x1) (x − x2)

The first finite divided differences for the problem are [Eq. (18.12)]

f [x1, x0] =
1.386294 − 0

4 − 1
= 0.4620981

f [x2, x1] =
1.791759 − 1.386294

6 − 4
= 0.2027326

f [x3, x2] =
1.609438 − 1.791759

5 − 6
= 0.1823216

FIGURE 18.5
Graphical depiction of the recursive nature of finite divided differences.

i xi f(xi) First Second Third

0 x0 f (x0) f [x1, x0] f [x2, x1, x0] f [x3, x2, x1, x0]
  1 x1 f (x1) f [x2, x1] f [x3, x2, x1]
2 x2 f (x2) f [x3, x2]
3 x3 f (x3)
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The second finite divided differences are [Eq. (18.13)]

f [x2, x1, x0] =
0.2027326 − 0.4620981

6 − 1
= −0.05187311

f [x3, x2, x1] =
0.1823216 − 0.2027326

5 − 4
= −0.02041100

The third finite divided difference is [Eq. (18.14) with n = 3]

f [x3, x2, x1, x0] =
−0.02041100 − (−0.05187311)

5 − 1
= 0.007865529

The results for f [x1, x0], f [x2, x1, x0], and f [x3, x2, x1, x0] represent the coefficients b1, b2, 
and b3, respectively, of Eq. (18.7). With b0 = f(x0) = 0.0, Eq. (18.7) is

f3(x) = 0 + 0.4620981(x − 1) − 0.05187311(x − 1)(x − 4)
         + 0.007865529(x − 1)(x − 4)(x − 6)

which can be used to evaluate f3(2) = 0.6287686, which represents a relative error of 
εt = 9.3%. The complete cubic polynomial is shown in Fig. 18.6.

f (x)

f (x) = ln x

f3(x)

True
value

Cubic
estimate

x50

2

0

1

FIGURE 18.6
The use of cubic interpolation to estimate ln 2.

18.1.4 Errors of Newton’s Interpolating Polynomials
Notice that the structure of Eq. (18.15) is similar to the Taylor series expansion in the 
sense that terms are added sequentially to capture the higher-order behavior of the 
 underlying function. These terms are finite divided differences and, thus, represent 
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 approximations of the higher-order derivatives. Consequently, as with the Taylor series, 
if the true underlying function is an nth-order polynomial, the nth-order interpolating 
polynomial based on n + 1 data points will yield exact results.
 Also, as was the case with the Taylor series, a formulation for the truncation error 
can be obtained. Recall from Eq. (4.6) that the truncation error for the Taylor series can 
be expressed generally as

Rn =
f  

(n+1)(ξ)
(n + 1)!

 (xi+1 − xi)n+1 (4.6)

where ξ is somewhere in the interval xi to xi+1. For an nth-order interpolating polynomial, 
an analogous relationship for the error is

Rn =
f  

(n+1)(ξ)
(n + 1)!

 (x − x0) (x − x1) … (x − xn) (18.16)

where ξ is somewhere in the interval containing the unknown and the data. For this 
formula to be of use, the function in question must be known and differentiable. This is 
not usually the case. Fortunately, an alternative formulation is available that does not 
require prior knowledge of the function. Rather, it uses a finite divided difference to 
approximate the (n + 1)th derivative,

Rn = f [x, xn, xn−1, … , x0] (x − x0) (x − x1) … (x − xn) (18.17)

where f[x, xn, xn−1, . . . , x0] is the (n + 1)th finite divided difference. Because Eq. (18.17) 
contains the unknown f(x), it cannot be solved for the error. However, if an additional 
data point f(xn+1) is available, Eq. (18.17) can be used to estimate the error, as in

Rn ≅  f [xn+1, xn, xn−1, … , x0] (x − x0) (x − x1) … (x − xn) (18.18)

 EXAMPLE 18.4 Error Estimation for Newton’s Polynomial
Problem Statement. Use Eq. (18.18) to estimate the error for the second-order poly-
nomial interpolation of Example 18.2. Use the additional data point f(x3) = f(5) = 
1.609438 to obtain your results.

Solution. Recall that in Example 18.2, the second-order interpolating polynomial provided 
an estimate of f2(2) = 0.5658444, which represents an error of 0.6931472 − 0.5658444 = 
0.1273028. If we had not known the true value, as is most usually the case, Eq. (18.18), 
along with the additional value at x3, could have been used to estimate the error, as in

R2 = f [x3, x2, x1, x0] (x − x0) (x − x1) (x − x2)

or

R2 = 0.007865529(x − 1)(x − 4)(x − 6)

where the value for the third-order finite divided difference is as computed previously 
in Example 18.3. This relationship can be evaluated at x = 2 to give

R2 = 0.007865529(2 − 1)(2 − 4)(2 − 6) = 0.0629242

which is of the same order of magnitude as the true error.
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 From the previous example and from Eq. (18.18), it should be clear that the error esti-
mate for the nth-order polynomial is equivalent to the difference between the (n + 1)th 
order and the nth-order prediction. That is,

Rn = fn+1(x) − fn(x) (18.19)

In other words, the increment that is added to the nth-order case to create the (n + 1)th-
order case [that is, Eq. (18.18)] is interpreted as an estimate of the nth-order error. This 
can be clearly seen by rearranging Eq. (18.19) to give

fn+1(x) = fn(x) + Rn

The validity of this approach is predicated on the fact that the series is strongly con-
vergent. For such a situation, the (n + 1)th-order prediction should be much closer to 
the true value than the nth-order prediction. Consequently, Eq. (18.19) conforms to our 
standard definition of error as representing the difference between the truth and an 
 approximation. However, note that whereas all other error estimates for iterative 
 approaches introduced up to this point have been determined as a present prediction 
minus a previous one, Eq. (18.19) represents a future prediction minus a present one. 
This means that for a series that is converging rapidly, the error estimate of Eq. (18.19) 
could be less than the true error. This would represent a highly unattractive quality if 
the error estimate were being employed as a stopping criterion. However, as will be 
described in the following section, higher-order interpolating polynomials are highly 
sensitive to data errors—that is, they are very ill-conditioned. When employed for in-
terpolation, they often yield predictions that diverge significantly from the true value. 
By “looking ahead” to sense errors, Eq. (18.19) is more sensitive to such divergence. 
As such, it is more valuable for the sort of exploratory data analysis for which Newton’s 
polynomial is best-suited.

18.1.5 Computer Algorithm for Newton’s Interpolating Polynomials
Three properties make Newton’s interpolating polynomials extremely attractive for com-
puter applications:

1. As in Eq. (18.7), higher-order versions can be developed sequentially by adding a 
single term to the next lower-order equation. This facilitates the evaluation of several 
different-order versions in the same program. Such a capability is especially valuable 
when the order of the polynomial is not known a priori. By adding new terms se-
quentially, we can determine when a point of diminishing returns is reached—that is, 
when addition of higher-order terms no longer significantly improves the estimate or 
in certain situations actually detracts from it. The error equations discussed below in (3) 
are useful in devising an objective criterion for identifying this point of diminishing 
terms.

2. The finite divided differences that constitute the coefficients of the polynomial [Eqs. 
(18.8) through (18.11)] can be computed efficiently. That is, as in Eq. (18.14) and Fig. 
18.5, lower-order differences are used to compute higher-order differences. By utilizing 
this previously determined information, the coefficients can be computed efficiently. The 
algorithm in Fig. 18.7 contains such a scheme.

3. The error estimate [Eq. (18.18)] can be very simply incorporated into a computer 
algorithm because of the sequential way in which the prediction is built.

cha32077_ch18_496-534.indd   505 9/3/19   2:20 PM



506 INTERPOLATION

 All the above characteristics can be exploited and incorporated into a general algo-
rithm for implementing Newton’s polynomial (Fig. 18.7). Note that the algorithm consists 
of two parts: The first determines the coefficients from Eq. (18.7), and the second de-
termines the predictions and their associated error. The utility of this algorithm is dem-
onstrated in the following example.

 EXAMPLE 18.5 Error Estimates to Determine the Appropriate Order of Interpolation
Problem Statement. After incorporating the error [Eq. (18.18)], utilize the com-
puter algorithm given in Fig. 18.7 and the following information to evaluate f(x) = 
ln x at x = 2:

x f (x) = ln x

1 0
4 1.3862944
6 1.7917595
5 1.6094379
3 1.0986123
  1.5 0.4054641
2.5 0.9162907
3.5 1.2527630

SUBROUTINE NewtInt(x, y, n, xi, yint, ea)
  LOCAL fddn,n
  DOFOR i = 0, n
    fddi,0 = yi
  END DO
  DOFOR j = 1, n
    DOFOR i = 0, n − j
      fddi,j = (fddi+1,j−1 − fddi,j−1)∕(xi+j − xi)
    END DO
  END DO
  xterm = 1
  yint0 = fdd0,0
  DOFOR order = 1, n
    xterm = xterm * (xi − xorder−1)
    yint2 = yintorder−1 + fdd0,order * xterm
    eaorder−1 = yint2 − yintorder−1

    yintorder = yint2
  END order
END NewtInt

FIGURE 18.7
An algorithm for Newton’s interpolating polynomial written in pseudocode.
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Solution. The results of employing the algorithm in Fig. 18.7 to obtain a solution are 
shown in Fig. 18.8. The error estimates, along with the true error (based on the fact that 
ln 2 = 0.6931472), are depicted in Fig. 18.9. Note that the estimated error and the true 
error are similar and that their agreement improves as the order increases. From these 
results, it can be concluded that the fifth-order version yields a good estimate and that 
higher-order terms do not significantly enhance the prediction.
 This exercise also illustrates the importance of the positioning and ordering of the 
points. For example, up through the third-order estimate, the rate of improvement is slow 
because the points that are added (at x = 4, 6, and 5) are distant and on one side of the 
point in question at x = 2. The fourth-order estimate shows a somewhat greater improve-
ment because the new point at x = 3 is closer to the unknown. However, the most dra-
matic decrease in the error is associated with the inclusion of the fifth-order term using 
the data point at x = 1.5. Not only is this point close to the unknown but it is also po-
sitioned on the opposite side from most of the other points. As a consequence, the error 
is reduced by almost an order of magnitude.
 The significance of the positions and sequence of these data points can also be il-
lustrated by using the same data to obtain an estimate for ln 2 but considering the points 
in a different sequence. Figure 18.9 shows results for the case of reversing the order of 
the original data, that is, x0 = 3.5, x1 = 2.5, x3 = 1.5, and so forth. Because the initial 
points for this case are closer to and spaced on either side of ln 2, the error decreases 
much more rapidly than for the original situation. By the second-order term, the error 
has been reduced to less than εt = 2%. Other combinations could be employed to obtain 
different rates of convergence.

NUMBER OF POINTS? 8
X( 0 ), y( 0 ) = ? 1,0
X( 1 ), y( 1 ) = ? 4,1.3862944
X( 2 ), y( 2 ) = ? 6,1.7917595
X( 3 ), y( 3 ) = ? 5,1.6094379
X( 4 ), y( 4 ) = ? 3,1.0986123
X( 5 ), y( 5 ) = ? 1.5,0.40546411
X( 6 ), y( 6 ) = ? 2.5,0.91629073
X( 7 ), y( 7 ) = ? 3.5,1.2527630

INTERPOLATION AT X = 2
ORDER F(X) ERROR
0 0.000000 0.462098
1 0.462098 0.103746
2 0.565844 0.062924
3 0.628769 0.046953
4 0.675722 0.021792
5 0.697514 −0.003616
6 0.693898 −0.000459
7 0.693439

FIGURE 18.8
The output of a program, based on the algorithm from Fig. 18.7, to evaluate ln 2.
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 The foregoing example illustrates the importance of the choice of base points. As 
should be intuitively obvious, the points should be centered around and as close as pos-
sible to the unknown. This observation is also supported by direct examination of the 
error equation [Eq. (18.17)]. If we assume that the finite divided difference does not vary 
markedly along the range of these data, the error is proportional to the product: 
(x − x0) (x − x1) … (x − xn). Obviously, the closer the base points are to x, the smaller 
the magnitude of this product.

 18.2 LAGRANGE INTERPOLATING POLYNOMIALS
The Lagrange interpolating polynomial is simply a reformulation of the Newton polynomial 
that avoids the computation of divided differences. It can be represented concisely as

fn(x) =∑
n

i=0
Li(x) f(xi) (18.20)

FIGURE 18.9
Percent relative errors for the prediction of ln 2 as a function of the order of the interpolating 
polynomial.

Error

True error (original)

Estimated error (original)

Estimated error (reversed)

Order5

0.5

0

– 0.5

cha32077_ch18_496-534.indd   508 9/3/19   2:21 PM



 18.2 LAGRANGE INTERPOLATING POLYNOMIALS 509

where

Li(x) =∏
n

j=0
j≠ i

   

x − xj

xi − xj

 (18.21)

and Π designates the “product of.” For example, the linear version (n = 1) is

f1(x) =
x − x1

x0 − x1
 f(x0) +

x − x0

x1 − x0
 f(x1) (18.22)

and the second-order version is

f2(x) =
(x − x1) (x − x2)

(x0 − x1) (x0 − x2)
  f(x0) +

(x − x0) (x − x2)
(x1 − x0) (x1 − x2)

  f(x1)

         +
(x − x0) (x − x1)

(x2 − x0) (x2 − x1)
  f(x2) (18.23)

 Equation (18.20) can be derived directly from Newton’s polynomial (Box 18.1). 
However, the rationale underlying the Lagrange formulation can be grasped directly by 
realizing that each term Li(x) will be 1 at x = xi and 0 at all other sample points 
(Fig. 18.10). Thus, each product Li(x) f(xi) takes on the value of f(xi) at the sample point xi. 
Consequently, the summation of all the products designated by Eq. (18.20) is the unique 
nth-order polynomial that passes exactly through all n + 1 data points.

 EXAMPLE 18.6 Lagrange Interpolating Polynomials
Problem Statement. Use a Lagrange interpolating polynomial of the first and second 
order to evaluate ln 2 on the basis of the data given in Example 18.2:

x0 = 1  f(x0) = 0
x1 = 4  f(x1) = 1.386294
x2 = 6  f(x2) = 1.791760

Solution. The first-order polynomial [Eq. (18.22)] can be used to obtain the estimate 
at x = 2,

f1(2) =
2 − 4
1 − 4

 0 +
2 − 1
4 − 1

 1.386294 = 0.4620981

In a similar fashion, the second-order polynomial is developed as [Eq. (18.23)]

f2(2) =
(2 − 4)(2 − 6)
(1 − 4)(1 − 6)

 0 +
(2 − 1)(2 − 6)
(4 − 1)(4 − 6)

 1.386294

         +
(2 − 1)(2 − 4)
(6 − 1)(6 − 4)

 1.791760 = 0.5658444

As expected, both these results agree with those previously obtained using Newton’s 
interpolating polynomial.
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 Box 18.1  Derivation of the Lagrange Form Directly from Newton’s Interpolating  
Polynomial

The Lagrange interpolating polynomial can be derived directly 
from Newton’s formulation. We will do this for the first-order 
case only [Eq. (18.2)]. To derive the Lagrange form, we refor-
mulate the divided differences. For example, the first finite 
 divided difference,

f [x1, x0] =
f (x1) − f (x0)

x1 − x0
 (B18.1.1)

can be reformulated as

f [x1, x0] =
f (x1)

x1 − x0
+

f (x0)
x0 − x1

 (B18.1.2)

which is referred to as the symmetric form. Substituting Eq. 
(B18.1.2) into Eq. (18.2) yields

f1(x) = f (x0) +
x − x0

x1 − x0
  f (x1) +

x − x0

x0 − x1
  f (x0)

Finally, grouping similar terms and simplifying yields the 
 Lagrange form,

f1(x) =
x − x1

x0 − x1
  f (x0) +

x − x0

x1 − x0
  f (x1)

FIGURE 18.10
A visual depiction of the rationale behind the Lagrange polynomial. This figure shows  
a second-order case. Each of the three terms in Eq. (18.23) passes through one of the data 
points and is zero at the other two. The summation of the three terms must, therefore, be the 
unique second-order polynomial f2(x ) that passes exactly through the three points.

Summation
of three
terms = f2(x)

Third term

Second term

150

0

100

50

– 150

– 100

– 50

2015 3025

First term
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 18.2 LAGRANGE INTERPOLATING POLYNOMIALS 511

 Note that, as with Newton’s method, the Lagrange version has an estimated error of 
[Eq. (18.17)]

Rn = f [x, xn, xn−1, … , x0]∏
n

i=0
(x − xi)

Thus, if an additional point is available at x = xn+1, an error estimate can be obtained. 
However, because the finite divided differences are not employed as part of the Lagrange 
algorithm, this is rarely done.
 Equations (18.20) and (18.21) can be very simply programmed for implementation 
on a computer. Figure 18.11 shows pseudocode that can be employed for this purpose.
 In summary, for cases where the order of the polynomial is unknown, the Newton 
method has advantages because of the insight it provides into the behavior of the 
different-order formulas. In addition, the error estimate represented by Eq. (18.18) can 
usually be integrated easily into the Newton computation because the estimate employs 
a finite difference (Example 18.5). Thus, for exploratory computations, Newton’s method 
is often preferable.
 When only one interpolation is to be performed, the Lagrange and Newton formula-
tions require comparable computational effort. However, the Lagrange version is some-
what easier to program. Because it does not require computation and storage of divided 
differences, the Lagrange form is often used when the order of the polynomial is known 
a priori.

 EXAMPLE 18.7 Lagrange Interpolation Using the Computer
Problem Statement. We can use the algorithm from Fig. 18.11 to study a trend analy-
sis problem associated with our now-familiar falling parachutist. Assume that we have 

FUNCTION Lagrng(x, y, n, xx)
  sum = 0
  DOFOR i = 0, n
    product = yi
    DOFOR j = 0, n
      IF i ≠ j THEN
        product = product*(xx − xj)∕(xi − xj)
      ENDIF
    END DO
    sum = sum + product
  END DO
  Lagrng = sum
END Lagrng

FIGURE 18.11
Pseudocode to implement Lagrange interpolation. This algorithm is set up to compute a sin-
gle nth-order prediction, where n + 1 is the number of data points.
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512 INTERPOLATION

 developed instrumentation to measure the velocity of the parachutist. The measured data 
obtained for a particular test case are

 Time, t Measured Velocity, v  
 (s) (cm/s)

 1 800
 3 2310
 5 3090
 7 3940
 13 4755

Our problem is to estimate the velocity of the parachutist at t = 10 s to fill in the large 
gap in the measurements between t = 7 and t = 13 s. We are aware that the behavior of 
interpolating polynomials can be unexpected. Therefore, we will construct polynomials 
of orders 4, 3, 2, and 1 and compare the results.

Solution. The Lagrange algorithm can be used to construct fourth-, third-, second-, and 
first-order interpolating polynomials.
 The fourth-order polynomial and the input data can be plotted as shown in Fig. 18.12a. 
It is evident from this plot that the estimated value of y at x = 10 is higher than the 
overall trend of these data.
 Figure 18.12b through d shows plots of the results of the computations for third-, 
second-, and first-order interpolating polynomials, respectively. It is noted that the lower 
the order, the lower the estimated value of the velocity at t = 10 s. The plots of the in-
terpolating polynomials indicate that the higher-order polynomials tend to overshoot the 
trend of these data. This suggests that the first- or second-order versions are most ap-
propriate for this particular trend analysis. It should be remembered, however, that be-
cause we are dealing with uncertain data, regression would actually be more appropriate.

v 
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m
/s
)
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m
/s
)
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0
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FIGURE 18.12
Plots showing (a) fourth-order, 
(b) third-order, (c) second-order, 
and (d) first-order interpolations.
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 The preceding example illustrates that higher-order polynomials tend to be ill- 
conditioned; that is, they tend to be highly sensitive to round-off error. The same prob-
lem applies to higher-order polynomial regression. Double-precision arithmetic sometimes 
helps mitigate the problem. However, as the order increases, there will come a point at 
which round-off error will interfere with the ability to interpolate using the simple 
 approaches covered to this point.

 18.3 COEFFICIENTS OF AN INTERPOLATING POLYNOMIAL
Although both the Newton and the Lagrange polynomials are well-suited for determining 
intermediate values between points, they do not provide a convenient polynomial of the 
conventional form

f(x) = a0 + a1x + a2x
2 + … + an  

x 

n (18.24)

 A straightforward method for computing the coefficients of this polynomial is based 
on the fact that n + 1 data points are required to determine the n + 1 coefficients. Thus, 
simultaneous linear algebraic equations can be used to calculate the a’s. For example, 
suppose that you desired to compute the coefficients of the parabola

f(x) = a0 + a1x + a2 
x2 (18.25)

Three data points are required: [x0, f(x0)], [x1, f(x1)], and [x2, f(x2)]. Each can be substi-
tuted into Eq. (18.25) to give

f(x0) = a0 + a1x0 + a2 
x2

0

f(x1) = a0 + a1x1 + a2 
x2

1 (18.26)

f(x2) = a0 + a1x2 + a2 
x2

2

Thus, for this case, the x’s are the knowns and the a’s are the unknowns. Because there 
are the same number of equations as unknowns, Eq. (18.26) could be solved by an 
elimination method from Part Three.
 It should be noted that the foregoing approach is not the most efficient method that 
is available to determine the coefficients of an interpolating polynomial. Press et al. 
(2007) provide a discussion and computer codes for more efficient approaches. Whatever 
technique is employed, a word of caution is in order. Systems such as Eq. (18.26) are 
notoriously ill-conditioned. Whether they are solved with an elimination method or with 
a more efficient algorithm, the resulting coefficients can be highly inaccurate, particularly 
for large n. When used for a subsequent interpolation, they often yield erroneous results.
 In summary, if you are interested in determining an intermediate point, employ 
Newton or Lagrange interpolation. If you must determine an equation of the form of 
Eq. (18.24), limit yourself to lower-order polynomials and check your results carefully.

 18.4 INVERSE INTERPOLATION
As the nomenclature implies, the f(x) and x values in most interpolation contexts are the 
dependent and independent variables, respectively. As a consequence, the values of the x’s 
are typically uniformly spaced. A simple example is a table of values derived for the 
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function f(x) = 1∕x,
x 1 2 3 4 5 6       7

f (x) 1 0.5 0.3333 0.25 0.2 0.1667 0.1429

 Now suppose that you must use the same data, but you are given a value for f(x) 
and must determine the corresponding value of x. For instance, for the data above, sup-
pose that you were asked to determine the value of x that corresponded to f(x) = 0.3. 
For this case, because the function is available and easy to manipulate, the correct answer 
can be determined directly as x = 1∕0.3 = 3.3333.
 Such a problem is called inverse interpolation. For a more complicated case, you 
might be tempted to switch the f(x) and x values [that is, merely plot x versus f(x)] and 
use an approach like Lagrange interpolation to determine the result. Unfortunately, when 
you reverse the variables, there is no guarantee that the values along the new abscissa 
[the f(x)’s] will be evenly spaced. In fact, in many cases, the values will be “telescoped.” 
That is, they will have the appearance of a logarithmic scale with some adjacent points 
bunched together and others spread out widely. For example, for f(x) = 1∕x the result is

f (x) 0.1429 0.1667 0.2 0.25 0.3333 0.5 1

x 7 6 5 4 3 2 1

 Such nonuniform spacing on the abscissa often leads to oscillations in the resulting 
interpolating polynomial. This can occur even for lower-order polynomials.
 An alternative strategy is to fit an nth-order interpolating polynomial, fn(x), to the 
original data [that is, with f(x) versus x]. In most cases, because the x’s are evenly spaced, 
this polynomial will not be ill-conditioned. The answer to your problem then amounts 
to finding the value of x that makes this polynomial equal to the given f(x). Thus, the 
interpolation problem reduces to a roots problem!
 For example, for the problem outlined above, a simple approach would be to fit a qua-
dratic polynomial to the three points: (2, 0.5), (3, 0.3333), and (4, 0.25). The result would be

f2(x) = 1.08333 − 0.375x + 0.041667x2

The answer to the inverse interpolation problem of finding the x corresponding to f(x) = 0.3 
would therefore involve determining the root of

0.3 = 1.08333 − 0.375x + 0.041667x2

For this simple case, the quadratic formula can be used to calculate

x =
0.375 ± √(−0.375)2 − 4(0.041667)0.78333

2(0.041667)
=

5.704158
3.295842

Thus, the second root, 3.296, is a good approximation of the true value, 3.333. If 
 additional accuracy were desired, a third- or fourth-order polynomial along with one of 
the root location methods from Part Two could be employed.

 18.5 ADDITIONAL COMMENTS
Before proceeding to the next section, we must mention two additional topics: interpola-
tion with equally spaced data and extrapolation.
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 Because both the Newton and Lagrange polynomials are compatible with arbitrarily 
spaced data, you might wonder why we address the special case of equally spaced data 
(Box 18.2). Prior to the advent of digital computers, these techniques had great utility 
for interpolation from tables with equally spaced arguments. In fact, a computational 
framework known as a divided-difference table was developed to facilitate the imple-
mentation of these techniques. (Figure 18.5 is an example of such a table.)
 However, because the formulas are subsets of the computer-compatible Newton and 
Lagrange schemes and because many tabular functions are available as library subroutines, 
the need for the equispaced versions has waned. In spite of this, we have included them at 
this point because of their relevance to later parts of this book. In particular, they are needed 
to derive numerical integration formulas that typically employ equispaced data (Chap. 21). 
Because the numerical integration formulas have relevance to the solution of ordinary dif-
ferential equations, the material in Box 18.2 also has significance to Part Seven.
 Extrapolation is the process of estimating a value of f(x) that lies outside the range 
of the known base points, x0, x1, . . . , xn (Fig. 18.13). In a previous section, we mentioned 
that the most accurate interpolation is usually obtained when the unknown lies near the 
center of the base points. Obviously, this is violated when the unknown lies outside the 
range, and consequently, the error in extrapolation can be very large. As depicted in 
Fig. 18.13, the open-ended nature of extrapolation represents a step into the unknown 
because the process extends the curve beyond the known region. As such, the true curve 
could easily diverge from the prediction. Extreme care should, therefore, be exercised 
whenever a case arises where one must extrapolate.

FIGURE 18.13
Illustration of the possible divergence of an extrapolated prediction. The extrapolation is 
based on fitting a parabola through the first three known points.

f (x)

x

True
curve

Extrapolation
of interpolating
polynomial

Interpolation Extrapolation

x2x1x0
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516 INTERPOLATION

 Box 18.2 Interpolation with Equally Spaced Data

If data are equally spaced and in ascending order, then the inde-
pendent variable assumes values of

x1 = x0 + h

x2 = x0 + 2h

     .
     .
     .
xn = x0 + nh

where h is the interval, or step size, between these data. On this 
basis, the finite divided differences can be expressed in concise 
form. For example, the second forward divided difference is

f [x0, x1, x2] =

f (x2) − f (x1)
x2 − x1

−
f (x1) − f (x0)

x1 − x0

x2 − x0

which can be expressed as

f [x0, x1, x2] =
f (x2) − 2  f (x1) + f (x0)

2h2  (B18.2.1)

because x1 − x0 = x2 − x1 = (x2 − x0)∕2 = h. Now recall that the 
second forward difference is equal to [numerator of Eq. (4.24)]

Δ2 f (x0) = f (x2) − 2  f (x1) + f (x0)

Therefore, Eq. (B18.2.1) can be represented as

f [x0, x1, x2] =
Δ2  f (x0)

2!h2

or, in general,

f [x0, x1, … , xn] =
Δn   f (x0)

n!hn  (B18.2.2)

Using Eq. (B18.2.2), we can express Newton’s interpolating 
polynomial [Eq. (18.15)] for the case of equispaced data as

fn(x) = f (x0) +
Δ f (x0)

h
 (x − x0)

 + 
Δ2 f (x0)

2!h2  (x − x0) (x − x0 − h)

 + … +
Δn f (x0)

n!hn  (x − x0) (x − x0 − h)

 …[x − x0 − (n − 1)h] + Rn (B18.2.3)

where the remainder is the same as is given by Eq. (18.16). 
This equation is known as Newton’s formula, or the Newton-
Gregory forward formula. It can be simplified further by 
 defining a new quantity, α:

α =
x − x0

h

This definition can be used to develop the following simplified 
expressions for the terms in Eq. (B18.2.3):

x − x0 = αh

x − x0 − h = αh − h = h(α − 1)
.
.
.
x − x0 − (n − 1)h = αh − (n − 1)h = h(α − n + 1)

which can be substituted into Eq. (B18.2.3) to give

fn(x) = f (x0) + Δ
 
f (x0)α +

Δ2 f (x0)
2!

 α(α − 1)

  + … +
Δn f(x0)

n!
 α(α − 1) … (α − n + 1) + Rn 

 (B18.2.4)

where

Rn =
f  

(n+1)(ξ)
(n + 1)!

  hn+1α(α − 1)(α − 2) … (α − n)

This concise notation will have utility in our derivation and 
 error analyses of the integration formulas in Chap. 21.
 In addition to the forward formula, backward and central 
Newton-Gregory formulas are also available. Carnahan, 
 Luther, and Wilkes (1969) can be consulted for further infor-
mation regarding interpolation for equally spaced data.
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 18.6 SPLINE INTERPOLATION
In the previous sections, nth-order polynomials were used to interpolate between n + l 
data points. For example, for eight points, we can derive a perfect seventh-order poly-
nomial. This curve would capture all the meanderings (at least up to and including 
seventh derivatives) suggested by the points. However, there are cases where these func-
tions can lead to erroneous results because of round-off error and overshoot. An alterna-
tive approach is to apply lower-order polynomials to subsets of data points. Such 
connecting polynomials are called spline functions.
 For example, third-order curves employed to connect each pair of data points are 
called cubic splines. These functions can be constructed so that the connections between 
adjacent cubic equations are visually smooth. On the surface, it would seem that the 
third-order approximation of the splines would be inferior to the seventh-order expres-
sion. You might wonder why a spline would ever be preferable.
 Figure 18.14 illustrates a situation where a spline performs better than a higher-
order polynomial. This is the case where a function is generally smooth but undergoes 
an abrupt change somewhere along the region of interest. The step increase depicted 
in Fig. 18.14 is an extreme example of such a change and serves to illustrate the 
point.
 Figure 18.14a through c illustrates how higher-order polynomials tend to swing 
through wild oscillations in the vicinity of an abrupt change. In contrast, the spline also 
connects the points, but because it is limited to lower-order changes, the oscillations are 
kept to a minimum. As such, the spline usually provides a superior approximation of the 
behavior of functions that have local, abrupt changes.
 The concept of the spline originated from the drafting technique of using a thin, 
flexible strip (called a spline) to draw smooth curves through a set of points. The process 
is depicted in Fig. 18.15 for a series of five pins (data points). In this technique, the 
drafter places paper over a wooden board and hammers nails or pins into the paper (and 
board) at the location of the data points. A smooth cubic curve results from interweaving 
the strip between the pins. Hence, the name “cubic spline” has been adopted for poly-
nomials of this type.
 In this section, simple linear functions will first be used to introduce some basic 
concepts and problems associated with spline interpolation. Then we derive an algorithm 
for fitting quadratic splines to data. Finally, we present material on the cubic spline, 
which is the most common and useful version in engineering practice.

18.6.1 Linear Splines
The notation used for splines is displayed in Fig. 18.16. For n data points (i = 1, 2, . . . , n), 
there are n − 1 intervals. Each interval i has its own spline function, si (x). For linear splines, 
each function is merely the straight line connecting the two points at each end of the interval, 
which is formulated as

si (x) = ai + bi (x − xi ) (18.27)

where ai is the intercept, which is defined as

ai =  fi (18.28)
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(a)

f (x)

x0

(b)

f (x)

x0

(c)

f (x)

x0

(d)

f (x)

x0

FIGURE 18.14
A visual representation of a situation where the splines are superior to higher-order interpo-
lating polynomials. The function to be fit undergoes an abrupt increase at x = 0. Parts (a) 
through (c) indicate that the abrupt change induces oscillations in interpolating polynomials. 
In contrast, because it is limited to third-order curves with smooth transitions, a linear spline 
(d) provides a much more acceptable approximation.

and bi is the slope of the straight line connecting the points:

bi =
fi+1 − fi

xi+1 − xi

 (18.29)

where fi is shorthand for f  (xi ). Substituting Eqs. (18.27) and (18.28) into Eq. (18.29) gives

si(x) = fi +
fi+1 − fi

xi+1 − xi

 (x − xi)  (18.30)
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 18.6 SPLINE INTERPOLATION 519

FIGURE 18.15
The drafting technique of using a spline to draw smooth curves through a series of points. 
Notice how, at the end points, the spline straightens out. This is called a “natural” spline.

 These equations can be used to evaluate the function at any point between x1 and xn 
by first locating the interval within which the point lies. Then the appropriate equation is 
used to determine the function value within the interval. Inspection of Eq. (18.30) indi-
cates that the linear spline amounts to using Newton’s first-order polynomial [Eq. (18.2)] 
to interpolate within each interval.

 EXAMPLE 18.8 First-Order Splines
Problem Statement. Fit the data in Table 18.1 with first-order splines. Evaluate the 
function at x = 5.

sn−1(x)

x

Interval
1

f (x)
s1(x)

x1 x2 xi xi+1 xn−1 xn

f1 fi
fi+1

f2

Interval
i

Interval
n − 1

si(x)

fn−1
fn

FIGURE 18.16
Notation used to derive splines. Notice that there are n − 1 intervals and n data points.
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TABLE 18.1  Data to be fit with spline functions.

i xi fi

  1 3.0 2.5
2 4.5 1.0
3 7.0 2.5
4 9.0 0.5

Solution. The data can be substituted into Eq. (18.30) to generate the linear spline 
functions. For example, for the second interval from x = 4.5 to x = 7, the function is

s2(x) = 1.0 +
2.5 − 1.0
7.0 − 4.5

 (x − 4.5)

The equations for the other intervals can be generated, and the resulting first-order splines 
are plotted in Fig. 18.17a. The value at x = 5 is 1.3.

s2(x) = 1.0 +
2.5 − 1.0
7.0 − 4.5

 (5 − 4.5) = 1.3

(a)

x

(b)

2

0

f (x)

x

2

0
2 4 6 8 10

f (x)

(c)

2

0

f (x)

x

First-order
spline

Second-order
spline

Interpolating
cubic

Cubic
spline

FIGURE 18.17
Spline fits of a set of four points. (a) Linear spline, (b) quadratic spline, and (c) cubic spline, 
with a cubic interpolating polynomial also plotted.
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 Visual inspection of Fig. 18.17a indicates that the primary disadvantage of first-
order splines is that they are not smooth. In essence, at the data points where two splines 
meet (called a knot), the slope changes abruptly. In formal terms, the first derivative of 
the function is discontinuous at these points. This deficiency is overcome by using 
higher-order polynomial splines that ensure smoothness at the knots by equating deriva-
tives at these points, as will be discussed subsequently.

18.6.2 Quadratic Splines
To ensure that the nth derivatives are continuous at the knots, a spline of at least n + 1 
order must be used. Third-order polynomials or cubic splines that ensure continuous first 
and second derivatives are most frequently used in practice. Although third and higher 
 derivatives can be discontinuous when cubic splines are used, they usually cannot be 
detected visually and consequently are ignored.
 Because the derivation of cubic splines is somewhat involved, we have decided to 
first illustrate the concept of spline interpolation using second-order polynomials. These 
“quadratic splines” have continuous first derivatives at the knots. Although quadratic 
splines are not of practical importance, they serve nicely to demonstrate the general ap-
proach for developing higher-order splines.
 The objective in quadratic splines is to derive a second-order polynomial for each 
interval between data points. The polynomial for each interval can be represented gener-
ally as

si (x) = ai + bi (x − xi ) + ci (x − xi)2 (18.31)

where the notation is as in Fig. 18.16. For n data points (i = 1, 2, . . . , n), there are 
n − 1 intervals and, consequently, 3(n − 1) unknown constants (the a’s, b’s, and c’s) to 
evaluate. Therefore, 3(n − 1) equations or conditions are required to evaluate the un-
knowns. These can be developed as follows:

1. The function must pass through all the points. This is called a continuity condition. 
It can be expressed mathematically as

fi = ai + bi (xi − xi ) + ci (xi − xi )2

  which simplifies to

ai = fi (18.32)

  Therefore, the constant in each quadratic must be equal to the value of the dependent 
variable at the beginning of the interval. This result can be incorporated into 
Eq. (18.31):

si (x) =  fi + bi (x − xi ) + ci (x − xi )2

  Note that because we have determined one of the coefficients, the number of conditions 
to be evaluated has now been reduced to 2(n − 1).

2. The function values of adjacent polynomials must be equal at the knots. This condition 
can be written for knot i + 1 as

fi + bi (xi+1 − xi ) + ci (xi+1 − xi )2 =  fi+1 + bi+1(xi+1 − xi+1)  
               + ci+1(xi+1 − xi+1)2 (18.33)
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  This equation can be simplified mathematically by defining the width of the ith 
interval as

hi = xi+1 − xi

  Thus, Eq. (18.33) simplifies to

fi + bihi + cihi
2 = fi+1 (18.34)

  This equation can be written for the nodes, i = 1, . . . , n − 1. Since this amounts 
to n − 1 conditions, it means that there are 2(n − 1) − (n − 1) = n − 1 remaining 
conditions.

3. The first derivatives at the interior nodes must be equal. This is an important condition, 
because it means that adjacent splines will be joined smoothly, rather than in the jagged 
fashion that we saw for the linear splines. Equation (18.31) can be differentiated to 
yield

si′(x) = bi + 2ci(x − xi)

  The equivalence of the derivatives at an interior node, i + 1, can therefore be written as

bi + 2ci hi = bi+1 (18.35)

  Writing this equation for all the interior nodes amounts to n − 2 conditions. This 
means that there is n − 1 − (n − 2) = 1 remaining condition. Unless we have some 
additional information regarding the functions or their derivatives, we must make an 
arbitrary choice to successfully compute the constants. Although there are a number 
of different choices that can be made, we select the following condition.

4. Assume that the second derivative is zero at the first point. Because the second de-
rivative of Eq. (18.31) is 2ci  , this condition can be expressed mathematically as

c1 = 0

  The visual interpretation of this condition is that the first two points will be connected 
by a straight line.

 EXAMPLE 18.9 Quadratic Splines
Problem Statement. Fit quadratic splines to the same data employed in Example 18.8 
(Table 18.1). Use the results to estimate the value of the function at x = 5.

Solution. For the present problem, we have four data points and n = 3 intervals. There-
fore, after applying the continuity condition and the zero second-derivative condition, 
this means that 2(4 − 1) − 1 = 5 conditions are required. Equation (18.34) is written 
for i = 1 through 3 (with c1 = 0) to give

f1 + b1h1 = f2

f2 + b2h2 + c2h
2
2 = f3

f3 + b3  h3 + c3h
2
3 = f4

cha32077_ch18_496-534.indd   522 9/3/19   2:21 PM



 18.6 SPLINE INTERPOLATION 523

Continuity of derivatives, Eq. (18.35), creates an additional 3 − 1 = 2 conditions (again, 
 recall that c1 = 0):

b1 = b2

b2 + 2c2h2 = b3

The necessary function and interval width values are

f1 = 2.5 h1 = 4.5 − 3.0 = 1.5
f2 = 1.0 h2 = 7.0 − 4.5 = 2.5
f3 = 2.5 h3 = 9.0 − 7.0 = 2.0
f4 = 0.5

These values can be substituted into the conditions, which can be expressed in matrix form as

[

1.5 0 0 0 0
0 2.5 6.25 0 0
0 0 0 2 4
1 −1 0 0 0
0 1 5 −1 0

]{

b1

b2

c2

b3

c3
}

=

{

−1.5
1.5
−2
0
0

}
These equations can be solved with the results:

b1 = −1
b2 = −1 c2 = 0.64
b3 = 2.2 c3 = −1.6

These results, along with the values for the a’s [Eq. (18.32)], can be substituted into the 
 original quadratic equations to develop the following quadratic splines for each interval:

s1(x) = 2.5 − (x − 3)
s2(x) = 1.0 − (x − 4.5) + 0.64(x − 4.5)2

s3(x) = 2.5 + 2.2(x − 7.0) − 1.6(x − 7.0)2

Because x = 5 lies in the second interval, we use s2 to make the prediction,

s2(5) = 1.0 − (5 − 4.5) + 0.64(5 − 4.5)2 = 0.66

The total quadratic spline fit is depicted in Fig. 18.17b. Notice that there are two short-
comings that detract from the fit: (1) the straight line connecting the first two points and 
(2) the spline for the last interval seems to swing too high. The cubic splines in the next 
section do not exhibit these shortcomings and, as a consequence, are better methods for 
spline interpolation.

18.6.3 Cubic Splines
As stated at the beginning of the previous section, cubic splines are most frequently used 
in practice. The shortcomings of linear and quadratic splines have already been discussed. 
Quartic or higher-order splines are not used because they tend to exhibit the instabilities 
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inherent in higher-order polynomials. Cubic splines are preferred because they provide 
the simplest representation that  exhibits the desired appearance of smoothness. 
 The objective with cubic splines is to derive a third-order polynomial for each in-
terval between knots as represented generally by

si(x) = ai + bi (x − xi) + ci (x − xi)2 + di (x − xi)3 (18.36)

Thus, for n data points (i = 1, 2, . . . , n), there are n − 1 intervals and 4(n − 1) un-
known coefficients to evaluate. Consequently, 4(n − 1) conditions are required for their 
evaluation.
 The first conditions are identical to those used for the quadratic case. That is, they 
are set up so that the functions pass through the points and that the first derivatives at 
the knots are equal. In addition to these, conditions are developed to ensure that the 
second derivatives at the knots are also equal. This greatly enhances the fit’s smoothness.
 After these conditions are developed, two additional conditions are required to obtain 
the solution. This is a much nicer outcome than occurred for quadratic splines where we 
needed to specify a single condition. In that case, we had to arbitrarily specify a zero 
second derivative for the first interval, hence making the result asymmetric. For cubic 
splines, we are in the advantageous position of needing two additional conditions and 
can, therefore, apply them evenhandedly at both ends.
 For cubic splines, these last two conditions can be formulated in several different 
ways. A very common approach is to assume that the second derivatives at the first and 
last knots are equal to zero. The visual interpretation of these conditions is that the func-
tion becomes a straight line at the end nodes. Specification of such an end condition 
leads to what is termed a “natural” spline. It is given this name because the drafting 
spline naturally behaves in this fashion (Fig. 18.15).
 There are a variety of other end conditions that can be specified. Two of the more 
popular are the clamped condition and the not-a-knot conditions. We will describe these 
options in Sec. 18.6.5. For the following derivation, we will limit ourselves to natural 
splines.
 Once the additional end conditions are specified, we would have the 4(n − 1) con-
ditions needed to evaluate the 4(n − 1) unknown coefficients. Whereas it is certainly 
possible to develop cubic splines in this fashion, we will present an alternative approach 
that requires the solution of only n − 1 equations. Further, the simultaneous equations 
will be tridiagonal and hence can be solved very efficiently. Although the derivation of 
this approach is less straightforward than for quadratic splines, the gain in efficiency is 
well worth the effort.

18.6.4 Derivation of Cubic Splines
As was the case with quadratic splines, the first condition is that the spline must pass 
through all the data points:

fi = ai + bi (xi − xi ) + ci (xi − xi )
2 + di (xi − xi )

3

which simplifies to

ai = fi (18.37)
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Therefore, the constant in each cubic must be equal to the value of the dependent vari-
able at the beginning of the interval. This result can be incorporated into Eq. (18.36):

si (x) = fi + bi (x − xi ) + ci (x − xi )2 + di (x − xi )3 (18.38)

 Next, we will apply the condition that each of the cubics must join at the knots. For 
knot i + 1, this can be represented as

fi + bi hi + cih
2
i + dih

3
i = fi+1 (18.39)

where

hi = xi+1 − xi

 The first derivatives at the interior nodes must be equal. Equation (18.38) is dif-
ferentiated to yield

s′i(x) = bi + 2ci (x − xi ) + 3di (x − xi )2 (18.40)

The equivalence of the derivatives at an interior node, i + 1, can therefore be written as

bi + 2ci hi + 3dih
2
i = bi+1 (18.41)

 The second derivatives at the interior nodes must also be equal. Equation (18.40) 
can be differentiated to yield

s″i(x) = 2ci + 6di (x − xi ) (18.42)

The equivalence of the second derivatives at an interior node, i + 1, can therefore be 
written as

ci + 3di hi = ci+1 (18.43)

 Next, we can solve Eq. (18.43) for di:

di =
ci+1 − ci

3hi

 (18.44)

This can be substituted into Eq. (18.39) to give

fi + bi hi + 
h2

i

3
 (2ci + ci+1) = fi+1 (18.45)

Equation (18.44) can also be substituted into Eq. (18.41) to give

bi+1 = bi + hi (ci + ci+1) (18.46)

Equation (18.45) can be solved for

bi =
fi+1 − fi

hi

−
hi

3
(2ci + ci+1)  (18.47)

The index of this equation can be reduced by 1:

bi−1 =
fi − fi−1

hi−1
−

hi−1

3
(2ci−1 + ci)  (18.48)

The index of Eq. (18.46) can also be reduced by 1:

bi = bi−1 + hi−1(ci−1 + ci ) (18.49)
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Equations (18.47) and (18.48) can be substituted into Eq. (18.49) and the result simpli-
fied to yield

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 = 3 

fi+1 − fi

hi

− 3 

fi − fi−1

hi−1
 (18.50)

 This equation can be made a little more concise by recognizing that the terms on 
the right-hand side are finite differences [recall Eq. (18.12)]:

f [xi, xj] =
fi − fj

xi − xj

Therefore, Eq. (18.50) can be written as

hi−1ci−1 + 2(hi−1 + hi )ci + hi  ci+1 = 3 ( f  [xi+1, xi ] − f  [xi, xi−1]) (18.51)

 Equation (18.51) can be written for the interior knots, i = 2, 3, . . . , n − 2, which 
 results in n − 3 simultaneous tridiagonal equations with n − 1 unknown coefficients, 
c1, c2, . . . , cn–1. Therefore, if we have two additional conditions, we can solve for the 
c’s. Once this is done, Eqs. (18.47) and (18.44) can be used to determine the remain-
ing coefficients, b and d.
 As stated previously, the two additional end conditions can be formulated in a num-
ber of ways. One common approach, the natural spline, assumes that the second derivatives 
at the end knots are equal to zero. To see how these can be integrated into the solution 
scheme, the second derivative at the first node [Eq. (18.42)] can be set to zero as in  

s″1(x1) = 0 = 2c1 + 6d1(x1 − x1)

Thus, this condition amounts to setting c1 equal to zero.
 The same evaluation can be made at the last node:

s″n−1(xn) = 0 = 2cn−1 + 6dn−1hn−1 (18.52)

Recalling Eq. (18.43), we can conveniently define an extraneous parameter cn; in which 
case Eq. (18.52) becomes

cn−1 + 3dn−1hn−1 = cn = 0

Thus, to impose a zero second derivative at the last node, we set cn = 0.
 The final equations can now be written in matrix form as

[

1
h1   2(h1 + h2)       h2

                        hn−2    2(hn−2 + hn−1)   hn−1

                                                               1
] {

c1

c2

cn−1

cn

}

=

{

0
3( f [x3, x2] − f [x2, x1])

3( f [xn, xn−1] − f [xn−1, xn−2])
0

}
 (18.53)

As shown, the system is tridiagonal and hence efficient to solve.
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 EXAMPLE 18.10 Natural Cubic Splines 
Problem Statement. Fit cubic splines to the same data used in Examples 18.8 and 
18.9 (Table 18.1). Utilize the results to estimate the value of the function at x = 5.

Solution. The first step is to employ Eq. (18.53) to generate the set of simultaneous 
equations that will be utilized to determine the c coefficients:

[

1
h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

1
] {

c1

c2

c3

c4
}

=
{

0
3( f [x3, x2] − f [x2, x1])
3( f [x4, x3] − f [x3, x2])

0 }
The necessary function and interval width values are

f1 = 2.5 h1 = 4.5 − 3.0 = 1.5
f2 = 1.0 h2 = 7.0 − 4.5 = 2.5
f3 = 2.5 h3 = 9.0 − 7.0 = 2.0
f4 = 0.5

These can be substituted to yield

[

1
1.5 8 2.5

2.5 9 2
1

] {

c1

c2

c3

c4
}

=
{

0
4.8

−4.8
0 }

These equations can be solved using MATLAB with the results:
c1 = 0 c2 = 0.839543726
c3 = −0.766539924 c4 = 0

Equations (18.47) and (18.44) can be used to compute the b’s and d’s:
b1 = −1.419771863 d1 = 0.186565272
b2 = −0.160456274 d2 = −0.214144487
b3 = 0.022053232 d3 = 0.127756654

These results, along with the values for the a’s [Eq. (18.37)], can be substituted into 
Eq.  (18.36) to develop the following cubic splines for each interval:

s1(x) = 2.5 − 1.419771863(x − 3) + 0.186565272(x − 3)3

s2(x) = 1.0 − 0.160456274(x − 4.5) + 0.839543726(x − 4.5)2

 − 0.214144487(x − 4.5)3

s3(x) = 2.5 + 0.022053232(x − 7.0) − 0.766539924(x − 7.0)2

 + 0.127756654(x − 7.0)3

The three equations can then be employed to compute values within each interval. For 
 example, the value at x = 5, which falls within the second interval, is calculated as

s2(5) = 1.0 − 0.160456274(5 − 4.5) + 0.839543726(5 − 4.5)2 − 0.214144487(5 − 4.5)3

   = 1.102889734.
The total cubic spline fit is depicted in Fig. 18.17c.

 18.6 SPLINE INTERPOLATION 527
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528 INTERPOLATION

 The results of Examples 18.8 through 18.10 are summarized in Fig. 18.17. Notice 
the progressive improvement of the fit as we move from linear to quadratic to cubic 
splines. We have also superimposed a cubic interpolating polynomial on Fig. 18.17c. 
Although the cubic spline consists of a series of third-order curves, the resulting fit differs 
from that obtained using the third-order polynomial. This is due to the fact that the natu-
ral spline requires zero second derivatives at the end knots, whereas the cubic polynomial 
has no such constraint.

18.6.5 End Conditions
Although its graphical basis is appealing, the natural spline is only one of several end 
conditions that can be specified for splines. Two of the most popular are

∙ Clamped End Condition. This option involves specifying the first derivatives at the 
first and last nodes. This is sometimes called a “clamped” spline because it is what 
occurs when you clamp the end of a drafting spline so that it has a desired slope. For 
example, if zero first derivatives are specified, the spline will level off or become 
horizontal at the ends.

∙ “Not-a-Knot” End Condition. A third alternative is to force continuity of the third 
derivative at the second and the next-to-last knots. Since the spline already specifies 
that the function value and its first and second derivatives are equal at these knots, 
specifying continuous third derivatives means that the same cubic functions will apply 
to each of the first and last two adjacent segments. Since the first internal knots no 
longer represent the junction of two different cubic functions, they are no longer true 
knots. Hence, this case is referred to as the “not-a-knot” condition. It has the additional 
property that for four points, it yields the same result as is obtained using an ordinary 
cubic interpolating polynomial of the sort described earlier in this chapter.

These conditions can be readily applied by using Eq. (18.51) for the interior knots, 
i = 2, 3, . . . , n − 2, and using first (1) and last (n) equations as written in Table 18.2.
 Figure 18.18 shows a comparison of the three end conditions as applied to fit the 
data from Table 18.1. The clamped case is set up so that the derivatives at the ends are 
equal to zero.
 As expected, the spline fit for the clamped case levels off at the ends. In contrast, 
the natural and not-a-knot cases follow the trend of the data points more closely. Notice 

TABLE 18.2   The first and last equations needed to specify some commonly used end 
 conditions for cubic splines.

Condition First and Last Equations

Natural c1 = 0, cn = 0

Clamped (where f′1 and f′n are the specified first 2h1c1 + h1c2 = 3 f [x2, x1] − 3 f′1  
derivatives at the first and last nodes, respectively) hn−1  cn−1 + 2hn−1  cn = 3 f ′n − 3 f [xn, xn−1]

Not-a-knot h2  c1 − (h1 + h2)  c2 + h1  c3 = 0
 hn−1  cn−2 − (hn−2 + hn−1)  cn−1 + hn−2  cn = 0
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how the natural spline tends to straighten out as would be expected because the second 
derivatives go to zero at the ends. Because it has nonzero second derivatives at the ends, 
the not-a-knot spline exhibits more curvature.

 18.7 MULTIDIMENSIONAL INTERPOLATION
The interpolation methods for one-dimensional problems can be extended to multidimen-
sional interpolation. In this section, we will describe the simplest case of two-dimensional 
interpolation in Cartesian coordinates.

18.7.1 Bilinear Interpolation
Two-dimensional interpolation deals with determining intermediate values for func-
tions of two variables, z = f(xi, yi). As depicted in Fig. 18.19, we have values at four 
points: f(x1, y1), f(x2, y1), f(x1, y2), and f(x2, y2). We want to interpolate between these 
points to estimate the value at an intermediate point f(xi, yi). If we use a linear func-
tion, the result is a plane connecting the points as in Fig. 18.19. Such functions are 
called bilinear.
 A simple approach for developing the bilinear function is depicted in Fig. 18.20. 
First, we can hold the y value fixed and apply one-dimensional linear interpolation in 
the x direction. Using the Lagrange form, the result at (xi, y1) is

f(xi, y1) =
xi − x2

x1 − x2
  f(x1, y1) +

xi − x1

x2 − x1
  f(x2, y1) (18.54)

and at (xi, y2) is

f(xi, y2) =
xi − x2

x1 − x2
  f(x1, y2) +

xi − x1

x2 − x1
  f(x2, y2) (18.55)

0

3

2

1

f (x)

2 4 6 8

Natural

x

Not-a-knot

Clamped

FIGURE 18.18
Comparison of the clamped (with zero first derivatives), not-a-knot, and natural splines for the 
data from Table 18.1.
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These points can then be used to linearly interpolate along the y dimension to yield the 
final result,

f(xi, yi) =
yi − y2

y1 − y2
  f(xi, y1) +

yi − y1

y2 − y1
  f(xi, y2) (18.56)

A single equation can be developed by substituting Eqs. (18.54) and (18.55) into Eq. 
(18.56) to give

f(xi, yi) =
xi − x2

x1 − x2
  

yi − y2

y1 − y2
  f(x1, y1) +

xi − x1

x2 − x1
  

yi − y2

y1 − y2
  f(x2, y1)

 +
xi − x2

x1 − x2
  

yi − y1

y2 − y1
  f(x1, y2) +

xi − x1

x2 − x1
  

yi − y1

y2 − y1
  f(x2, y2) (18.57)

FIGURE 18.19
Graphical depiction of two-dimensional bilinear interpolation where an intermediate value 
(filled circle) is estimated based on four given values (open circles).

x

y

f (x1, y2)

f (xi, yi)

f(xi, yi)

f (x1, y1)

f (x2, y1)

f (x2, y2)

y2

y1
x1

x2

xi

yi

f(x, y)

FIGURE 18.20
Two-dimensional bilinear interpolation can be implemented by first applying one-dimensional 
 linear interpolation along the x dimension to determine values at xi. These values can then 
be used to linearly interpolate along the y dimension to yield the final result at xi, yi.

f (xi, y1)

f (xi, y2)

f (xi , yi)

f (x1, y1)

f (x1, y2)

y1

x1 x2

yi

xi

y2

f (x2, y1)

f (x2, y2)
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 EXAMPLE 18.11 Bilinear Interpolation
Problem Statement. Suppose you have measured temperatures at a number of coor-
dinates on the surface of a rectangular heated plate:

T(2, 1) = 60  T(9, 1) = 57.5
T(2, 6) = 55  T(9, 6) = 70

Use bilinear interpolation to estimate the temperature at xi = 5.25 and yi = 4.8.

Solution. Substituting these values into Eq. (18.57) gives

f(5.5, 4) =
5.25 − 9

2 − 9
  

4.8 − 6
1 − 6

  60 +
5.25 − 2

9 − 2
  

4.8 − 6
1 − 6

  57.5

 +
5.25 − 9

2 − 9
  

4.8 − 1
6 − 1

  55 +
5.25 − 2

9 − 2
  

4.8 − 1
6 − 1

  70 = 61.2143

 Note that beyond the simple bilinear interpolation described in the foregoing 
 example, higher-order polynomials and splines can also be used to interpolate in two 
dimensions. Further, these methods can be readily extended to three dimensions. We 
will return to this topic when we review software applications for interpolation at the 
end of Chap. 19.
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PROBLEMS

18.1 The following data come from a table of values that were 
measured with high precision. Use a Newton interpolating polyno-
mial to determine y at x = 3.5. Properly order all the points and then 
develop a divided difference table to compute the derivatives. Note 
that a polynomial will yield an exact value. Your solution should 
prove that your result is exact.

x 0 1 2.5 3 4.5 5 6

y 26 15.5 5.375 3.5 2.375 3.5 8

18.2 The following data were measured precisely:

t 2 2.1 2.2 2.7 3 3.4

z 6 7.752 10.256 36.576 66 125.168

(a) Use Newton interpolating polynomials to determine z at t = 2.5. 
Make sure that you order your points to attain the most accurate 
results. What do your results tell you regarding the order of the 
polynomial used to generate the data? (b) Use a third-order 
 Lagrange interpolating polynomial to determine y at t = 2.5.

18.3 Estimate the natural logarithm of 10 using linear interpolation.
(a) Interpolate between ln 8 = 2.0794415 and ln 12 = 2.4849066.
(b) Interpolate between ln 9 = 2.1972246 and ln 11 = 2.3978953. 

For each of the interpolations, compute the percent relative er-
ror based on the true value.

18.4 Fit a second-order Newton’s interpolating polynomial to 
 estimate ln 10 using the data from Prob. 18.3 at x = 8, 9, and 11. 
Compute the true percent relative error.
18.5 Fit a third-order Newton’s interpolating polynomial to 
 estimate ln 10 using the data from Prob. 18.3.
18.6 Repeat Probs. 18.3 through 18.5 using the Lagrange 
 polynomial.
18.7 Given these data:
x 1.6 2 2.5 3.2 4 4.5

f (x) 2 8 14 15 8       2

(a) Calculate f(2.8) using Newton’s interpolating polynomials of 
order 1 through 3. Choose the sequence of the points for your 
estimates to attain the best possible accuracy.

(b) Utilize Eq. (18.18) to estimate the error for each prediction.
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(c) Use inverse interpolation with quadratic interpolation and the 
quadratic formula.

(d) Use inverse interpolation with cubic interpolation and bisec-
tion. For parts (b) through (d), compute the true percent rela-
tive error.

18.15 Develop quadratic splines for the first five data points in 
Prob. 18.7 and predict f(3.4) and f(2.2).
18.16 Develop cubic splines for the data in Prob. 18.8, and (a) 
predict f(4) and f(2.5) and (b) verify that f2(3) and f3(3) = 19.
18.17 Determine the coefficients of the parabola that passes 
through the last three points in Prob. 18.7.
18.18 Determine the coefficients of the cubic equation that passes 
through the first four points in Prob. 18.8.
18.19 Develop, debug, and test a program in either a high-level 
language or macro language of your choice to implement Newton’s 
interpolating polynomial based on Fig. 18.7.
18.20 Test the program you developed in Prob. 18.19 by duplicat-
ing the computation from Example 18.5.
18.21 Use the program you developed in Prob. 18.19 to solve 
Probs. 18.3 through 18.5.
18.22 Use the program you developed in Prob. 18.19 to solve 
Probs. 18.7 and 18.8. Utilize all the data to develop first- through 
fifth-order polynomials. For both problems, plot the estimated error 
versus order.
18.23 Develop, debug, and test a program in either a high-level 
language or macro language of your choice to implement Lagrange 
interpolation. Base it on the pseudocode from Fig. 18.11. Test it by 
duplicating Example 18.7.
18.24 A useful application of Lagrange interpolation is called a 
table look-up. As the name implies, this involves “looking-up” an 
intermediate value from a table. To develop such an algorithm, the  
x and f(x) values from the table are first stored in a pair of one- 
dimensional arrays. These values are then passed to a function 
along with the x value you wish to evaluate. The function then 
performs two tasks. First, it loops down through the table until it 
finds the interval within which the unknown lies. Then it applies a 
technique like Lagrange interpolation to determine the proper f(x) 
value. Develop such a function using a cubic Lagrange polynomial 
to perform the interpolation. For intermediate intervals, this is a 
nice choice because the unknown will be located in the interval in 
the middle of the four points necessary to generate the cubic. For 
the first and last intervals, use a quadratic Lagrange polynomial. 
Also have your code detect when the user requests a value outside 
the range of x’s. For such cases, the function should display an  error 
message. Test your program for f(x) = ln x using data from 
x = 1, 2, … , 10.
18.25 Develop, debug, and test a program in either a high-level 
language or macro language of your choice to implement cubic 
spline interpolation based on Sec. 18.6.3. Test the program by du-
plicating Example 18.10.

18.8 Given these data

x 1 2 3 5 7       8

f (x) 3 6 19 99 291 444

Calculate f(4) using Newton’s interpolating polynomials of order 
1 through 4. Choose your base points to attain good accuracy. What 
do your results indicate regarding the order of the polynomial used 
to generate the data in the table?
18.9 Repeat Prob. 18.8 using Lagrange polynomials of order 
1 through 3.
18.10 The following data come from a table of values that were 
measured with high precision. Use the best numerical method (for 
this type of problem) to determine y at x = 3.5. Note that a polyno-
mial will yield an exact value. Your solution should prove that your 
result is exact.

x 0 1.8 5 6 8.2 9.2 12

y 26 16.415 5.375 3.5 2.015 2.54      8

18.11 Use Newton’s interpolating polynomial to determine y at 
x = 3.5 to the best possible accuracy. Compute the finite divided 
differences as in Fig. 18.5 and order your points to attain optimal 
accuracy and convergence.

x 0 1 2.5 3 4.5 5      6

y 2 5.4375 7.3516 7.5625 8.4453 9.1875 12

18.12 Use Newton’s interpolating polynomial to determine y at 
x  = 8 to the best possible accuracy. Compute the finite divided 
 differences as in Fig. 18.5 and order your points to attain optimal 
accuracy and convergence.

x 0 1 2 5.5 11 13 16     18

y 0.5 3.134 5.3 9.9 10.2 9.35 7.2 6.2

18.13 Employ inverse interpolation using a cubic interpolating 
polynomial and bisection to determine the value of x that corre-
sponds to f(x) = 0.23 for the following tabulated data:

x 2 3 4 5 6         7

y 0.5 0.3333 0.25 0.2 0.1667 0.1429

18.14 Employ inverse interpolation to determine the value of x that 
corresponds to f(x) = 0.85 for the following tabulated data:

x 0 1 2 3 4           5

f (x) 0 0.5 0.8 0.9 0.941176 0.961538

Note that the values in the table were generated with the function 
f(x) = x2∕(1 + x2).
(a) Determine the correct value analytically.
(b) Use cubic interpolation of x versus y.
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18.26 Use the software developed in Prob. 18.23 to fit cubic 
splines through the data in Probs. 18.7 and 18.8. For both cases, 
predict f(2.25).
18.27 Use the portion of the given steam table for superheated 
H2O at 200 MPa to (a) find the corresponding entropy s for a spe-
cific volume v of 0.108 m3/kg with linear interpolation, (b) find 
the same corresponding entropy using quadratic interpolation, and 
(c) find the volume corresponding to an entropy of 6.6 using in-
verse interpolation.

v (m3/kg) 0.10377 0.11144 0.1254

s (kJ/kg K) 6.4147 6.5453 6.7664

18.28 Runge’s function is written as

f(x) =
1

1 + 25x2

(a) Develop a plot of this function for the interval from x = −1 to 1.
(b) Generate and plot the fourth-order Lagrange interpolating 

polynomial using equispaced function values corresponding to 
x = −1, −0.5, 0, 0.5, and 1.

(c) Use the five points from (b) to estimate f(0.8) with first- 
through fourth-order Newton interpolating polynomials.

(d) Generate and plot a cubic spline using the five points from (b).
(e) Discuss your results.
18.29 The following is the humps function that is used to test a 
variety of numerical methods:

f (x) =
1

(x − 0.3)2 + 0.01
+

1
(x − 0.9)2 + 0.04

− 6

The humps function exhibits both flat and steep regions over a 
relatively short x range. Generate values of this function at inter-
vals of 0.1 over the range from x = 0 to 1. Fit these data with a 
cubic spline and create a plot comparing the fit with the exact 
humps function.
18.30 The following data define the sea-level concentration of 
 dissolved oxygen for fresh water as a function of temperature:

T (°C) 0 8 16 24 32 40

o (mg/L) 14.621 11.843 9.870 8.418 7.305 6.413

Estimate o(27) using (a) linear interpolation, (b) Newton’s interpo-
lating polynomial, and (c) cubic splines. Note that the exact result 
is 7.986 mg/L.
18.31 Generate eight equally spaced points from the function

f(t) = sin2t

for t = 0 to 2π. Fit these data with (a) a seventh-order interpolating 
polynomial and (b) a cubic spline.

18.32 Temperatures are measured at various points on a heated 
plate (Table P18.32). Estimate the temperature at (a) x = 4, y = 3.2, 
and (b) x = 4.3, y = 2.7.

TABLE P18.32 Temperature (°C) at various points on a 
square heated plate.

 x = 0 x = 2 x = 4 x = 6 x = 8

y = 0 100.00 90.00 80.00 70.00 60.00
y = 2 85.00 64.49 53.50 48.15 50.00
y = 4 70.00 48.90 38.43 35.03 40.00
y = 6 55.00 38.78 30.39 27.07 30.00
y = 8 40.00 35.00 30.00 25.00 20.00

18.33 Use the precisely measured data in Fig. P18.33 to estimate 
the value at x = 2.2 and y = 1.5

y

x

3
1210 16

221815

2

1

21– 1 3

FIGURE P18.33

18.34 Bessel functions often arise in advanced engineering and 
scientific analyses such as the study of electric fields. These func-
tions are usually not amenable to straightforward evaluation and, 
therefore, are often compiled in standard mathematical tables. For 
example,

x 1.8 2 2.2 2.4 2.6

J1(x) 0.5815 0.5767 0.556 0.5202 0.4708

Estimate J1(2.1), using (a) an interpolating polynomial and  
(b)  cubic splines. Note that the true value is 0.5683.
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534 INTERPOLATION

Generate five equidistantly spaced values of this function over the 
interval [1, 1]. Fit this data with (a) a fourth-order polynomial,  
(b) a linear spline, and (c) a cubic spline. Present your results 
graphically.
18.37 Generate eight points from the function

f(t) = sin2 t

from t = 0 to 2π. Fit this data using a cubic spline. Develop a plot 
of the spline and the data as well as a plot of the absolute error (Et = 
approximation − true).

18.35 (a) Fit a cubic spline to the following data:

x 0 2 4 7 10 12

y 20 20 12 7 6 6

Determine the value of y at x = 1.5.
18.36 Runge’s function is written as

f(x) =
1

1 + 25x2
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C H A P T E R

19
Fourier Approximation

To this point, our presentation of interpolation has emphasized standard polynomials—that 
is, linear combinations of the monomials 1, x, x2, . . . , xm (Fig. 19.1a). We now turn to 
another class of functions that has immense importance in engineering. These are the 
trigonometric functions 1, cos x, cos 2x, . . . , cos nx, sin x, sin 2x, . . . , sin nx (Fig. 19.1b).
 Engineers often deal with systems that oscillate or vibrate. As might be expected, 
trigonometric functions play a fundamental role in modeling such problem contexts. 

FIGURE 19.1
The first five (a) monomials and 
(b) trigonometric functions. 
Note that for the intervals 
shown, both types of function 
range in value between −1 and 
1. However, notice that the 
peak values for the monomials 
all  occur at the extremes, 
whereas for the trigonometric 
functions the peaks are more 
uniformly  distributed across 
the interval.

x4
x3

x2
xx2

x4

x3

f(x)

x1– 1

1

cos t

sin 2t

cos 2t

sin t

cos t

sin t

cos 2t

sin 2t

t

f(x)

π–π

1

(a)

(b)
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536 FOURIER APPROXIMATION

Fourier approximation represents a systematic framework for using trigonometric series 
for this purpose.
 One of the hallmarks of a Fourier analysis is that it deals with both the time and 
the frequency domains. Because some engineers are not comfortable with the latter, we 
have devoted a large fraction of the subsequent material to a general overview of Fourier 
approximation. An important aspect of this overview will be to familiarize you with the 
frequency domain. This orientation is then followed by an introduction to numerical 
methods for computing discrete Fourier transforms.

 19.1 CURVE FITTING WITH SINUSOIDAL FUNCTIONS
A periodic function f(t) is one for which

f(t) = f(t + T) (19.1)

FIGURE 19.2
Aside from trigonometric 
 functions such as sines and 
 cosines, periodic functions 
 include waveforms such as  
(a) the square wave and (b) the 
sawtooth wave. Beyond these 
idealized forms, periodic 
 signals in nature can be  
(c) nonideal and (d) contami-
nated by noise. The trigono-
metric functions can be used 
to represent and to analyze all 
these cases.

T

(a)

T

(b)

T

(d)

T

(c)
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 19.1 CURVE FITTING WITH SINUSOIDAL FUNCTIONS 537

where T is a constant called the period that is the smallest value for which Eq. (19.1) holds. 
Common examples include waveforms such as square and sawtooth waves (Fig. 19.2). The 
most fundamental periodic functions are sinusoidal functions.
 In the present discussion, we will use the term sinusoid to represent any waveform 
that can be described as a sine or cosine. There is no clear-cut convention for choosing 
either function, and in any case, the results will be identical. For this chapter, we will 
use the cosine, which is expressed generally as

f(t) = A0 + C1 cos(ω0t + θ) (19.2)

Thus, four parameters serve to characterize the sinusoid (Fig. 19.3). The mean value A0 
sets the average height above the abscissa. The amplitude C1 specifies the height of the 

FIGURE 19.3
(a) A plot of the sinusoidal function y(t) = A0 + C1 cos(ω0t + θ). For this case, A0 = 1.7,  
C1 = 1, ω0 = 2π/T = 2π/(1.5 s), and θ = π/3 radians = 1.0472 (= 0.25 s). Other  parameters used 
to describe the curve are the frequency f = ω0/(2π), which for this case is 1  cycle/(1.5 s) and 
the period T = 1.5 s. (b) An alternative expression of the same curve is y(t ) = A0 + A1 cos(ω0t ) + 
B1 sin(ω0t ). The three components of this function are depicted in (b), where A1 = 0.5 and  
B1 = −0.866. The summation of the three curves in (b) yields the single curve in (a).

t, s

C1

A0
T

y(t)

ωt, rad3π

2

1

2

1

2ππ0

1

0

– 1

2
A0

B1 sin(ω0t)

A1 cos(ω0t)

(a)

(b)

θ
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538 FOURIER APPROXIMATION

oscillation. The angular frequency ω0 characterizes how often the cycles occur. Finally, 
the phase angle, or phase shift, θ parameterizes the extent to which the sinusoid is shifted 
horizontally. It can be measured as the distance in radians from t = 0 to the point at 
which the cosine function begins a new cycle. As depicted in Fig. 19.4a, a negative value 
is referred to as a lagging phase angle because the curve cos(ω0t − θ) begins a new 
cycle θ radians after cos(ω0t). Thus, cos(ω0t − θ) is said to lag cos(ω0t). Conversely, as 
in Fig. 19.4b, a positive value is referred to as a leading phase angle.
 Note that the angular frequency (in radians/time) is related to frequency f (in cycles/ 
time) by

ω0 = 2πf  (19.3)

and frequency in turn is related to period T (in units of time) by

f =
1
T

 (19.4)

 Although Eq. (19.2) is an adequate mathematical characterization of a sinusoid, it 
is awkward to work with from the standpoint of curve fitting because the phase shift is 
included in the argument of the cosine function. This deficiency can be overcome by 
invoking the trigonometric identity

C1 cos(ω0t + θ) = C1[cos(ω0t) cos(θ) − sin(ω0t) sin(θ)] (19.5)

FIGURE 19.4
Graphical depictions of (a) a lagging phase angle and (b) a leading phase angle. Note that 
the lagging curve in (a) can be alternatively described as cos(ω0t + 3π/2). In other words, if a 
curve lags by an angle of α, it can also be represented as leading by 2π − α.

cos (ω0t)

θ

t

cos  ω0t –     π
2

cos  ω0t +     π
2 cos (ω0t)

t

(a)

(b)
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 19.1 CURVE FITTING WITH SINUSOIDAL FUNCTIONS 539

Substituting Eq. (19.5) into Eq. (19.2) and collecting terms gives (Fig. 19.3b)

f(t) = A0 + A1 cos(ω0t) + B1 sin(ω0t) (19.6)

where

A1 = C1 cos(θ)  B1 = −C1 sin(θ) (19.7)

Dividing the two parts of Eq. (19.7) gives

θ = arctan(−
B1

A1) (19.8)

Note that if A1 < 0, the angle θ should be incremented by π radians. Squaring and sum-
ming Eq. (19.7) leads to

C1 = √A2
1 + B2

1 (19.9)

Thus, Eq. (19.6) represents an alternative formulation of Eq. (19.2) that still requires four 
parameters but that is cast in the format of a general linear model [recall Eq. (17.23)]. As we 
will discuss in the next section, it can be simply applied as the basis for a least-squares fit.
 Before proceeding to the next section, however, we should stress that we could have 
employed a sine rather than a cosine as our fundamental model of Eq. (19.2). For example,

f(t) = A0 + C1 sin(ω0t + δ)

could have been used. Simple relationships can be applied to convert between the two forms

sin(ω0t + δ) = cos(ω0t + δ −
π

2)

and

cos(ω0t + θ) = sin(ω0t + θ +
π

2)

 (19.10)

 In other words, θ = δ − π/2. The only important consideration is that one or the 
other format should be used consistently. Thus, we will use the cosine version through-
out our discussion.

19.1.1 Least-Squares Fit of a Sinusoid
Equation (19.6) can be thought of as a linear least-squares model,

y = A0 + A1 cos(ω0t) + B1 sin(ω0t) + e (19.11)

which is just another example of the general model [recall Eq. (17.23)]

y = a0z0 + a1z1 + a2z2 + … + am 

zm + e (17.23)

where z0 = 1, zl = cos(ω0t), z2 = sin(ω0t), and all other z’s = 0. Thus, our goal is to 
determine coefficient values that minimize

Sr =∑
N

i=1
{yi − [A0 + A1 cos(ω0ti) + B1 sin(ω0ti) ]}2
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540 FOURIER APPROXIMATION

The normal equations to accomplish this minimization can be expressed in matrix form 
as [recall Eq. (17.25)]

[
N Σcos(ω0t) Σsin(ω0t)

Σcos(ω0t) Σcos2(ω0t) Σcos(ω0t) sin(ω0t)
Σsin(ω0t) Σcos(ω0t) sin(ω0t) Σsin2(ω0t) ] {

A0

A1

B0
}

= {
Σy

Σy cos(ω0t)
Σy sin(ω0t)

}    (19.12)

 These equations can be employed to solve for the unknown coefficients. However, 
rather than do this, we can examine the special case where there are N observations 
equispaced at intervals of Δt and with a total record length of T = (N − 1) Δt. For this 
situation, the following average values can be determined (see Prob. 19.1):

Σsin(ω0t)
N

= 0    
Σcos(ω0t)

N
= 0

Σsin2(ω0t)
N

=
1
2
  

Σcos2(ω0t)
N

=
1
2

 (19.13)

         
Σcos(ω0t) sin(ω0t)

N
= 0

Thus, for equispaced points the normal equations become

[
N 0 0
0 N∕2 0
0 0 N∕2] {

A0

A1

B1
} = {

Σy

Σy cos(ω0t)
Σy sin(ω0t)

}
The inverse of a diagonal matrix is merely another diagonal matrix whose elements are 
the reciprocals of the original. Thus, the coefficients can be determined as

{
A0

A1

B1
} = [

1∕N 0 0
0 2∕N 0
0 0 2∕N] {

Σy

Σy cos(ω0t)
Σy sin(ω0t)

}
or

A0 =
Σy

N
 (19.14)

A1 =
2
N

Σy cos(ω0t) (19.15)

B1 =
2
N

Σy sin(ω0t) (19.16)

 EXAMPLE 19.1 Least-Squares Fit of a Sinusoid
Problem Statement. The curve in Fig. 19.3 is described by y = 1.7 + cos(4.189t + 
1.0472). Generate 10 discrete values for this curve at intervals of Δt = 0.15 for the range 
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t = 0 to 1.35. Use this information to evaluate the coefficients of Eq. (19.11) by a least-
squares fit.

Solution. The data required to evaluate the coefficients with ω = 4.189 are

 t y y cos(ω0t) y sin(ω0t)

 0 2.200 2.200 0.000
 0.15 1.595 1.291 0.938
 0.30 1.031 0.319 0.980
 0.45 0.722 −0.223 0.687
 0.60 0.786 −0.636 0.462
 0.75 1.200 −1.200 0.000
 0.90 1.805 −1.460 −1.061
 1.05 2.369 −0.732 −2.253
 1.20 2.678 0.829 −2.547
 1.35 2.614 2.114 −1.536

  Σ = 17.000 2.502 −4.330

These results can be used to determine [Eqs. (19.14) through (19.16)]

A0 =
17.000

10
= 1.7  A1 =

2
10

 2.502 = 0.500  B1 =
2
10

 (−4.330) = −0.866

Thus, the least-squares fit is

y = 1.7 + 0.500 cos(ω0t) − 0.866 sin(ω0t)

The model can also be expressed in the format of Eq. (19.2) by calculating [Eq. (19.8)]

θ = arctan (−
−0.866
0.500 ) = 1.0472

and [Eq. (19.9)]

C1 = √(0.5)2 + (−0.866)2 = 1.00

to give

y = 1.7 + cos(ω0t + 1.0472)

or alternatively, as a sine by using [Eq. (19.10)],

y = 1.7 + sin(ω0t + 2.618)

 The foregoing analysis can be extended to the general model

f(t) = A0 + A1 cos(ω0t) + B1 sin(ω0t) + A2 cos(2ω0t) + B2 sin(2ω0t)
       + … + Am cos(mω0t) + Bm sin(mω0t)

 19.1 CURVE FITTING WITH SINUSOIDAL FUNCTIONS 541
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542 FOURIER APPROXIMATION

where, for equally spaced data, the coefficients can be evaluated by

A0 =
Σy

N

Aj =
2
N

Σy cos( jω0t)

Bj =
2
N

Σy sin( jω0t)}
  j = 1, 2, … , m

 Although these relationships can be used to fit data in the regression sense (that is,  
N > 2m + 1), an alternative application is to employ them for interpolation or  collocation—
that is, to use them for the case where the number of unknowns, 2m + 1, is equal to the 
number of data points, N. This is the approach used in the continuous Fourier series, as 
described next.

 19.2 CONTINUOUS FOURIER SERIES
In the course of studying heat-flow problems, Fourier showed that an arbitrary periodic 
function can be represented by an infinite series of sinusoids of harmonically related 
frequencies. For a function with period T, a continuous Fourier series can be written1

f(t) = a0 + a1 cos(ω0t) + b1 sin(ω0t) + a2 cos(2ω0t) + b2 sin(2ω0t) + …

or more concisely,

f(t) = a0 +∑
∞

k=1
[ak cos(kω0t) + bk sin(kω0t)] (19.17)

where ω0 = 2π∕T is called the fundamental frequency and its constant multiples 2ω0, 
3ω0, etc., are called harmonics. Thus, Eq. (19.17) expresses f(t) as a linear combination 
of the basis functions: 1, cos(ω0t), sin(ω0t), cos(2ω0t), sin(2ω0t), . . . .
 As described in Box 19.1, the coefficients of Eq. (19.17) can be computed via

ak =
2
T

 ∫T

0
 f(t) cos(kω0t) dt (19.18)

and

bk =
2
T

 ∫T

0
 f(t) sin(kω0t) dt (19.19)

for k = 1, 2, . . . , and

a0 =
1
T

 ∫T

0
 f(t) dt (19.20)

1The existence of the Fourier series is predicated on the Dirichlet conditions. These specify that the periodic 
function have a finite number of maxima and minima and that there be a finite number of jump discontinuities. 
In general, all physically derived periodic functions satisfy these conditions.
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 19.2 CONTINUOUS FOURIER SERIES 543

 Box 19.1 Determination of the Coefficients of the Continuous Fourier Series

As was done for the discrete data of Sec. 19.1.1, the following 
relationships can be established:

∫T

0
 sin(kω0t) dt = ∫T

0
 cos(kω0t) dt = 0 (B19.1.1)

∫T

0
 cos(kω0t) sin(gω0t) dt = 0 (B19.1.2)

∫T

0
 sin(kω0t) sin(gω0t) dt = 0 (B19.1.3)

∫T

0
 cos(kω0t) cos(gω0t) dt = 0 (B19.1.4)

∫T

0
 sin2(kω0t) dt = ∫T

0
 cos2(kω0t) dt =

T

2
 (B19.1.5)

To evaluate its coefficients, each side of Eq. (19.17) can be in-
tegrated to give

∫T

0
 f(t) dt = ∫T

0
 a0 dt + ∫T

0
∑
∞

k=1
[ak cos(kω0t)

 + bk sin(kω0t)] dt

Because every term in the summation is of the form of Eq. 
(B19.1.1), the equation becomes

∫T

0
 f(t) dt = a0T

which can be solved for

a0 =
∫T

0  f (t) dt

T

Thus, a0 is simply the average value of the function over the 
period.
 To evaluate one of the cosine coefficients, for example, am, 
multiply Eq. (19.17) by cos(mω0t) and integrate to give

∫T

0
 f(t) cos(mω0t) dt = ∫T

0
 a0 cos(mω0t) dt

+ ∫T

0
∑
∞

k=1
ak cos(kω0t) cos(mω0t) dt

+ ∫T

0
∑
∞

k=1
bk sin(kω0t) cos(mω0t) dt (B19.1.6)

From Eqs. (B19.1.1), (B19.1.2), and (B19.1.4), we see that ev-
ery term on the right-hand side is zero, with the exception of the 
case where k = m. This latter case can be evaluated by Eq. 
(B19.1.5) and, therefore, Eq. (B19.1.6) can be solved for am, or 
more generally [Eq. (19.18)],

ak =
2
T

 ∫T

0
 f (t) cos(kω0t) dt

for k = 1, 2, . . . .
 In a similar fashion, Eq. (19.17) can be multiplied by 
sin(mω0t), integrated, and manipulated to yield Eq. (19.19).

 EXAMPLE 19.2 Continuous Fourier Series Approximation
Problem Statement. Use the continuous Fourier series to approximate the square or 
rectangular wave function (Fig. 19.5)

f(t) = {
−1 −T∕2 < t < −T∕4
    1 −T∕4 < t <    T∕4
−1    T∕4 < t <    T∕2

Solution. Because the average height of the wave is zero, a value of a0 = 0 can be 
obtained directly. The remaining coefficients can be evaluated as [Eq. (19.18)]

 ak =
2
T

 ∫T∕2

−T∕2
 f(t) cos(kω 0

 

t) dt

 =
2
T

 [− ∫−T∕4

−T∕2
cos(kω0t) dt + ∫T∕4

−T∕4
cos(kω0t) dt − ∫T∕2

T∕4
cos(kω0t) dt]
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544 FOURIER APPROXIMATION

FIGURE 19.5
A square or rectangular wave-
form with a height of 2 and a 
period T = 2π/ω0.

1

– T/2 T/20– T T

–1

(a)

(b)

(c)

Σ

Σ

Σ

cos (ω0t)
4
π

cos (3ω0t)
4
3π

cos (5ω0t)
4

5π

FIGURE 19.6
The Fourier series approxima-
tion of the square wave from 
Fig. 19.5. The series of plots 
shows the summation up to  
and including the (a) first,  
(b) second, and (c) third terms. 
The individual terms that were 
added at each stage are also 
shown.
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 19.3 FREQUENCY AND TIME DOMAINS 545

The integrals can be evaluated to give

ak = {
    4∕(kπ) for k = 1, 5, 9, …
−4∕(kπ) for k = 3, 7, 11, …
       0 for k = even integers

Similarly, it can be determined that all the b’s = 0. Therefore, the Fourier series 
 approximation is

f(t) =
4
π

 cos(ω0t) −
4

3π
 cos(3ω0t) +

4
5π

 cos(5ω0t) −
4

7π
 cos(7ω0t) + …

The results up to the first three terms are shown in Fig. 19.6.
 It should be mentioned that the square wave in Fig. 19.5 is called an even function 
because f(t) = f(−t). Another example of an even function is cos(t). It can be shown 
(Van Valkenburg 1974) that the b’s in the Fourier series always equal zero for even 
functions. Note also that odd functions are those for which f(t) = −f(−t). The function 
sin(t) is an odd function. For this case, the a’s will equal zero.

 In addition to the trigonometric format of Eq. (19.17), the Fourier series can be 
expressed in terms of exponential functions as (see Box 19.2 and App. A)

f(t) = ∑
∞

k=−∞
c∼ke

ikω0t (19.21)

where i = √−1 and

c∼k =
1
T

 ∫T∕2

−T∕2
 f(t)e−ikω0t dt (19.22)

This alternative formulation will have utility throughout the remainder of the chapter.

 19.3 FREQUENCY AND TIME DOMAINS
To this point, our discussion of Fourier approximation has been limited to the time do-
main. We have done this because most of us are fairly comfortable conceptualizing a 
function’s behavior in this dimension. Although it is not as familiar, the frequency domain 
provides an alternative perspective for characterizing the behavior of oscillating functions.
 Thus, just as amplitude can be plotted versus time, so also can it be plotted versus 
frequency. Both types of expression are depicted in Fig. 19.7a, where we have drawn a 
three-dimensional graph of a sinusoidal function,

f(t) = C1 cos (t +
π

2)

In this plot, the magnitude or amplitude of the curve, f(t), is the dependent variable and 
time t and frequency f = ω0∕2π are the independent variables. Thus, the amplitude and 
the time axes form a time plane, and the amplitude and the frequency axes form a 
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546 FOURIER APPROXIMATION

frequency plane. The sinusoid can, therefore, be conceived of as existing a distance 1∕T 
out along the frequency axis and running parallel to the time axis. Consequently, when 
we speak about the behavior of the sinusoid in the time domain, we mean the projection 
of the curve onto the time plane (Fig. 19.7b). Similarly, the behavior in the frequency 
domain is merely its projection onto the frequency plane.
 As in Fig. 19.7c, this projection is a measure of the sinusoid’s maximum positive 
amplitude C1. The full peak-to-peak swing is unnecessary because of the symmetry. To-
gether with the location 1∕T along the frequency axis, Fig. 19.7c defines the amplitude 
and frequency of the sinusoid. This is enough information to reproduce the shape and size 
of the curve in the time domain. However, one more parameter, namely, the phase angle, 
is required to position the curve relative to t = 0. Consequently, a phase diagram, as shown 
in Fig. 19.7d, must also be included. The phase angle is determined as the distance (in 
radians) from zero to the point at which the positive peak occurs. If the peak occurs after 

 Box 19.2 Complex Form of the Fourier Series

The trigonometric form of the continuous Fourier series is

f (t) = a0 +∑
∞

k=1
[ak cos(kω0t) + bk sin(kω0t)] (B19.2.1)

From Euler’s identity, the sine and cosine can be expressed in 
exponential form as

sin x =
eix − e−ix

2i
 (B19.2.2)

cos x =
eix + e−ix

2
 (B19.2.3)

which can be substituted into Eq. (B19.2.1) to give

f (t) = a0 +∑
∞

k=1 (eikω0t
 

ak − ibk

2
+ e−ikω0t

 

ak + ibk

2 ) (B19.2.4)

because 1∕i = −i. We can define a number of constants:

  c∼0 = a0

  c∼k =
ak − ibk

2

c∼−k =
a−k − ib−k

2
=

ak + ibk

2

 (B19.2.5)

where, because of the odd and even properties of the sine and 
cosine, ak = a−k and bk = −b−k. Equation (B19.2.4) can, there-
fore, be re-expressed as

f (t) = c∼0 +∑
∞

k=1
c∼ke

ikω0t +∑
∞

k=1
c∼−ke

−ikω0t

or

f (t) =∑
∞

k=0
c∼ke

ikω0t +∑
∞

k=1
c∼−ke

−ikω0t

To simplify further, instead of summing the second series from 
1 to ∞, perform the sum from −1 to −∞,

f (t) =∑
∞

k=0
c∼ke

ikω0t +∑
−∞

k=−1
c∼ke

ikω0t

or

f (t) = ∑
∞

k=−∞
c∼ke

ikω0t (B19.2.6)

where the summation includes a term for k = 0.
 To evaluate the c∼k’s, Eqs. (19.18) and (19.19) can be substi-
tuted into Eq. (B19.2.5) to yield

c∼k =
1
T

 ∫T∕2

−T∕2
 f (t) cos(kω0t) dt − i 

1
T

 ∫T∕2

−T∕2
 f(t) sin(kω0t) dt

Employing Eqs. (B19.2.2) and (B19.2.3) and simplifying gives

c∼k =
1
T

 ∫T∕2

−T∕2
 f (t)e−ikω0t dt (B19.2.7)

Therefore, Eqs. (B19.2.6) and (B19.2.7) are the complex ver-
sions of Eqs. (19.17) through (19.20). Note that App. A includes 
a summary of the interrelationships among all the formats of the 
Fourier series introduced in this chapter.
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zero, it is said to be delayed (recall our discussion of lags and leads in Sec. 19.1), and by 
convention, the phase angle is given a negative sign. Conversely, a peak before zero is said 
to be advanced and the phase angle is positive. Thus, for Fig. 19.7, the peak leads zero 
and the phase angle is plotted as +π∕2. Figure 19.8 depicts some other possibilities.
 We can now see that Fig. 19.7c and d provide an alternative way to present or 
 summarize the pertinent features of the sinusoid in Fig. 19.7a. They are referred to as 
line spectra. Admittedly, for a single sinusoid they are not very interesting. However, 
when applied to a more complicated situation, say, a Fourier series, their true power and 
value is revealed. For example, Fig. 19.9 shows the amplitude and phase line spectra for 
the square-wave function from Example 19.2.
 Such spectra provide information that would not be apparent from the time domain. 
This can be seen by contrasting Figs. 19.6 and 19.9. Figure 19.6 presents two alternative 
time-domain perspectives. The first, the original square wave, tells us nothing about 

FIGURE 19.7
(a) A depiction of how a sinusoid can be portrayed in the time and the frequency domains. 
The time projection is reproduced in (b), whereas the amplitude-frequency projection is re-
produced in (c). The phase-frequency projection is shown in (d ).
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548 FOURIER APPROXIMATION

FIGURE 19.8
Various phases of a sinusoid 
showing the associated phase 
line spectra.
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FIGURE 19.9
(a) Amplitude and (b) phase 
line spectra for the square 
wave from Fig. 19.5.
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 19.4 FOURIER INTEGRAL AND TRANSFORM 549

the sinusoids that comprise it. The alternative is to display these sinusoids—that is,  
(4∕π) cos(ω0t), −(4∕3π) cos(3ω0t), (4∕5π) cos(5ω0t), etc. This alternative does not pro-
vide an adequate visualization of the structure of these harmonics. In contrast, Fig. 19.9a 
and b provide a graphic display of this structure. As such, the line spectra represent 
“fingerprints” that can help us to characterize and understand a complicated waveform. 
They are particularly valuable for nonidealized cases, where they sometimes allow us to 
discern structure in otherwise obscure signals. In the next section, we will describe the 
Fourier transform that will allow us to extend such analyses to nonperiodic waveforms.

 19.4 FOURIER INTEGRAL AND TRANSFORM
Although the Fourier series is a useful tool for investigating the spectrum of a periodic 
function, there are many waveforms that do not repeat themselves regularly. For example, 
a lightning bolt occurs only once (or at least it will be a long time until it occurs again), 
but it will cause interference with receivers operating on a broad range of frequencies—
for example, TVs, radios, and shortwave receivers. Such evidence suggests that a 
 nonrecurring signal such as that produced by lightning exhibits a continuous frequency 
spectrum. Because such phenomena are of great interest to engineers, an alternative to 
the Fourier series would be valuable for analyzing these aperiodic waveforms.
 The Fourier integral is the primary tool available for this purpose. It can be derived 
from the exponential form of the Fourier series,

f(t) = ∑
∞

k=−∞
c∼ke

ikω0t (19.23)

where

c∼k =
1
T

 ∫T∕2

−T∕2
 f(t)e−ikω0t dt (19.24)

and ω0 = 2π∕T and k = 0, 1, 2, . . . .
 The transition from a periodic to a nonperiodic function can be effected by allowing 
the period to approach infinity. In other words, as T becomes infinite, the function never 
repeats itself and thus becomes aperiodic. If this is allowed to occur, it can be demon-
strated (for example, Van Valkenburg 1974; Hayt and Kemmerly 1986) that the Fourier 
series reduces to

f(t) =
1

2π
 ∫ ∞

−∞
 F(iω0)eiω0t dω0 (19.25)

and the coefficients become a continuous function of the frequency variable ω, as in

F(iω0) = ∫ ∞

−∞
 f(t)e−iω0t dt (19.26)

 The function F(iω0), as defined by Eq. (19.26), is called the Fourier integral of f(t). 
In addition, Eqs. (19.25) and (19.26) are collectively referred to as the Fourier transform 
pair. Thus, along with being called the Fourier integral, F(iω0) is also called the Fourier 
transform of f(t). In the same spirit, f(t), as defined by Eq. (19.25), is referred to as the 
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550 FOURIER APPROXIMATION

inverse Fourier transform of F(iω0). Thus, the pair allows us to transform back and forth 
between the time and the frequency domains for an aperiodic signal.
 The distinction between the Fourier series and transform should now be quite clear. 
The major difference is that each applies to a different class of functions—the series to 
periodic and the transform to nonperiodic waveforms. Beyond this major distinction, the 
two approaches differ in how they move between the time and the frequency domains. 
The Fourier series converts a continuous, periodic time-domain function to frequency-
domain magnitudes at discrete frequencies. In contrast, the Fourier transform converts a 
continuous time-domain function to a continuous frequency-domain function. Thus, the 
discrete frequency spectrum generated by the Fourier series is analogous to a continuous 
frequency spectrum generated by the Fourier transform.
 The shift from a discrete to a continuous spectrum can be illustrated graphically. In 
Fig. 19.10a, we can see a pulse train of rectangular waves with pulse widths equal to one-
half the period, along with its associated discrete spectrum. This is the same function as 
was investigated previously in Example 19.2, with the exception that it is shifted vertically.
 In Fig. 19.10b, a doubling of the pulse train’s period has two effects on the spectrum. 
First, two additional frequency lines are added on either side of the original components. 
Second, the amplitudes of the components are reduced.

Δt

Δt

t0

(a)

(b)

T

t0
T

(c)

t

f

f

f0
T

FIGURE 19.10
Illustration of how the discrete frequency spectrum of a Fourier series for a pulse train  
(a) approaches a continuous frequency spectrum of a Fourier integral (c) as the period is  
allowed to approach infinity.
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 19.5 DISCRETE FOURIER TRANSFORM (DFT) 551

 As the period is allowed to approach infinity, these effects continue as more and 
more spectral lines are packed together until the spacing between lines goes to zero. 
At the limit, the series converges on the continuous Fourier integral, depicted in 
Fig.  19.10c.
 Now that we have introduced a way to analyze an aperiodic signal, we will take the 
final step in our development. In the next section, we will acknowledge the fact that a 
signal is rarely characterized as a continuous function of the sort needed to implement 
Eq. (19.26). Rather, these data are invariably in a discrete form. Thus, we will now show 
how to compute a Fourier transform for such discrete measurements.

 19.5 DISCRETE FOURIER TRANSFORM (DFT)
In engineering, functions are often represented by finite sets of discrete values. Addi-
tionally, data are often collected in or converted to such a discrete format. As depicted 
in Fig. 19.11, an interval from 0 to t can be divided into N equispaced subintervals with 
widths of Δt = T∕N. The subscript n is employed to designate the discrete times at 
which samples are taken. Thus, fn designates a value of the continuous function f(t) 
taken at tn.
 Note that the data points are specified at n = 0, 1, 2, . . . , N − 1. A value is not 
included at n = N. (See Ramirez, 1985, for the rationale for excluding fN.)
 For the system in Fig. 19.11, a discrete Fourier transform (DFT) can be written as

Fk =∑
N−1

n=0
 fne

−ikω0n  for k = 0 to N − 1 (19.27)

f (t)

t0 t1 t2

f3f2

f1

f0

tn = Ttn–1

fn–1

FIGURE 19.11
The sampling points of the discrete Fourier series.
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552 FOURIER APPROXIMATION

and the inverse Fourier transform as

fn =
1
N

 ∑
N−1

k=0
 Fke

ikω0n  for n = 0 to N − 1 (19.28)

where ω0 = 2π∕N.
 Equations (19.27) and (19.28) represent the discrete analogs of Eqs. (19.25) and 
(19.26), respectively. As such, they can be employed to compute both a direct and an 
inverse Fourier transform for discrete data. 
 Before proceeding, several other aspects of the DFT bear mentioning. The highest 
frequency that can be measured in a signal, called the Nyquist frequency, is half the 
sampling frequency. Periodic variations that occur more rapidly than the shortest sampled 
time interval cannot be detected. The lowest frequency you can detect is the inverse of 
the total sample length.
 As an example, suppose that you take 100 samples of data (n = 100 samples) at a 
sample frequency of fs = 1000 Hz (i.e., 1000 samples per second). This means that the 
sample interval is

Δt =
1
fs

=
1

1000 samples/s
= 0.001 s/sample

The total sample length is

tn =
n

fs

=
100 samples

1000 samples/s
= 0.1 s

and the frequency increment is

Δf =
fs

n
=

1000 samples/s
100 samples

= 10 Hz

The Nyquist frequency is

fmax = 0.5 fs = 0.5(1000 Hz) = 500 Hz

and the lowest detectable frequency is

fmin =
1

0.1 s
= 10 Hz

Thus, for this example, the DFT could detect signals with periods from 1/500 = 0.002 s 
up to 1/10 = 0.1 s.

 EXAMPLE 19.3 Sampling Strategy to Detect a Range of Frequencies with the DFT
Problem Statement. Suppose you want to determine the DFT for a simple sinusoid:

f(t) = 5 + cos(2π(12.5)t) + sin(2π(18.75)t)

If you generate eight equispaced points with Δt = 0.02 s, would the DFT be able to 
detect both the 12.5 and 18.75 Hz signals?
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Solution. The sampling frequency can be computed as

fs =
1
Δt

=
1

0.02 s
= 50 Hz

The total sample length is

tn =
n

fs

=
8 samples

50 samples/s
= 0.16 s

The Nyquist (or maximum detectable) frequency is

fmax = 0.5 fs = 0.5(50 Hz) = 25 Hz

and the lowest detectable frequency is

fmin =
1

0.16 s
= 6.25 Hz

Thus, the analysis can detect signals with periods from 1∕25 = 0.04 s up to 1∕6.25 = 
0.16 s and is able to detect both the 12.5 and 18.75 Hz signals.

Computer Algorithm for the DFT. Note that the factor 1∕N in Eq. (19.28) is merely 
a scale factor that can be included in either Eq. (19.27) or (19.28), but not both. For our 
computer algorithm, we will shift it to Eq. (19.27) so that the first coefficient F0 (which 
is the analog of the continuous coefficient a0) is equal to the arithmetic mean of the 
samples. Also, to develop an algorithm that can be implemented in languages that do 
not accommodate complex variables, we can use Euler’s identity,

e±ia = cos a ± i sin a

to re-express Eqs. (19.27) and (19.28) as

Fk =
1
N
∑
N

n=0
[ fn cos(kω0n) − ifn sin(kω0n)] (19.29)

and

fn =∑
N−1

k=0
[Fk cos(kω0n) − iFk sin(kω0n) ] (19.30)

 Pseudocode to implement Eq. (19.29) is listed in Fig. 19.12. This algorithm can be 
developed into a computer program to compute the DFT. The output from such a program 
is listed in Fig. 19.13 for the analysis of a cosine function.

FIGURE 19.12
Pseudocode for computing 
the DFT.

DOFOR k = 0, N − 1
  DOFOR n = 0, N − 1
    angle = kω0n
    realk = realk + fn cos(angle)/N
    imaginaryk = imaginaryk − fn sin(angle)/N
  END DO
END DO

 19.5 DISCRETE FOURIER TRANSFORM (DFT) 553
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554 FOURIER APPROXIMATION

 19.6 FAST FOURIER TRANSFORM (FFT)
Although the algorithm described in the previous section adequately calculates the DFT, 
it is computationally burdensome because N2 operations are required. Consequently, for 
data samples of even moderate size, the direct determination of the DFT can be extremely 
time-consuming.
 The fast Fourier transform, or FFT, is an algorithm that has been developed to 
compute the DFT in an extremely economical fashion. Its speed stems from the fact that 
it utilizes the results of previous computations to reduce the number of operations. In 
particular, it exploits the periodicity and symmetry of trigonometric functions to compute 
the transform with approximately N log2 N operations (Fig. 19.14). Thus, for N = 50 
samples, the FFT is about 10 times faster than the standard DFT. For N = 1000, it is 
about 100 times faster.
 The first FFT algorithm was developed by Gauss in the early nineteenth century 
(Heideman et al. 1984). Other major contributions were made by Runge, Danielson, 
Lanczos, and others in the early twentieth century. However, because discrete transforms 
often took days to weeks to calculate by hand, they did not attract broad interest prior 
to the development of the modern digital computer.
 In 1965, J. W. Cooley and J. W. Tukey published a key paper in which they outlined 
an algorithm for calculating the FFT. This scheme, which is similar to those of Gauss 
and other earlier investigators, is called the Cooley-Tukey algorithm. Today, there are a 
host of other approaches that are offshoots of this method.
 The basic idea behind each of these algorithms is that a DFT of length N is decom-
posed, or “decimated,” into successively smaller DFTs. There are a variety of different 
ways to implement this principle. For example, the Cooley-Tukey algorithm is a member 
of what are called decimation-in-time techniques. In the present section, we will describe 

FIGURE 19.13
Output of a program based on the algorithm from Fig. 19.12 for the DFT of data generated by 
a cosine function f (t) = cos[2π(12.5)t] at 16 points with Δt = 0.01 s.

INDEX	 f(t)	 REAL	 IMAGINARY
0	 1.000	 0.000	 0.000
1	 0.707	 0.000	 0.000
2	 0.000	 0.500	 0.000
3	 −0.707	 0.000	 0.000
4	 −1.000	 0.000	 0.000
5	 −0.707	 0.000	 0.000
6	 0.000	 0.000	 0.000
7	 0.707	 0.000	 0.000
8	 1.000	 0.000	 0.000
9	 0.707	 0.000	 0.000
10	 0.000	 0.000	 0.000
11	 −0.707	 0.000	 0.000
12	 −1.000	 0.000	 0.000
13	 −0.707	 0.000	 0.000
14	 0.000	 0.500	 0.000
15	 0.707	 0.000	 0.000

cha32077_ch19_535-571.indd   554 9/17/19   12:40 PM



 19.6 FAST FOURIER TRANSFORM (FFT) 555

an alternative approach called the Sande-Tukey algorithm. This method is a member of 
another class of algorithms called decimation-in-frequency techniques. The distinction 
between the two classes will be discussed after we have elaborated on the method.

19.6.1 Sande-Tukey Algorithm
In the present case, N will be assumed to be an integral power of 2,

N = 2M (19.31)

where M is an integer. This constraint is introduced to simplify the resulting algorithm. 
Now, recall that the DFT can be generally represented as

Fk =∑
N−1

n=0
 fne

−i(2π∕N)nk  for k = 0 to N − 1 (19.32)

where 2π∕N = ω0. Equation (19.32) can also be expressed as

Fk =∑
N−1

n=0
 fnW 

nk

where W is a complex-valued weighting function defined as

W = e−i(2π∕N) (19.33)

0
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FIGURE 19.14
Plot of number of operations vs. sample size for the standard DFT and the FFT.
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556 FOURIER APPROXIMATION

 Suppose now that we divide the sample in half and express Eq. (19.32) in terms of 
the first and last N∕2 points:

Fk = ∑
(N∕2)−1

n=0
fne

−i(2π∕N)kn + ∑
N−1

n=N∕2
fne

−i(2π∕N)kn

where k = 0, 1, 2, . . . , N − 1. A new variable, m = n − N∕2, can be created so that 
the range of the second summation is consistent with the first,

Fk = ∑
(N∕2)−1

n=0
fne

−i(2π∕N)kn + ∑
(N∕2)−1

m=0
fm+N∕2e

−i(2π∕N)k(m+N∕2)

or

Fk = ∑
(N∕2)−1

n=0
( fn + e−iπkfn+N∕2)e−i2πkn∕N (19.34)

 Next, recognize that the factor e−iπk = (−1)k. Thus, for even points it is equal to 1 
and for odd points it is equal to −1. Therefore, the next step in the method is to separate 
Eq. (19.34) according to even values and odd values of k. For the even values,

F2k = ∑
(N∕2)−1

n=0
( fn + fn+N∕2)e−i2π(2k)n∕N = ∑

(N∕2)−1

n=0
( fn + fn+N∕2)e−i2πkn∕(N∕2)

and for the odd values,

 F2k+1 = ∑
(N∕2)−1

n=0
( fn − fn+N∕2)e−i2π(2k+1)n∕N

 = ∑
(N∕2)−1

n=0
( fn − fn+N∕2)e−i2πn∕Ne−i2πkn∕(N∕2)

for k = 0, 1, 2, . . . , (N∕2) − 1.
 These equations can also be expressed in terms of Eq. (19.33). For the even values,

F2k = ∑
(N∕2)−1

n=0
( fn + fn+N∕2)W 

2kn

and for the odd values,

F2k+1 = ∑
(N∕2)−1

n=0
( fn − fn+N∕2)W 

nW 
2kn

 Now, a key insight can be made. These even and odd expressions can be interpreted 
as being equal to the transforms of the (N∕2)-length sequences,

gn = fn + fn+N∕2 (19.35)

and

hn = ( fn − fn+N∕2)W 
n  for n = 0, 1, 2, … , (N∕2) − 1 (19.36)

Thus, it directly follows that

F2k = Gk

F2k+1 = Hk
}  for k = 0, 1, 2, … , (N∕2) − 1
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FIGURE 19.15
Flow graph of the first stage in a decimation-in-frequency decomposition of an N-point DFT 
into two (N∕2)-point DFTs for N = 8.

 In other words, one N-point computation has been replaced by two (N∕2)-point 
computations. Because each of the latter requires approximately (N∕2)2 complex multi-
plications and additions, the approach produces a factor-of-2 savings—that is, N2 versus 
2(N∕2)2 = N2∕2.
 The scheme is depicted in Fig. 19.15 for N = 8. The DFT is computed by first 
forming the sequences gn and hn and then computing the N∕2 DFTs to obtain the even- 
and odd-numbered transforms. The weights Wn are sometimes called twiddle factors.
 Now it is clear that this “divide-and-conquer” approach can be repeated at the sec-
ond stage. Thus, we can compute the (N∕4)-point DFTs of the four N∕4 sequences 
composed of the first and last N∕4 points of Eqs. (19.35) and (19.36).
 The strategy is continued to its inevitable conclusion when N∕2 two-point DFTs are 
computed (Fig. 19.16). The total number of calculations for the entire computation is on 
the order of N log2 N. The contrast between this level of effort and that of the standard 
DFT (Fig. 19.14) illustrates why the FFT is so important.

Computer Algorithm. It is a relatively straightforward proposition to express Fig. 19.16 
as an algorithm. As was the case for the DFT algorithm of Fig. 19.12, we will use Euler’s 
identity,

e±ia = cos a ± i sin a

to allow the algorithm to be implemented in languages that do not explicitly accommo-
date complex variables.
 Close inspection of Fig. 19.16 indicates that its fundamental computational molecule 
is the so-called butterfly network depicted in Fig. 19.17a. Pseudocode to implement one 
of these molecules is shown in Fig. 19.17b.
 Pseudocode for the FFT is listed in Fig. 19.18. The first part consists essentially of 
three nested loops to implement the computation embodied in Fig. 19.16. Note that the 
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FIGURE 19.17
(a) A butterfly network that represents the fundamental computation of Fig. 19.16.  
(b) Pseudocode to implement (a).

f (0)

f (1)

F(0)

F(1)

+

+

+

–
(a) (b)

temporary
real (1)
real (0)
temporary
imaginary (1)
imaginary (0)

= real (0) + real (1)
= real (0) – real (1)
= temporary
= imaginary (0) + imaginary (1)
= imaginary (0) – imaginary (1)
= temporary

real-valued data are originally stored in the array x. Also note that the outer loop steps 
through the M stages [recall Eq. (19.31)] of the flow graph.
 After this first part is executed, the DFT will have been computed but in a scrambled 
order (see the right-hand side of Fig. 19.16). These Fourier coefficients can be unscrambled 
by a procedure called bit reversal. If the subscripts 0 through 7 are expressed in binary, 
the correct ordering can be obtained by reversing these bits (Fig. 19.19). The second part 
of the algorithm implements this procedure.

19.6.2 Cooley-Tukey Algorithm
Figure 19.20 shows a flow network to implement the Cooley-Tukey algorithm. For this 
case, the sample is initially divided into odd- and even-numbered points, and the final 
results are in correct order.
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FIGURE 19.16
Flow graph of the complete decimation-in-frequency decomposition of an eight-point DFT.
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 This approach is called a decimation in time. It is the reverse of the Sande-Tukey 
algorithm described in the previous section. Although the two classes of method differ 
in organization, they both require only N log2 N operations, which is the strength of the 
FFT approach.

FIGURE 19.19
Depiction of the bit-reversal process.

 Scrambled Scrambled Bit-Reversed Final 
 Order Order Order Result 
 (Decimal) (Binary) (Binary) (Decimal)

 F(0)  F(000)  F(000)  F(0)
 F(4)  F(100)  F(001)  F(1)
 F(2)  F(010)  F(010)  F(2)
 F(6) ⇒ F(110) ⇒ F(011) ⇒ F(3)
 F(1)  F(001)  F(100)  F(4)
 F(5)  F(101)  F(101)  F(5)
 F(3)  F(011)  F(110)  F(6)
 F(7)  F(111)  F(111)  F(7)

FIGURE 19.18
Pseudocode to implement a 
decimation-in-frequency FFT. 
Note that the pseudocode is 
composed of two parts: (a) the 
FFT itself and (b) a bit-reversal 
routine to unscramble the 
 order of the resulting Fourier  
coefficients.

(a)
m = LOG(N)/LOG(2)
N2 = N
DOFOR k = 1, m
  N1 = N2
  N2 = N2/2
  angle = 0
  arg = 2π/N1
  DOFOR j = 0, N2 − 1
    c = cos(angle)
    s = −sin(angle)
    DOFOR i = j, N − 1, N1
      kk = i + N2
      xt = x(i) − x(kk)
      x(i) = x(i) + x(kk)
      yt = y(i) − y(kk)
      y(i) = y(i) + y(kk)
      x(kk) = xt * c − yt * s
      y(kk) = yt * c + xt * s
    END DO
    angle = (j + 1) * arg
  END DO
END DO

(b)
j = 0
DOFOR i = 0, N − 2
  IF (i < J) THEN
     xt = xj
    xj = xi
    xi = xt
    yt = yj
    yj = yi
    yi = yt
  END IF
  k = N/2
  DO
    IF (k ≥ j + 1) EXIT
    j = j − k
    k = k/2
  END DO
  j = j + k
END DO
DOFOR i = 0, N − 1
  x(i) = x(i)/N
  y(i) = y(i)/N
END DO
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 19.7 THE POWER SPECTRUM
The FFT has many engineering applications, ranging from vibration analysis of structures 
and mechanisms to signal processing. As described previously, amplitude and phase 
spectra provide a means to discern the underlying structure of seemingly random signals. 
Similarly, a useful analysis called a power spectrum can be developed from the Fourier 
transform.
 As the name implies, the power spectrum derives from the analysis of the power 
output of electrical systems. In mathematical terms, the power of a periodic signal in the 
time domain can be defined as

P =
1
T

 ∫T∕2

−T∕2
 f  

2(t) dt (19.37)

Now, another way to look at this information is to express it in the frequency domain 
by calculating the power associated with each frequency component. This information 
can be then displayed as a power spectrum, a plot of the power versus frequency.
 If the Fourier series for f(t) is

f(t) = ∑
∞

k=−∞
Fke

ikω0t (19.38)

the following relation holds (see Gabel and Roberts, 1987, for details):

1
T

 ∫T∕2

−T∕2
 f  

2(t) dt = ∑
∞

k=−∞
∣Fk∣2 (19.39)

FIGURE 19.20
Flow graph of a decimation-in-time FFT of an eight-point DFT.
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Thus, the power in f(t) can be determined by adding together the squares of the Fourier 
coefficients, that is, the powers associated with the individual frequency components.
 Now, remember that in this representation, the single real harmonic consists of both 
frequency components at ±kω0. We also know that the positive and negative coefficients 
are equal. Therefore, the power in fk(t), the kth real harmonic of f(t), is

pk = 2 ∣Fk∣2 (19.40)

The power spectrum is the plot of pk as a function of frequency kω0. We will devote 
Sec. 20.3 to an engineering application involving the FFT and the power spectrum 
generated with software packages.

Additional Information. The foregoing has been a brief introduction to Fourier ap-
proximation and the FFT. Additional information on the former can be found in Van 
Valkenburg (1974), Chirlian (1969), and Hayt and Kemmerly (1986). References on the 
FFT include Davis and Rabinowitz (1975); Cooley, Lewis, and Welch (1977); and 
Brigham (1974). Nice introductions to both can be found in Ramirez (1985), Oppenheim 
and Schafer (1975), and Gabel and Roberts (1987).

 19.8 CURVE FITTING WITH SOFTWARE PACKAGES
Software packages have great capabilities for curve fitting. In this section, we will give 
you a taste of some of the more useful ones.

19.8.1 Excel
In the present context, the most useful application of Excel is for regression analysis and, 
to a lesser extent, polynomial interpolation. Aside from a few built-in functions (see 
Table 19.1), there are two primary ways in which this capability can be implemented: 
the Trendline tool and the Data Analysis ToolPak.

The Trendline Tool. This tool allows a number of different trend models to be added 
to a chart. These models include linear, polynomial, logarithmic, exponential, power, and 
moving average fits. The following example illustrates how the Trendline command is 
invoked.

TABLE 19.1 Excel built-in functions related to regression fits of data.

Function Description

FORECAST Returns a value along a linear trend
GROWTH Returns values along an exponential trend
INTERCEPT Returns the intercept of the linear regression line
LINEST Returns the parameters of a linear trend
LOGEST Returns the parameters of an exponential trend
SLOPE Returns the slope of the linear regression line
TREND Returns values along a linear trend
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 EXAMPLE 19.4 Using Excel’s Trendline Command
Problem Statement. You may have noticed that several of the fits available with  
Trendline were discussed previously in Chap. 17 (for example, linear, polynomial, expo-
nential, and power). An additional capability is the logarithmic model,

y = a0 + a1 log x

Fit the following data with this model using Excel’s Trendline tool:

x 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

y 0.53 0.69 1.5 1.5 2 2.06 2.28 2.23 2.73 2.42 2.79

Solution. To invoke the Trendline tool, a chart relating a series of dependent and 
 independent variables must be created. For the present case, we first create an xy-plot of 
the data.
 Next, we can select the chart (by clicking on it) and the series (by positioning the 
mouse arrow on one of the values and right clicking). A menu will appear from which 
you can select Add Trendline.
 At this point, a Format Trendline box opens where you can select the Trend/Regression 
Type as Logarithmic. In addition, select Display Equation on chart and Display  
R-squared value on chart. When the box is closed, the resulting fit along with r2 is 
displayed as in Fig. 19.21.
 The Trendline tool provides a handy way to fit a number of commonly used models 
to data. In addition, its inclusion of the Polynomial option means that it can also be used 
for polynomial interpolation. However, the fact that its statistical content is limited to r2 
means that it does not allow statistical inferences to be drawn regarding the model fit. 
The Data Analysis ToolPak described next provides a nice alternative where such infer-
ences are necessary.

3y

y = 0.9846 ln x + 1.0004
r2 = 0.9444

0

1

2

0 2 4 6
x

FIGURE 19.21
Fit of a logarithmic model to the data of Example 19.4.

The Data Analysis ToolPak. This Excel Add-in contains a comprehensive capability 
for curve fitting with general linear least squares. As previously described in Sec. 17.4, 
such models are of the general form

y = a0z0 + a1z1 + a2z2 + … + amzm + e (17.23)
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where z0, z1, . . . , zm are m + 1 different functions. The next example illustrates how 
such models can be fit with Excel.

 EXAMPLE 19.5 Using Excel’s Data Analysis ToolPak
Problem Statement. The following data were collected for the slope, hydraulic radius, 
and velocity of water flowing in a canal:

S, m/m 0.0002 0.0002 0.0005 0.0005 0.001 0.001

R, m 0.2 0.5 0.2 0.5 0.2 0.5

U, m/s 0.25 0.5 0.4 0.75 0.5 1

There are theoretical reasons for believing that these data can be fit to a power model 
of the form

U = αSσ Rρ

where α, σ, and ρ are empirically derived coefficients. There are also theoretical reasons 
for believing that σ and ρ should have values of approximately 0.5 and 0.667, respec-
tively. Fit these data with Excel and evaluate whether your regression estimates contradict 
the expected values for the model coefficients.

Solution. The logarithm of the power model is first used to convert it to the linear 
format of Eq. (17.23),

U = log α + σ log S + ρ log R

An Excel spreadsheet can be developed with both the original data and their common 
logarithms, as in the following:

As shown, an efficient way to generate the logarithms is to type the formula to compute 
the first log(S). This formula can then be copied to the right and down to generate the 
other logarithms.
 Because of its status as an “Add-in” on the version of Excel available at the time of 
this book’s printing, the Data Analysis ToolPak must sometimes be loaded into Excel. 
To do this, choose File, Options, Add-Ins, Manage Excel Add-ins. Then, check the 
Analysis ToolPak box. The ToolPak should then be installed and a button to access it 
should appear on your Data tab.
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 After Data Analysis is selected from the Data menu, a Data Analysis menu will 
appear on the screen containing a large number of statistically oriented routines. Select 
Regression and a dialogue box will appear, prompting you for information on the regres-
sion. After making sure that the default selection New Worksheet Ply is selected, fill 
in F2:F7 for the y range and D2:E7 for the x range, and select OK. The following work-
sheet will be created:

 Thus, the resulting fit is

log U = 1.522 + 0.433 log S + 0.733 log R

or by taking the antilog,

U = 33.3S0.433R0.733

 Notice that 95% confidence intervals are generated for the coefficients. Thus, there 
is a 95% probability that the true slope exponent falls between 0.363 and 0.504, and the 
true hydraulic radius coefficient falls between 0.631 and 0.835. Thus, the fit does not 
contradict the theoretical exponents.

 Finally, it should be noted that the Excel Solver tool can be used to perform nonlinear 
regression by directly minimizing the sum of the squares of the residuals between a nonlin-
ear model prediction and data.

19.8.2 MATLAB
As summarized in Table 19.2, MATLAB software has a variety of built-in functions that 
span the total capabilities described in this part of the book. The following example 
 illustrates how a few of them can be used.
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 EXAMPLE 19.6 Using MATLAB for Curve Fitting
Problem Statement. Explore how MATLAB can be employed to fit curves to data. To 
do this, use the sine function to generate equally spaced f(x) values from 0 to 10. Employ 
a step size of 1 so that the resulting characterization of the sine wave is sparse (Fig. 19.22). 
Then, fit it with (a) linear interpolation, (b) a fifth-order polynomial, and (c) a cubic spline.

Solution.

(a) The values for the independent and the dependent variables can be entered into 
 vectors by
>>	x=0:10;
>>	y=sin(x);

  A new, more finely spaced vector of independent variable values can be generated 
and stored in the vector xi,
>>	xi=0:.25:10;

  The MATLAB function interp1 can then be used to generate dependent variable 
values yi for all the xi values using linear interpolation. Both the original data (x, y) 
and the linearly interpolated values can be plotted together, as shown in the  

TABLE 19.2  Some of the MATLAB functions to implement interpolation,  
regression, splines, and the FFT.

Function Description

polyfit Fit polynomial to data
interp1 1-D interpolation (1-D table lookup)
interp2 2-D interpolation (2-D table lookup)
spline Cubic spline data interpolation
fft Fast Fourier transform

FIGURE 19.22
Eleven points sampled from a sinusoid.
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5 10 x
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>>	yi=interp1(x,y,xi);
>>	plot(x,y,'o',xi,yi)

(b) Next, the MATLAB polyfit function can be used to generate the coefficients of 
a fifth-order polynomial fit of the original sparse data,
>>	p=polyfit(x,y,5)
p=
	 0.0008	 	−0.0290	 	0.3542	 	−1.6854	 	2.5860	 	−0.0915

  where the vector p holds the polynomial’s coefficients. These can, in turn, be used to 
generate a new set of yi values, which can again be plotted along with the original 
sparse sample,
>>	yi	=	polyval(p,xi);
>>	plot(x,y,'o',xi,yi)

  Thus, the polynomial captures the general pattern of the data, but misses most of 
the points.

(c) Finally, the MATLAB spline function can be used to fit a cubic spline to the 
original sparse data in the form of a new set of yi values, which can again be plotted 
along with the original sparse sample,
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>>	yi=spline(x,y,xi);
>>	plot(x,y,'o',xi,yi)

   It should be noted that MATLAB also has excellent capabilities to perform 
Fourier analysis. We devote Sec. 20.3 to an example of how this can be done.

 MATLAB has two built-in functions for two- and three-dimensional piecewise in-
terpolation: interp2 and interp3. As you might expect from their names, these 
functions operate in a similar fashion to interp1. For example, a simple representation 
of the syntax of interp2 is

zi = interp2(x,	y,	z,	xi,	yi,	'method')

where x and y = matrices containing the coordinates of the points at which the values in 
the matrix z are given, zi = a matrix containing the results of the interpolation as evalu-
ated at the points in the matrices xi and yi, and method = the desired method. Note 
that the methods are identical to those used by interp1; that is, linear, nearest, 
spline, and cubic.
 As with interp1, if the method argument is omitted, the default is linear inter-
polation. For example, interp2 can be used to make the same evaluation as in  
Example 18.11 as

>>	x=[2	9];
>>	y=[1	6];
>>	z=[60	57.5;55	70];
>>	interp2(x,y,z,5.25,4.8)

ans	=
			61.2143

19.8.3 Mathcad
Mathcad can perform a wide variety of statistical, curve-fitting, and data-smoothing tasks. 
These include relatively simple jobs like plotting histograms and calculating population 
statistic summaries such as mean, median, variance, standard deviations, and correlation 
coefficients. In addition, Mathcad contains a number of functions for performing regres-
sion. The slope and intercept functions return the slope and intercept of the least-squares 
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regression fit line. The regress function is used for nth-order polynomial regression of a 
complete data set. The loess function performs localized nth-order polynomial regression 
over spans of the data that you can specify. The interp function can be used to return 
intermediate values of y from a regression fit for a given x point. The regress and loess 
functions can also perform multivariate polynomial regression. Mathcad also provides the 
linfit function that is used to model data with a linear combination of arbitrary functions. 
Finally, the genfit function is available for cases where model coefficients appear in arbi-
trary form. In this case, the more difficult nonlinear equations must be solved by iteration.
 Mathcad also has considerable capabilities for interpolation. It can predict interme-
diate values by connecting known data points with either straight lines (linear interpola-
tion) using the linterp function or with cubic spline interpolation using cspline, pspline, 
or lspline. These spline functions allow you to try different ways to deal with interpolation 
at the end points of the data. The lspline function generates a spline curve that is a straight 
line at the end points. The pspline function generates a spline curve that is a parabola 
at the end points. The cspline function generates a spline curve that is cubic at the end 
points. The interp function uses the curve-fitting results and returns an interpolated 
y  value given an x value. In addition, you can perform two-dimensional cubic spline 
interpolation by passing a surface through a grid of points.
 Let’s do an example that shows how Mathcad is used to perform spline interpolation 
(Fig. 19.23). The data we will fit are simply some evenly spaced points sampled from a 

FIGURE 19.23
Cubic spline interpolation with Mathcad.
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sinusoid. After generating these data, the definition symbol and the lspline function are used 
to compute the spline coefficients. Then, an interpolation function, fit, is developed with 
the interp function in order to generate interpolated values for specific values of x. Mathcad 
designed this sequence of operations so that the interpolating polynomials would not have 
to be recalculated every time an interpolation is desired. With the functions in place, you 
can then interpolate at any location using fit(x), as shown with x = 2.5. You can also con-
struct a plot of these data along with the interpolated spline as shown in Fig. 19.23.
 As another example of demonstrating some of Mathcad’s curve fitting capabilities let’s 
use the fft function for Fourier analysis as in Fig. 19.24. The first line uses the definition 
symbol to create i as a range variable. Next, xi is formulated using the rnd Mathcad func-
tion to impart a random component to a sinusoidal signal. The graph of the signal can be 
placed on the worksheet by clicking to the desired location. This places a red crosshair at 
that location. Then use the Insert/Graph/X-Y Plot pull-down menu to place an empty plot 
on the worksheet with placeholders for the expressions to be graphed and for the ranges of 
the x and y axes. Simply type xi in the placeholder on the y axis and i for the x-axis range. 
Mathcad does the rest to produce the first graph shown in Fig. 19.24. Once the graph has 
been created, you can use the Format/Graph/X-Y Plot pull-down menu to vary the type of 
graph; change the color, type, and weight of the trace of the function; and add titles, labels, 
and other features. Next, c is defined as fft(x). This function returns the Fourier transform 
of x. The result is a vector c of complex coefficients that represent values in the frequency 
domain. A plot of the magnitude of cj is then constructed as described above.

FIGURE 19.24
FFT with Mathcad.
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PROBLEMS

19.1 The average values of a function can be determined by

f (x) =
∫x

0  f (x)dx

x

Use this relationship to verify the results of Eq. (19.13).
19.2 The solar radiation for Tucson, Arizona, has been tabulated as

Time, mo J F M A M J J A S O N   D

Radiation, W/m2 144 188 245 311 351 359 308 287 260 211 159 131

19.4 Use a continuous Fourier series to approximate the sawtooth 
wave in Fig. P19.4. Plot the first three terms along with the sum-
mation.
19.5 Use a continuous Fourier series to approximate the wave 
form in Fig. P19.5. Plot the first three terms along with the sum-
mation.

Assuming each month is 30 days long, fit a sinusoid to these data. 
Use the resulting equation to predict the radiation in mid-August.
19.3 The pH in a reactor varies sinusoidally over the course of a 
day. Use least-squares regression to fit Eq. (19.11) to the following 
data. Use your fit to determine the mean, amplitude, and time of 
maximum pH. Note that the period is 24 hr.

Time, hr 0 2 4 5 7 9 12 15 20 22 24

pH 7.6 7 7.1 6.5 7.4 7.2 8.9 8.8 8.9 7.9   7

FIGURE P19.4
A sawtooth wave.

1

T t

– 1
– 1

FIGURE P19.5
A triangular wave.

t2

1

–2

19.6 Construct amplitude and phase line spectra for Prob. 19.4.
19.7 Construct amplitude and phase line spectra for Prob. 19.5.
19.8 A half-wave rectifier can be characterized by

C1 = [
1
π

+
1
2

 sin t −
2

3π
 cos 2t −

2
15π

 cos 4t

          −
2

35π
 cos 6t − …]

where C1 is the amplitude of the wave. Plot the first four terms 
along with the summation.
19.9 Construct amplitude and phase line spectra for Prob. 19.8.
19.10 Develop a user-friendly program for the DFT based on the 
algorithm from Fig. 19.12. Test it by duplicating Fig. 19.13.
19.11 Use the program from Prob. 19.10 to compute a DFT for the 
triangular wave from Prob. 19.8. Sample the wave from t = 0 to 4T. 
Use 32, 64, and 128 sample points. Time each run and plot execu-
tion versus N to verify Fig. 19.14.
19.12 Develop a user-friendly program for the FFT based on the 
algorithm from Fig. 19.18. Test it by duplicating Fig. 19.13.
19.13 Repeat Prob. 19.11 using the software you developed in 
Prob. 19.12.
19.14 An object is suspended in a wind tunnel and the force mea-
sured for various levels of wind velocity. The results are tabulated 
below. Use Excel’s Trendline tool to fit a power equation to these 
data. Plot F versus υ along with the power equation and r2.

v, m/s 10 20 30 40 50 60 70    80

F, N 25 70 380 550 610 1220 830 1450

19.15 Use the Excel Data Analysis ToolPak to fit a regression poly-
nomial to the following data for the dissolved oxygen concentration of 
fresh water versus temperature at sea level. Determine the  order of 
polynomial necessary to match the precision of these data.

T, °C 0 8 16 24 32    40

o, mg/L 14.62 11.84 9.87 8.42 7.31 6.41
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19.16 Use the Excel Data Analysis Toolpack to fit a straight line to 
the following data. Determine the 90% confidence interval for the 
intercept. If it encompasses zero, redo the regression, but with the 
intercept forced to be zero (this is an option on the Regression 
 dialogue box).

x 2 4 6 8 10 12    14

y 6.5 7 13 17.8 19 25.8 26.9

19.17 (a) Use MATLAB to fit a cubic spline to the following data:

x 0 2 4 7 10 12

y 20 20 12 7 6       6

Determine the value of y at x = 1.5. (b) Repeat (a), but with zero 
first derivatives at the end knots. Note that the MATLAB help 
 facility describes how to prescribe end derivatives.
19.18 Use MATLAB to generate 64 points from the function

f (t) = cos(10t) + sin(3t)

from t = 0 to 2π. Add a random component to the signal with the 
function randn. Take an FFT of these values and plot the results.
19.19 In a fashion similar to the approach in Sec. 19.8.2, use 
 MATLAB to fit the data from Prob. 19.15 using (a) linear interpo-
lation, (b) a third- order regression polynomial, and (c) a spline. Use 
each approach to predict oxygen concentration at T = 10.
19.20 Runge’s function is written as

f (x) =
1

1 + 25x2

Generate 11 equidistantly spaced values of this function over the 
interval [−1, 1]. Fit these data with (a) a tenth-order polynomial, 
(b) a linear spline, and (c) a cubic spline. Present your results 
graphically.
19.21 A dye is injected into the circulating blood volume to measure 
a patient’s cardiac output, which is the volume flow rate of blood out 
of the left ventricle of the heart. In other words, cardiac output is the 
number of liters of blood your heart pumps in a minute. For a person 
at rest, the rate might be 5 or 6 liters per minute. If you are a trained 
marathon runner running a marathon, your cardiac output can be as 
high as 30 L/min. The data below show the response of an individual 
when 5 mg of dye was injected into the venous system.

Time (s) 2 6 9 12 15 18 20 24

Concentration (mg/L) 0 1.5 3.2 4.1 3.4 2 1   0

Fit a polynomial curve through the data points and use the function to 
approximate the patient’s cardiac output, which can be calculated by:

Cardiac output (in L/min) =
amount of dye

area under curve

FIGURE P19.22

f (t)

t

0.250 0.5

–1

0

1

0.75 1

19.22 In electric circuits, it is common to see current behavior in 
the form of a square wave, as shown in Fig. P19.22. Solving for the 
Fourier series from

f(t) = {
A0 0 ≤ t ≤ T∕2

−A0 T∕2 ≤ t ≤ T

we get the Fourier series

f (t) = ∑
∞

n=1(
4A0

(2n − 1)π)sin(
2π(2n − 1)t

T )

Let A0 = 1 and T = 0.25 s. Plot the first six terms of the Fourier 
series individually, as well as the sum of these six terms. Use a 
package such as Excel or MATLAB if possible.
19.23 Develop a plot of the following data with (a) a sixth-order 
 interpolating polynomial, (b) a cubic spline, and (c) a cubic spline 
with zero end derivatives.

x 0 100 200 400 600 800   1000

f (x) 0 0.82436 1.00000 0.73576 0.40601 0.19915 0.09158

In each case, compare your plot with the following equation, which 
was used to generate these data

f (x) =
x

200
 e−(x/200)+1

19.24 Use the software package of your choice to compute the 
DFT for the following function: 

f(t) = 1.5 + 1.8cos(2π(12)t) + 0.8sin(2π(20)t) − 1.25cos(2π(28)t) 

Take n = 64 samples with a sampling frequency of fs = 128 
samples/s. 
19.25 Assuming 128 samples of data (n = 128 samples) with a total 
sample length of tn = 0.4 s, compute (a) the sample frequency, fs 
(sample/s); (b) the sample interval, Δt (s/sample); (c) the Nyquist 
frequency, fmax (Hz); and (d) the minimum frequency, fmin (Hz).

 PROBLEMS 571

cha32077_ch19_535-571.indd   571 9/17/19   12:42 PM



572
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20
Case Studies: Curve Fitting

The purpose of this chapter is to use the numerical methods for curve fitting to solve 
some engineering problems. The first application, which is taken from chemical engineer-
ing, demonstrates how a nonlinear model can be linearized and fit to data using linear 
regression. The second application employs splines to study a problem that has relevance 
to the environmental area of civil engineering: heat and mass transport in a stratified lake.
 The third application illustrates how a fast Fourier transform can be employed in 
electrical engineering to analyze a signal by determining its major harmonics. The final 
application demonstrates how multiple linear regression is used to analyze experimental 
data for a fluids problem taken from mechanical and aerospace engineering.

 20.1 FITTING ENZYME KINETICS (CHEMICAL/BIO ENGINEERING)

Background. Enzymes act as catalysts to speed up the rate of chemical reactions in 
living cells. In most cases, they convert one chemical, the substrate, into another, the 
product. The Michaelis-Menten equation is commonly used to describe such reactions:

υ =
υm[S]

ks + [S]
 (20.1)

where υ = the initial reaction velocity, υm = the maximum initial reaction velocity, [S] = 
substrate concentration, and ks = a half-saturation constant. As in Fig. 20.1, the equation 
describes a saturating relationship that levels off with increasing [S]. The graph also 
 illustrates that the half-saturation constant corresponds to the substrate concentration at 
which the velocity is half the maximum.
 Although the Michaelis-Menten model provides a nice starting point, it has been 
refined and extended to incorporate additional features of enzyme kinetics. One simple 
 extension involves so-called allosteric enzymes, where the binding of a substrate mole-
cule at one site leads to enhanced binding of subsequent molecules at other sites. For 
cases with two interacting bonding sites, the following second-order version often results 
in a better fit:

υ =
υm[S]2

k2
s + [S]2  (20.2)
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 20.1 FITTING ENZYME KINETICS 573

This model also describes a saturating curve but, as depicted in Fig. 20.1, the squared 
concentrations tend to make the shape more sigmoid, or S-shaped.
 Suppose that you are provided with the following data:

[S] 1.3 1.8 3 4.5 6 8 9 
υ 0.07 0.13 0.22 0.275 0.335 0.35 0.36

Employ linear regression to fit these data with linearized versions of Eqs. (20.1) and 
(20.2). Aside from estimating the model parameters, assess the validity of the fits with 
both statistical measures and graphs.

Solution. Equation (20.1), which is in the format of the saturation-growth-rate model 
(Eq. 17.14), can be linearized by inverting it to give [recall Eq. (17.17)]

1
υ

=
1
υm

+
ks

υm
  

1
[S]

If the model is valid, a plot of 1∕υ versus 1∕[S] should yield a straight line with an 
intercept of 1∕υm and a slope of ks∕υm. Using your own program or a software package, 
you should obtain an intercept of 0.1902 and a slope of 16.4022 with r2 = 0.9344. The 
model coefficients can then be calculated as υm = 1∕0.1902 = 5.2570 and ks = 5.2570 × 
16.4022 = 86.2260, and the best-fit model is

υ =
5.2570[S]

86.2260 + [S]

 Although the high value of r2 might lead you to believe that this result is acceptable, 
inspection of the coefficients might raise doubts. For example, the maximum velocity 
(5.2570) is much greater than the highest observed velocity (0.36). In addition, the half- 
saturation rate (86.2260) is much bigger than the maximum substrate concentration (9).
 The problem is underscored when the fit is plotted along with the data. Figure 20.2a 
shows the transformed version. Although the straight line follows the upward trend, the 

FIGURE 20.1
Two versions of the Michaelis-Menten model of enzyme kinetics. 
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574 CASE STUDIES: CURVE FITTING

data clearly appear to be curved. When the original equation is plotted along with the 
data in the untransformed version (Fig. 20.2b), the fit is obviously unacceptable. The 
data are clearly leveling off at about 0.36 or 0.37. If this is correct, an eyeball estimate 
would  suggest that υm should be about 0.36, and ks should be in the range of 2 to 3.
 Beyond the visual evidence, the poorness of the fit is also reflected by statistics like 
the coefficient of determination. For the untransformed case, a much less acceptable 
result of r2 = 0.6406 is obtained.
 The foregoing analysis can be repeated for the second-order model. Equation (20.2) 
can also be linearized by inverting it to give

1
υ

=
1
υm

+
k2

s

υm
  

1
[S]2

If the model is valid, a plot of 1∕υ versus 1∕[S]2 should yield a straight line with an 
intercept of 1∕υm and a slope of ks

2∕υm. Using your own program or a software package, 
you should obtain an intercept of 2.4492 and a slope of 19.3760 with r2 = 0.9929. The 
model coefficients can then be calculated as υm = 1∕2.4492 = 0.4083 and ks =  
√0.4083(19.3760) = 2.8127, and the best-fit model is

υ =
0.4083[S]2

7.911 + [S]2

15
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FIGURE 20.2
Plots of least-squares fit (line) of the Michaelis-Menten model along with data (points). The 
plot in (a) shows the transformed fit, and (b) shows how the fit looks when viewed in the un-
transformed, original form. 
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 Although we know that a high r2 does not guarantee a good fit, the fact that it is very 
high (0.9929) is promising. In addition, the parameter values also seem consistent with 
the trends in the data; that is, the υm is slightly greater than the highest observed velocity 
and the half-saturation constant is lower than the maximum substrate concentration (9).
 The adequacy of the fit can be assessed graphically. As seen in Fig. 20.3a, the trans-
formed results appear linear. When the original equation is plotted along with the data in 
the  untransformed version (Fig. 20.3b), the fit nicely follows the trend in the measure-
ments. Beyond the graphs, the goodness of the fit is also reflected by the fact that the 
coefficient of determination for the untransformed case can be computed as r2 = 0.9896. 
 Based on our analysis, we can conclude that the second-order model provides a good 
fit of this data set. This might suggest that we are dealing with an allosteric enzyme.
 Beyond this specific result, there are a few other general conclusions that can 
be drawn from this case study. First, we should never solely rely on statistics such as r2 
as the sole basis of assessing goodness of fit. Second, regression equations should always 
be assessed graphically. And for cases where transformations are employed, a graph of 
the untransformed model and data should always be inspected.
 Finally, although transformations may yield a decent fit of the transformed data, this 
does not always translate into an acceptable fit in the original format. The reason that 
this might occur is that minimizing squared residuals of transformed data is not the same 
as doing so for untransformed data. Linear regression assumes that the scatter of points 
around the best-fit line follows a Gaussian distribution, and that the standard deviation 

FIGURE 20.3
Plots of least-squares fit (line) of the second-order Michaelis-Menten model along with data 
(points). The plot in (a) shows the transformed fit, and (b) shows the untransformed, original form.
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576 CASE STUDIES: CURVE FITTING

is the same at every value of the dependent variable. These assumptions are rarely true 
after transforming data.
 As a consequence of the last conclusion, some analysts suggest that rather than using 
linear transformations, nonlinear regression should be employed to fit curvilinear data. 
In this approach, a best-fit curve is developed that directly minimizes the untransformed 
residuals. This option will be explored in the first problem at the end of this chapter.

 20.2 USE OF SPLINES TO ESTIMATE HEAT TRANSFER  
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. Lakes in the temperate zone can become thermally stratified during the 
summer. As depicted in Fig. 20.4, warm, buoyant water near the surface overlies colder, 
denser bottom water. Such stratification effectively divides the lake vertically into two 
layers: the epilimnion and the hypolimnion separated by a plane called the thermocline.
 Thermal stratification has great significance for environmental engineers studying 
the pollution of such systems. In particular, the thermocline greatly diminishes mixing 
between the two layers. As a result, decomposition of organic matter can lead to severe 
depletion of oxygen in the isolated bottom water.
 The location of the thermocline can be defined as the inflection point of the temperature-
depth curve—that is, the point at which d2T∕dx2 = 0. It is also the point at which the ab-
solute value of the first derivative or gradient is a maximum. Use cubic splines to determine 
the thermocline depth for Platte Lake (Table 20.1). Also use the splines to determine the 
value of the gradient at the thermocline.

Solution. The data are analyzed with a program that was developed using pseudocode 
based on Sec. 18.6.4. The results are displayed in Table 20.2, which lists the spline 
predictions along with first and second derivatives at intervals of 1 m down through the 
water column.

FIGURE 20.4
Temperature versus depth during summer for Platte Lake, Michigan.
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 20.2 USE OF SPLINES TO ESTIMATE HEAT TRANSFER 577

TABLE 20.2 Output of spline program based on pseudocode derived from Sec. 18.6.4.

Depth (m) T (C) dT/dz d2T/dz2 Depth (m) T (C) dT/dz d2T/dz2
 0. 22.8000 −.0115 .0000 15. 12.7652 −.6518 .3004
 1. 22.7907 −.0050 .0130 16. 12.2483 −.3973 .2086
 2. 22.7944 .0146 .0261 17. 11.9400 −.2346 .1167
 3. 22.8203 .0305 −.0085 18. 11.7484 −.1638 .0248
 4. 22.8374 −.0055 −.0635 19. 11.5876 −.1599 .0045
 5. 22.7909 −.0966 −.1199 20. 11.4316 −.1502 .0148
 6. 22.6229 −.2508 −.1884 21. 11.2905 −.1303 .0251
 7. 22.2665 −.4735 −.2569 22. 11.1745 −.1001 .0354
 8. 21.6531 −.7646 −.3254 23. 11.0938 −.0596 .0436
 9. 20.7144 −1.1242 −.3939 24. 11.0543 −.0212 .0332
 10. 19.4118 −1.4524 −.2402 25. 11.0480 .0069 .0229
 11. 17.8691 −1.6034 −.0618 26. 11.0646 .0245 .0125
 12. 16.2646 −1.5759 .1166 27. 11.0936 .0318 .0021
 13. 14.7766 −1.3702 .2950 28. 11.1000 .0000 .0000
 14. 13.5825 −.9981 .3923

FIGURE 20.5
Plots of (a) temperature, (b) 
gradient, and (c) second de-
rivative versus depth (m) gen-
erated with the cubic spline 
program. The thermocline is 
located at the inflection point 
of the  temperature-depth 
curve. z,
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TABLE 20.1 Temperature versus depth during summer for Platte Lake, Michigan.

T, °C 22.8 22.8 22.8 20.6 13.9 11.7 11.1 11.1

z, m 0 2.3 4.9 9.1 13.7 18.3 22.9 27.2

 The results are plotted in Fig. 20.5. Notice how the thermocline is clearly located 
at the depth where the gradient is highest (that is, the absolute value of the derivative is 
greatest) and the second derivative is zero. The depth is 11.35 m and the gradient at this 
point is −1.61°C/m.
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578 CASE STUDIES: CURVE FITTING

 20.3 FOURIER ANALYSIS (ELECTRICAL ENGINEERING)

Background. Fourier analysis is used in many areas of engineering. However, it is 
extensively employed in electrical engineering applications such as signal processing.
 In 1848, Johann Rudolph Wolf devised a method for quantifying solar activity by 
counting the number of individual spots and groups of spots on the sun’s surface. He 
computed a quantity, now called a Wolf sunspot number, by adding 10 times the number 
of groups to the total count of individual spots. As in Fig. 20.6, the record of this num-
ber extends back to 1700. On the basis of the early historical records, Wolf determined 
the cycle’s length to be 11.1 years.
 Use a Fourier analysis to confirm this result by applying an FFT to the data from 
Fig. 20.6. Pinpoint the period by developing a power versus period plot.

Solution. The data for year and sunspot number were downloaded from the Web1 and 
stored in a tab-delimited file: sunspot.dat. The file can be loaded into MATLAB software 
and the year and number information assigned to vectors of the same name,

>> load sunspot.dat
>> year=sunspot(:,1);number=sunspot(:,2); 

Next, an FFT can be applied to the sunspot number vector, 

>> y=fft(number);

After getting rid of the first harmonic, the length of the FFT is determined (n) and then 
the power and frequency are calculated,

>> y(1)=[ ];
>> n=length(y);
>> power=abs(y(1:n/2)).^2;
>> nyquist=1/2;
>> freq=(1:n/2)/(n/2)*nyquist;

1At the time of this book’s printing, the yearly mean total sunspot number data can be downloaded from 
http://www.sidc.be/silso/datafiles.

FIGURE 20.6
Plot of Wolf sunspot number 
 versus year.
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At this point, the power spectrum is a plot of power versus frequency. However, because 
period is more meaningful in the present context, we can determine the period and a 
power-period plot,

>> period=1./freq;
>> plot(period,power)

The result, as shown in Fig. 20.7, indicates a peak at about 11 years. The exact value 
can be computed with

>> index=find(power==max(power));
>> period(index)

ans=
   10.9655

 20.4 ANALYSIS OF EXPERIMENTAL DATA  
(MECHANICAL/AEROSPACE ENGINEERING)

Background. Engineering design variables are often dependent on several independent 
variables. Often this functional dependence is best characterized by multivariate power 
equations. As discussed in Sec. 17.3, a multiple linear regression of log-transformed data 
provides a means to evaluate such relationships.
 For example, a mechanical engineering study indicates that fluid flow through a pipe 
is related to pipe diameter and slope (Table 20.3). Use multiple linear regression to 
analyze these data. Then use the resulting model to predict the flow for a pipe with a 
diameter of 2.5 ft and a slope of 0.025 ft/ft.

Solution. The power equation to be evaluated is

Q = a0 
Da1Sa2 (20.3)

FIGURE 20.7
Power spectrum for Wolf  
sunspot numbers.
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580 CASE STUDIES: CURVE FITTING

where Q = flow (ft3/s), S = slope (ft/ft), D = pipe diameter (ft), and a0, a1, and a2 = coef-
ficients. Taking the logarithm of this equation yields

log Q = log a0 + a1 log D + a2 log S

 In this form, the equation is suited for multiple linear regression because log Q is 
a linear function of log S and log D. Using the logarithm (base 10) of the data in 
Table 20.3, we can generate the following normal equations expressed in matrix form 
[recall Eq. (17.22)]:

[
9 2.334 −18.903
2.334 0.954 −4.903

−18.903 −4.903 44.079]  {
log a0

a1

a2
} = {

11.691
3.945

−22.207}
This system can be solved using Gauss elimination to yield

log a0 = 1.7475
a1 = 2.62
a2 = 0.54

Since log a0 = 1.7475, then a0 = 101.7475 = 55.9 and Eq. (20.3) is

Q = 55.9D2.62S 

0.54 (20.4)

Eq. (20.4) can be used to predict flow for the case where D = 2.5 ft and S = 0.025 ft/ft, 
as in

Q = 55.9(2.5)2.62(0.025)S0.54 = 84.1 ft3/s

 It should be noted that Eq. (20.4) can be used for other purposes besides computing 
flow. For example, the slope is related to head loss hL and pipe length L by S = hL∕L. 
If this relationship is substituted into Eq. (20.4) and the resulting formula solved for hL, 
the following equation can be developed:

hL =
L

1721
 Q1.85D4.85

This relationship is called the Hazen-Williams equation.

TABLE 20.3 Experimental data for diameter, slope, and flow of circular concrete pipes.

Experiment Diameter, ft Slope, ft/ft Flow, ft3/s

 1 1 0.001 1.4
 2 2 0.001 8.3
 3 3 0.001 24.2
 4 1 0.01 4.7
 5 2 0.01 28.9
 6 3 0.01 84.0
 7 1 0.05 11.1
 8 2 0.05 69.0
 9 3 0.05 200.0
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PROBLEMS

Chemical/Bio Engineering
20.1 Use nonlinear regression to fit the untransformed enzyme ki-
netics data from Sec. 20.1 to (a) the standard Michaelis-Menten 
model (Eq. 20.1), and (b) the second-order model (Eq. 20.2). Plot 
the resulting best-fit lines and the data and also calculate the coef-
ficient of determination (r2) and the standard error of the estimate 
(sy/x) for both fits.
20.2 You perform experiments and determine the following values 
of heat capacity c at various temperatures T for a gas:

T −50 −30 0 60 90 110

c 1270 1280 1350 1480 1580 1700

Use regression to determine a model to predict c as a function of T.
20.3 It is known that the tensile strength of a plastic increases as a 
function of the time it is heat-treated. The following data are 
 collected:

Time, min 10 15 20 25 40 50 55 60 75

Tensile strength 5 20 18 40 33 54 70 60 78

(a) Fit a straight line to these data and use the equation to deter-
mine the tensile strength at a time of 32 min.

(b) Repeat the analysis but for a straight line with a zero intercept.
20.4 The following data were gathered to determine the relation-
ship between pressure and temperature of a fixed volume of 1 kg of 
nitrogen. The volume is 10 m3.

T, °C −40 0 40 80 120 160

p, N/m2 6900 8100 9300 10,500 11,700 12,900

Employ the ideal gas law pV = nRT to determine R on the basis of 
these data. Note that for the law, T must be expressed in kelvins.
20.5 The specific volume of a superheated steam is listed in steam ta-
bles for various temperatures. For example, at a pressure of 3000 lb/in2, 
absolute:

T, °F 700 720 740 760 780

v, ft3/lbm 0.0977 0.12184 0.14060 0.15509 0.16643

Determine υ at T = 750°F.
20.6 A reactor is thermally stratified as in the following table:

Depth, m 0 0.5 1.0 1.5 2.0 2.5 3.0

Temperature, °C 70 68 55 22 13 11 10

As depicted in Fig. P20.6, the tank can be idealized as two zones 
separated by a strong temperature gradient, or thermocline. The 
depth of this gradient can be defined as the inflection point of the 
temperature-depth curve—that is, the point at which d2T∕dz2 = 0. 

At this depth, the heat flux from the surface to the bottom layer can 
be computed with Fourier’s law,

J = −k 
dT

dz

Use a cubic spline fit of these data to determine the thermocline depth. 
If k = 0.02 cal/(s cm °C) compute the flux across this interface.
20.7 In Alzheimer’s disease, the number of neurons in the cortex 
decreases as the disease progresses. The following data were taken to 
determine the number of neurotransmitter receptors left in a diseased 
brain. Free neurotransmitter ([F]) was incubated with tissue and the 
concentration that bound specifically to a receptor ([B]) was mea-
sured. When binding is specific to a receptor, the concentration bound 
is related to the free concentration by the following relationship:

[B] =
Bmax[F]
K + [F]

Using the data below, determine the parameters that minimize the 
sum of the squares of the residuals. Also, compute r2.

[F ], nM 0.1 0.5 1 5 10 20 50

[B], nM 10.57 36.61 52.93 82.65 89.46 94.35 101.00

20.8 The following data were taken from a stirred tank reactor for 
the reaction A → B. Use these data to determine the best possible 
estimates for k01 and E1 for the following kinetic model,

−
dA

dt
= k01e−E1/(RT )  A

where R is the gas constant and equals 0.00198 Kcal/mol/K
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582 CASE STUDIES: CURVE FITTING

20.12 The molecular weight of a polymer can be determined from 
its viscosity by the following relationship:

[η] = KM 
a
υ

where [η] is the intrinsic viscosity of the polymer, Mυ is the viscos-
ity averaged molecular weight, and K and a are constants specific 
for the polymer. The intrinsic viscosity is determined experimen-
tally by determining the efflux time, or the time it takes for the 
polymer solution to flow between two etched lines in a capillary 
viscometer, at several different concentrations of dilute polymer 
and extrapolating to infinite dilution. A plot of

t

t0
− 1

c
 versus c

should yield a straight line, with a y intercept equal to [η]. The con-
centration of the polymer solution is c, t is the efflux time of the 
polymer solution, and t0 is the efflux time of the solvent without 
polymer. Using the data below of efflux times for dilute solutions 
of polystyrene in methyl ethyl ketone at 25°C and the constants 
K = 3.9 × 10–4 and a = 0.58, find the molecular weight of the poly-
styrene sample.

 Polymer Concentration, g/dL Efflux Time, s

 0 (pure solvent) 83
 0.04 89
 0.06 95
 0.08 104
 0.10 114
 0.12 126
 0.14 139
 0.16 155
 0.20 191

20.13 On average, the surface area A of human beings is related to 
weight W and height H. Measurements on a number of individuals 
give the values of A in the following table:

H (cm) 182 180 179 187 189 194 195 193  200

W (kg) 74 88 94 78 84 98 76 86    96

A (m2) 1.92 2.11 2.15 2.02 2.09 2.31 2.02 2.16    2.31

Develop an equation to predict area as a function of height and 
weight. Use it to estimate the surface area for a 187-cm, 78-kg 
 person.

−dA/dt (moles/L/s) 460 960 2485 1600 1245

A (moles/L) 200 150 50 20 10

T (K) 280 320 450 500 550

20.9 Use the following set of pressure-volume data to find the best 
possible virial constants (A1 and A2) for the equation of state shown 
below. R = 82.05 mL atm/gmol K and T = 303 K.

PV

RT
= 1 +

A1

V
+

A2

V 
2

P (atm) 0.985 1.108 1.363 1.631

V (mL) 25,000 22,200 18,000 15,000

20.10 Concentration data were taken at 15 time points for the 
 polymerization reaction

x A + y B →  Ax  
By

We assume the reaction occurs via a complex mechanism consist-
ing of many steps. Several models have been hypothesized and 
the sum of the squares of the residuals has been calculated for the 
fits of the models of these data. The results are shown below. 
Which model best describe these data (statistically)? Explain your 
choice.

 Model A Model B Model C

Sr 135 105 100
Number of model 
 parameters fit 2 3 5

20.11 Below are data taken from a batch reactor of bacterial 
growth (after lag phase was over). The bacteria are allowed to grow 
as fast as possible for the first 2.5 hours, and then they are induced 
to produce a recombinant protein, the production of which slows 
the bacterial growth significantly. The theoretical growth of bacte-
ria can be described by

dX

dt
= μX

where X is the number of bacteria and μ is the specific growth rate 
of the bacteria during exponential growth. Based on these data, 
 estimate the specific growth rate of the bacteria during the first  
2 hours of growth and during the next 4 hours of growth.

Time, hr 0 1 2 3 4 5      6

[Cells], g/L 0.100 0.333 1.101 1.645 2.452 3.661 5.459
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20.16 Soft tissue follows an exponential deformation behavior in 
uniaxial tension while it is in the physiologic or normal range of 
elongation. This can be expressed as

σ =
E0

a
(eaε − 1)

where σ = stress, ε = strain, and E0 and a are material constants that 
are determined experimentally. To evaluate the two material con-
stants, the above equation is differentiated with respect to ε. Doing so 
establishes the fundamental relationship for soft tissue:

dσ

dε
= E0 + aσ

To evaluate E0 and a, stress-strain data are plotted as dσ∕dε versus 
σ and the intercept and slope of this plot are the two material con-
stants, respectively.

The following table gives stress-strain data for heart chordae 
tendineae (small tendons used to hold heart valves closed during 
contraction of the heart muscle; these data are from loading the tis-
sue, while different values are produced on unloading).

20.14 Determine an equation to predict metabolism rate as a func-
tion of mass based on the following data:

Animal Mass, kg Metabolism, watts

Cow 400 270
Human 70 82
Sheep 45 50
Hen 2 4.8
Rat 0.3 1.45
Dove 0.16 0.97

20.15 Human blood behaves as a Newtonian fluid (τ = μγ
 ; see 

Prob. 20.55) in the high shear rate region where γ > 100. In the 
low shear rate region where γ < 50, the red cells tend to aggre-
gate into what are called rouleaux, which make the fluid behavior 
depart from  Newtonian. This low shear rate region is called the 
Casson region, and there is a transition region between the two 
distinct flow  regions. In the Casson region, as shear rate ap-
proaches zero, the shear stress goes to a finite value, similar to a 

γ
 , 1/s 0.91 3.3 4.1 6.3 9.6 23 36 49 65 105 126 215 315 402

τ, N/m2 0.059 0.15 0.19 0.27 0.39 0.87 1.33 1.65 2.11 3.44 4.12 7.02 10.21 13.01

Region Casson Transition Newtonian

σ, 103 N/m2 87.8 96.6 176 263 351 571 834 1229 1624 2107 2678 3380 4258

ε, 10−3 m/m 153 204 255 306 357 408 459 510 561 612 663 714 765

Bingham plastic, which is called the yield stress, τy, and this stress 
must be overcome in order to initiate flow in stagnant blood. Flow 
in the Casson region is usually plotted as the square root of shear 
rate versus the square root of shear stress, and it follows a straight-
line relationship when plotted in this way. The Casson relation-
ship is

√τ = √τy + Kc √γ


where Kc = consistency index. In the table below are experimen-
tally measured values of γ  and τ from a single blood sample over 
the Casson and Newtonian flow regions.

Calculate the derivative dσ∕dε using finite differences. Plot these 
data and eliminate the data points near the zero points that appear 
not to follow the straight-line relationship. The error in these data 
comes from the inability of the instrumentation to read the small 
values in this region. Perform a regression analysis of the remain-
ing data points to determine the values of E0 and a.

Plot the stress versus strain data points along with the analytic 
curve expressed by the first equation. This will indicate how well 
the analytic curve matches these data.

Many times this does not work well because the value of E0 is 
difficult to evaluate using this technique. To solve this problem E0

 

is not used. A data point is selected, (σ, ε), that is in the middle of 

Find the values of Kc and τy using linear regression in the Casson 
region, and find μ by fitting a straight line with zero intercept in the 
Newtonian region. Plot the two regression lines on a Casson plot 
(√γ

  versus √τ) and extend the regression lines as dashed lines into 
adjoining regions; also include the data points in the plot.

the regression analysis range. These values are substituted into the 
first equation and a value for E0∕a is determined and substituted 
into the first equation, which becomes

σ = (
σ

eaε − 1)(eaε − 1)
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Civil/Environmental Engineering
20.19 The shear stresses, in kilopascals (kPa), of nine specimens 
taken at various depths in a clay stratum are listed below. Estimate 
the shear stress at a depth of 4.5 m.

Depth, m 1.9 3.1 4.2 5.1 5.8 6.9 8.1 9.3 10.0

Stress, kPa 14.4 28.7 19.2 43.1 33.5 52.7 71.8 62.2 76.6

20.20 A transportation engineering study was conducted to deter-
mine the proper design of bike lanes. Data were gathered on bike-
lane widths and average distance between bikes and passing cars. 
The data from nine streets are

Distance, m 2.4 1.5 2.4 1.8 1.8 2.9 1.2 3 1.2

Lane width, m 2.9 2.1 2.3 2.1 1.8 2.7 1.5 2.9 1.5

(a) Plot these data.
(b) Fit a straight line to these data with linear regression. Add this 

line to the plot.
(c) If the minimum safe average distance between bikes and pass-

ing cars is considered to be 2 m, determine the corresponding 
minimum lane width.

20.21 The saturation concentration of dissolved oxygen in water as 
a function of temperature and chloride concentration is listed in 
Table P20.21. Use interpolation to estimate the dissolved oxygen 
level for T = 18°C with chloride concentration = 10 g/L.
20.22 For the data in Table P20.21, use polynomial regression to 
derive a third-order predictive equation for dissolved oxygen con-
centration as a function of temperature for the case where chloride 
concentration is equal to 10 g/L. Use the equation to estimate the 
dissolved oxygen concentration for T = 8°C.
20.23 Use multiple linear regression to derive a predictive  equation 
for dissolved oxygen concentration as a function of temperature and 
chloride concentration based on the data from Table P20.21. Use 
the equation to estimate the concentration of dissolved oxygen for a 
chloride concentration of 5 g/L at T = 17°C.
20.24 As compared to the models from Probs. 20.22 and 20.23, a 
somewhat more sophisticated model that accounts for the effect of 
both temperature and chloride concentration on dissolved oxygen 
saturation can be hypothesized as being of the form,

os = a0 + f3(T) + f1(c)

That is, a constant plus a third-order polynomial in temperature and 
a linear relationship in chloride concentration are assumed to yield 
superior results. Use the general linear least-squares approach to fit 
this model to the data in Table P20.21. Use the resulting equation 
to estimate the dissolved oxygen concentration for a chloride con-
centration of 10 g/L at T = 20°C.

Using this approach, experimental data that are well defined will 
produce a good match of the data points and the analytic curve. Use 
this new relationship and again plot the stress versus strain data 
points and the new analytic curve.
20.17 The thickness of the retina changes during certain eye dis-
eases. One way to measure retinal thickness is to shine a low-energy 
laser at the retina and record the reflections on film. Because of the 
optical properties of the eye, the reflections from the front surface of 
the retina and the back surface of the retina will appear as two lines 
on the film separated by a distance. The distance between the lines on 
the film is proportional to the thickness of the retina. Below are data 
taken from a scanned film. Fit two Gaussian-shaped curves of arbi-
trary height and location to these data and determine the distance 
between the centers of the two peaks. A Gaussian curve has the form

f (x) =
ke−k2(x−a)2

√π

where k and a are constants that relate to the peak height and the 
center of the peak, respectively.

  Light  Light 
 Position Intensity Position Intensity

 0.17 5.10 0.31 25.31
 0.18 5.10 0.32 23.79
 0.19 5.20 0.33 18.44
 0.20 5.87 0.34 12.45
 0.21 8.72 0.35 8.22
 0.22 16.04 0.36 6.12
 0.23 26.35 0.37 5.35
 0.24 31.63 0.38 5.15
 0.25 26.51 0.39 5.10
 0.26 16.68 0.40 5.10
 0.27 10.80 0.41 5.09
 0.28 11.26 0.42 5.09
 0.29 16.05 0.43 5.09
 0.3 21.96 0.44 5.09

20.18 The data tabulated below were generated from an experi-
ment starting with pure ammonium cyanate (NH4OCN). It is known 
that such concentration changes can be modeled by the following 
equation:

c =
c0

1 + kc0t

where c0 and k are parameters. Use a transformation to linearize 
this equation. Then employ linear regression to predict the concen-
tration at t = 160 min.

t (min) 0 20 50 65 150

c (mole/L) 0.381 0.264 0.180 0.151 0.086
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The concentration of chlorophyll a indicates how much plant life 
is suspended in the water. As such, it indicates how unclear and 
unsightly the water appears. Use the tabulated data to determine 
the value of c as a function of p. Use this equation to predict the 
level of chlorophyll that can be expected if waste treatment is 
used to lower the phosphorus concentration of the west basin of 
Lake Erie to 10 mg/m3.
20.27 The vertical stress σz under the corner of a rectangular area 
subjected to a uniform load of intensity q is given by the solution of 
Boussinesq’s equation:

σ =
q

4π
 [

2mn√m2 + n2 + 1
m2 + n2 + 1 + m2n2 

m2 + n2 + 2
m2 + n2 + 1

         + sin−1 
(

2mn√m2 + n2 + 1
m2 + n2 + 1 + m2n2)]

Because this equation is inconvenient to solve manually, it has been 
reformulated as

σz = q fz(m, n)

TABLE P20.21 Dissolved oxygen concentration in water as a function of temperature (°C) and chloride concentration (g/L).

 Dissolved Oxygen (mg/L) for Temperature (°C) and  
 Concentration of Chloride (g/L)

T, °C c = 0 g/L c = 10 g/L c = 20 g/L

  0 14.6 12.9 11.4
  5 12.8 11.3 10.3
 10 11.3 10.1 8.96
 15 10.1 9.03 8.08
 20 9.09 8.17 7.35
 25 8.26 7.46 6.73
 30 7.56 6.85 6.20

20.25 In water-resources engineering, the sizing of reservoirs 
depends on accurate estimates of water flow in the river that is 
being impounded. For some rivers, long-term historical records 
of such flow data are difficult to obtain. In contrast, meteoro-
logical data on precipitation is often available for many years 
past. Therefore, it is often useful to determine a relationship be-
tween flow and precipitation. This relationship can then be used 
to estimate flows for years when only precipitation measure-
ments were made. The following data are available for a river 
that is to be dammed:

Precipitation, cm 88.9 108.5 104.1 139.7 127 94 116.8 99.1

Flow, m3/s 14.6 16.7 15.3 23.2 19.5 16.1 18.1 16.6

(a) Plot these data.
(b) Fit a straight line to these data with linear regression. Superim-

pose this line on your plot.
(c) Use the best-fit line to predict the annual water flow if the pre-

cipitation is 120 cm.
(d) If the drainage area is 1100 km2, estimate what fraction of the 

precipitation is lost via processes such as evaporation, deep 
groundwater infiltration, and consumptive use.

20.26 The concentration of total phosphorus (p in mg/m3) and 
chlorophyll a (c in mg/m3) for each of the Great Lakes in 1970 was

 p c

Lake Superior  4.5  0.8
Lake Michigan  8.0  2.0
Lake Huron  5.5  1.2
Lake Erie:
 West basin 39.0 11.0
 Central basin 19.5  4.4
 East basin 17.5  3.8
Lake Ontario 21.0  5.5

b

z
a

σz

FIGURE P20.27

cha32077_ch20_572-591.indd   585 9/17/19   3:11 PM



586 CASE STUDIES: CURVE FITTING

be substituted into Hooke’s law to determine the mast’s deflection, 
ΔL = strain × L, where L = the mast’s length. If the wind force is 
25,000 N, use the given data to estimate the deflection of a 9-m mast.
20.30 Enzymatic reactions are used extensively to characterize 
 biologically mediated reactions in environmental engineering. Pro-
posed rate expressions for an enzymatic reaction are given below, 
where [S] is the substrate concentration and υ0 is the initial rate of 
reaction. Which formula best fits the experimental data?

υ0 = k[S] υ0 =
k[S]

K + [S]
 υ0 =

k[S]2

K + [S]2 υ0 =
k[S]3

K + [S]3

 [S], M Initial Rate, 10−6 M/s

 0.01 6.3636 × 10−5

 0.05 7.9520 × 10−3

 0.1 6.3472 × 10−2

 0.5 6.0049
 1 17.690
 5 24.425
 10 24.491
 50 24.500
 100 24.500

20.31 Environmental engineers dealing with the impacts of acid 
rain must determine the value of the ion product of water, Kw, as a 
function of temperature. Scientists have suggested the following 
equation to model this relationship:

−log10 Kw =
a

Ta

+ b log10 Ta + cTa + d

where Ta = absolute temperature (K), and a, b, c, and d are param-
eters. Employ the following data and regression to estimate the 
parameters:

where fz(m, n) is called the influence value and m and n are 
 dimensionless ratios, with m = a∕z and n = b∕z and a and b as 
defined in Fig. P20.27. Some results for influence values are 
given in Table P20.27. If a = 4.6 and b = 14, use a third-order 
interpolating polynomial to compute σz at a depth 10 m below 
the corner of a rectangular footing that is subject to a total load 
of 100 t (metric tons). Express your answer in tonnes per square 
 meter. Note that q is equal to the load per area.
20.28 Three disease-carrying organisms decay exponentially in 
lake water according to the following model:

p(t) = Ae−1.5t + Be−0.3t + Ce−0.05t

Estimate the initial population of each organism (A, B, and C) given 
the following measurements:

t, hr 0.5 1 2 3 4 5 6 7 9

p(t ) 6.0 4.4 3.2 2.7 2.2 1.9 1.7 1.4 1.1

TABLE P20.27

 m n = 1.2 n = 1.4 n = 1.6

 0.1 0.02926 0.03007 0.03058
 0.2 0.05733 0.05894 0.05994
 0.3 0.08323 0.08561 0.08709
 0.4 0.10631 0.10941 0.11135
 0.5 0.12626 0.13003 0.13241
 0.6 0.14309 0.14749 0.15027
 0.7 0.15703 0.16199 0.16515
 0.8 0.16843 0.17389 0.17739

20.29 The mast of a sailboat has a cross-sectional area of 10.65 cm2 
and is constructed of an experimental aluminum alloy. Tests were 
performed to define the relationship between stress and strain. The 
test results are

Strain, cm/cm 0.0032 0.0045 0.0055 0.0016 0.0085 0.0005

Stress, N/cm2 4970 5170 5500 3590 6900 1240

The stress caused by wind can be computed as F/Ac, where F = force 
in the mast and Ac = mast’s cross-sectional area. This value can then 

Ta (K) 273.15 283.15 293.15 303.15 313.15

Kw 1.164 × 10−15 2.950 × 10−15 6.846 × 10−15 1.467 × 10−14 2.929 × 10−14

20.32 The following data for water density (ρ) versus temperature 
(T) come from a table of values that were measured with high preci-
sion. Use inverse interpolation to determine the temperature corre-
sponding to a density of 0.999245 g∕cm3. Base your estimate on a 
third-order interpolating polynomial using a tool like Excel or the 
MATLAB polyfit function to determine the polynomial’s coef-
ficients. Find the root with the Newton-Raphson method using an 
initial guess of T = 14°C.

T, °C 0 4 8 12 16

ρ, g/cm3 0.99987 1.00000 0.99988 0.99952 0.99897
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(a) On the basis of a linear regression with these data, determine 
current for a voltage of 3.5 V. Plot the line and the data and 
evaluate the fit.

(b) Redo the regression and force the intercept to be zero.
20.40 It is known that the voltage drop across an inductor follows 
Faraday’s law:

VL = L 
di

dt

where VL is the voltage drop (in volts), L is inductance (in henrys; 
1 H = 1 V s/A), and i is current (in amperes). Employ the following 
data to estimate L:

di/dt, A/s 1 2 4 6 8 10

VL, V 5.5 12.5 17.5 32 38 49

What is the meaning, if any, of the intercept of the regression equa-
tion derived from these data?
20.41 Ohm’s law states that the voltage drop V across an ideal re-
sistor is linearly proportional to the current i flowing through the 
resistor, as in V = iR, where R is the resistance. However, real resis-
tors may not always obey Ohm’s law. Suppose that you performed 
some very precise experiments to measure the voltage drop and 
corresponding current for a resistor. The results, as listed in Table 
P20.41, suggest a curvilinear relationship rather than the straight 
line represented by Ohm’s law. In order to quantify this relation-
ship, a curve must be fit to these data. Because of measurement 
error, regression would typically be the preferred method of curve 
fitting for analyzing such experimental data. However, the smooth-
ness of the relationship, as well as the precision of the experimental 
methods, suggests that interpolation might be appropriate. Use 
Newton’s interpolating polynomial to fit these data and compute V 
for i = 0.10. What is the order of the polynomial that was used to 
generate the data?

TABLE P20.41  Experimental data for voltage drop across a 
resistor subjected to various levels of current.

i −2 −1 −0.5 0.5 1 2

V −637 −96.5 −20.5 20.5 96.5 637

20.42 Repeat Prob. 20.41 but determine the coefficients of the 
polynomial (Sec. 18.4) that fit the data in Table P20.41.
20.43 An experiment is performed to determine the percent elon-
gation of an electrical conducting material as a function of tem-
perature. The resulting data are listed below. Predict the percent 
elongation for a temperature of 400°C.

Temperature, °C 200 250 300 375 425 475 600

% elongation 7.5 8.6 8.7 10 11.3 12.7 15.3

20.33 The following model is frequently used in environmental 
engineering to parameterize the effect of temperature T (°C) on 
biochemical reaction rates k (per day),

k = k20θ
T−20

where k20 and θ are parameters. Use a transformation to linearize 
this equation. Then employ linear regression to estimate k20 and θ 
and predict the reaction rate at T = 17°C.

T (°C) 6 12 18 24     30

k (per day) 0.14 0.20 0.31 0.46 0.69

20.34 As a member of Engineers Without Borders, you are work-
ing in a community that has contaminated drinking water. At t = 0, 
you add a disinfectant to a cistern that is contaminated with bacte-
ria. You make the following measurements at several times there-
after:

t (hrs) 2 4 6 8 10

c (#/100 mL) 430 190 80 35 16

If the water is safe to drink when the concentration falls below 
5 #/100 mL, estimate the time at which the concentration will 
fall below this limit.

Electrical Engineering
20.35 Perform the same computations as in Sec. 20.3, but analyze 
data generated with f(t) = 4 cos(5t) − 7 sin(3t) + 6.
20.36 You measure the voltage drop V across a resistor for a num-
ber of different values of current i. The results are

i 0.25 0.75 1.25 1.5 2.0

V −0.45 −0.6 0.70 1.88 6.0

Use first- through fourth-order polynomial interpolation to esti-
mate the voltage drop for i = 1.15. Interpret your results.
20.37 Duplicate the computation for Prob. 20.36, but use polyno-
mial regression to derive best-fit equations of order 1 through 4 using 
all the data. Plot and evaluate your results.
20.38 The current in a wire is measured with great precision as a 
function of time:

t 0 0.1250 0.2500 0.3750 0.5000

i 0 6.24 7.75 4.85 0.0000

Determine i at t = 0.23.
20.39 The following data were taken from an experiment that mea-
sured the current in a wire for various imposed voltages:

V, V 2 3 4 5 7 10

i, A 5.2 7.8 10.7 13 19.3 27.5
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experimentally by placing known weights onto the spring and 
 measuring the resulting compression. Such data were contained in 
 Table P20.49 and plotted in Fig. P20.49. Notice that above a weight 
of 40 × 104 N, the linear relationship between the force and 
 displacement breaks down. This sort of behavior is typical of what 
is termed a “hardening spring.” Employ linear regression to deter-
mine a value of k for the linear portion of this system. In addition, 
fit a nonlinear relationship to the nonlinear portion.
20.50 Repeat Prob. 20.49 but fit a power curve to all the data in 
Table P20.49. Comment on your results.
20.51 The distance required to stop an automobile consists of both 
thinking and braking components, each of which is a function of 
the car’s speed. The following experimental data were collected to 
quantify this relationship. Develop a best-fit equation for both the 

20.44 Bessel functions often arise in advanced engineering analy-
ses such as the study of electric fields. These functions are usually 
not amenable to straightforward evaluation and, therefore, are often 
compiled in standard mathematical tables. For example,

x 1.8 2 2.2 2.4 2.6

J1(x) 0.5815 0.5767 0.556 0.5202 0.4708

Estimate J1(2.1), (a) using an interpolating polynomial and (b) using 
cubic splines. Note that the true value is 0.568292.
20.45 The population (p) of a small community on the outskirts of 
a city grows rapidly over a 20-year period:

t 0 5 10 15 20

p 100 200 450 950 2000

As an engineer working for a utility company, you must forecast the 
population 5 years into the future in order to anticipate the demand 
for power. Employ an exponential model and linear regression to 
make this prediction.

Mechanical/Aerospace Engineering
20.46 Based on Table 20.3, use linear and quadratic interpolation 
to compute Q for D = 1.23 ft and S = 0.001 ft/ft. Compare your 
results with the value computed with the formula derived in 
Sec. 20.4.
20.47 Reproduce Sec. 20.4, but develop an equation to predict 
slope as a function of diameter and flow. Compare your results with 
the formula from Sec. 20.4 and discuss your results.
20.48 Dynamic viscosity of water μ (10−3 N s/m2) is related to 
temperature T (°C) in the following manner:

T 0 5 10 20 30  40

μ 1.787 1.519 1.307 1.002 0.7975 0.6529

(a) Plot these data.
(b) Use interpolation to predict μ at T = 7.5°C.
(c) Use polynomial regression to fit a parabola to these data in or-

der to make the same prediction.
20.49 Hooke’s law, which holds when a spring is not stretched too 
far, signifies that the extension of the spring and the applied force 
are linearly related. The proportionality is parameterized by the 
spring constant k. A value for this parameter can be established 

TABLE P20.49  Experimental values for elongation x and force F for the spring on an 
automobile suspension system.

Displacement, m 0.10 0.17 0.27 0.35 0.39 0.42 0.43 0.44

Force, 104 N 10 20 30 40 50 60 70 80

Displacement, m

40

0.2

Hooke’s law Nonideal behavior:
spring is

“hardening”

0.4

Fo
rc

e,
 1

0
4  N

FIGURE P20.49
Plot of force (in 104 newtons) versus displacement (in meters) 
for the spring from the automobile suspension system.
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A common example of a Bingham plastic is toothpaste.
For pseudoplastics, or “shear thinning” fluids, the shear stress 

is raised to a power n less than one,

τ = μγ
 n

Such fluids, such as yogurt, mayonnaise, and shampoo, exhibit a 
decrease in viscosity with increasing stress. Note that for cases 
where n > 1, called dilatant (or “shear thickening”) fluids, viscos-
ity actually increases with shear stress. Examples include starch in 
water and wet beach sand.

The following data show the relationship between the shear 
stress τ and the shear strain rate γ


 for a fluid. The yield stress τy is 

the amount of stress that must be exceeded before flow begins. Find 
the viscosity μ (slope), τy, and the r2 value using a regression 
method. What is the type of fluid?

Stress τ, N/m2 3.25 4.25 4.65 5.65 6.05

Shear strain rate γ

, 1/s 0.9 2.1 2.9 4.1 4.9

20.56 The relationship between stress τ and the shear strain rate γ

 

for a pseudoplastic fluid (see Prob. 20.55) can be expressed by the 
equation τ = μγ

n. The following data come from a 0.5% hydroxeth-
ylcellulose in water solution. Using a power-law fit, find the values 
of μ and n.

Shear strain rate γ

, 1/s 50 70 90 110 130

Stress τ, N/m2 6.01 7.48 8.59 9.19 10.21

thinking and braking components. Use these equations to estimate 
the total stopping distance for a car traveling at 110 km/hr.

Speed, km/hr 30 45 60 75 90 120

Thinking, m 5.6 8.5 11.1 14.5 16.7 22.4

Braking, m 5.0 12.3 21.0 32.9 47.6 84.7

20.52 An experiment is performed to define the relationship be-
tween applied stress and the time to fracture for a type of stainless 
steel. Eight different values of stress are applied, and the resulting 
data are

Applied stress x, kg/mm2 5 10 15 20 25 30 35 40

Fracture time y, hr 40 30 25 40 18 20 22 15

Plot these data and then develop a best-fit equation to predict the 
fracture time for an applied stress of 20 kg/mm2.
20.53 The acceleration due to gravity at an altitude y above the 
surface of the earth is given by

y, m 0 30,000 60,000 90,000 120,000

g, m/s2 9.8100 9.7487 9.6879 9.6278 9.5682

Compute g at y = 55,000 m.
20.54 The creep rate ε  is the time rate at which strain increases, and 
the stress data below were obtained from a testing procedure. Using 
a power-law fit,

ε
 = Bσm

find the value of B and m. Plot your results using a log-log scale.

Creep rate, min–1 0.0004 0.0011 0.0021 0.0031

Stress, MPa 5.775 8.577 10.874 12.555

20.55 It is a common practice when examining a fluid’s viscous 
behavior to plot the shear strain rate (velocity gradient),

dυ

dy
= γ



on the abscissa versus shear stress (τ) on the ordinate. When a fluid 
has a straight-line behavior between these two variables, it is called 
a Newtonian fluid, and the resulting relationship is

τ = μγ


where μ is the fluid viscosity. Many common fluids follow this be-
havior, such as water, milk, and oil. Fluids that do not behave in this 
way are called non-Newtonian. Some examples of non-Newtonian 
fluids are shown in Fig. P20.55.

For Bingham plastics, there is a yield stress τy that must be over-
come before flow will begin,

τ = τy + μγ


FIGURE P20.55
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20.59 Develop equations to fit the ideal specific heats, cp (kJ/kg K), 
as a function of temperature T (K), for several gases as listed in 
Table P20.59.
20.60 Temperatures are measured at various points on a heated 
plate (Table P20.60). Estimate the temperature at (a) x = 4, y = 3.2, 
and (b) x = 4.3, y = 2.7.
20.61 The data below were obtained from a creep test performed at 
room temperature on a wire composed of 40% tin, 60% lead, and solid 
core solder. This was done by measuring the increase in strain over 
time while a constant load was applied to a test specimen. Using a 
linear regression method, find (a) the equation of the line that best fits 
these data and (b) the r2 value. Plot your results. Does the line pass 
through the origin—that is, at time zero should there be any strain? If 
the line does not pass through the origin, force it to do so. Does this 
new line represent the data trend? Suggest a new equation that satis-
fies zero strain at zero time and also represents the data trend well.

20.57 The velocity u of air flowing past a flat surface is measured 
at several distances y away from the surface. Fit a curve to these 
data assuming that the velocity is zero at the surface (y = 0). Use 
your result to determine the shear stress (μ du/dy) at the surface.  
(μ = 1.8 × 10−5 N s/m2)

y, m 0.002 0.006 0.012 0.018 0.024

u, m/s 0.287 0.899 1.915 3.048 4.299

20.58 Andrade’s equation has been proposed as a model of the 
effect of temperature on viscosity,

μ = DeB∕Ta

where μ = dynamic viscosity of water (10−3 N s/m2), Ta = absolute 
temperature (K), and D and B are parameters. Fit this model to the 
data for water from Prob. 20.48.

TABLE P20.59  Ideal specific heats, cp (kJ/kg K), as a function of temperature for several  
gases.

Gas 250 K 300 K 350 K 450 K 550 K 650 K 800 K 900 K 1000 K

H2 14.051 14.307 14.427 14.501 14.53 14.571 14.695 14.822 14.983
CO2 0.791 0.846 0.895 0.978 1.046 1.102 1.169 1.204 1.234
O2 0.913 0.918 0.928 0.956 0.988 1.017 1.054 1.074 1.09
N2 1.039 1.039 1.041 1.049 1.065 1.086 1.121 1.145 1.167

TABLE P20.60 Temperatures (°C) at various points on a square heated plate.

 x = 0 x = 2 x = 4 x = 6 x = 8

y = 0 100.00 90.00 80.00 70.00 60.00
y = 2 85.00 64.49 53.50 48.15 50.00
y = 4 70.00 48.90 38.43 35.03 40.00
y = 6 55.00 38.78 30.39 27.07 30.00
y = 8 40.00 35.00 30.00 25.00 20.00

Time, Strain,  Time,  Strain, Time, Strain, 
  min % min % min %

 0.085 0.10 3.589 0.26 7.092 0.43
 0.586 0.13 4.089 0.30 7.592 0.45
 1.086 0.16 4.590 0.32 8.093 0.47
 1.587 0.18 5.090 0.34 8.593 0.50
 2.087 0.20 5.591 0.37 9.094 0.52
 2.588 0.23 6.091 0.39 9.594 0.54
 3.088 0.25 6.592 0.41 10.097 0.56
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 PROBLEMS 591

from Chap. 1 that the terminal velocity, υterminal (m/s), of a free-
falling object can be computed as

υterminal = √
gm

cd

where g = gravitational acceleration (m/s2), m = mass (kg), and cd = 
drag coefficient (kg/m). The drag coefficient can be computed as

cd = 0.5ρACd

where ρ = the fluid density (kg/m3), A = the projected area (m2), 
and Cd = a dimensionless drag coefficient. Note that the gravita-
tional acceleration, g (m/s2), can be related to elevation by 

g = 9.806412 − 0.003039734z

where z = elevation above the earth’s surface (km), and the density 
of air, ρ (kg/m3), at various elevations can be tabulated as

 z ρ z ρ z ρ
 (km) (kg/m3) (km) (kg/m3) (km) (kg/m3)

 −1 1.347 6 0.6601 25 0.04008
   0 1.225 7 0.5900 30 0.01841
   1 1.112 8 0.5258 40 0.003996
   2 1.007 9 0.4671 50 0.001027
   3 0.9093 10 0.4135 60 0.0003097
   4 0.8194 15 0.1948 70 8.283  ×  10−5

   5 0.7364 20 0.08891 80 1.846  ×  10−5

Assume that m = 80 kg, A = 0.55 m2, and Cd = 1.1. Develop a 
program to compute the terminal velocity versus elevation for a 
given value of elevation with a function based on splines to gener-
ate the required density. If the user requests a value outside the 
range of altitudes, have the function display an error message and 
terminate the application. Test your program for z = −2, 17, 62.5, 
80, and 80.01 km. 

20.62 Use the following portion of the steam table for superheated 
H2O at 200 MPa to (a) find the corresponding entropy s for a spe-
cific volume υ of 0.108 m3/kg with linear interpolation, (b) find the 
same corresponding entropy using quadratic interpolation, and  
(c) find the volume corresponding to an entropy of 6.6 using  
inverse interpolation.

υ (m3/kg) 0.10377 0.11144 0.12540

s (kJ/kg K) 6.4147 6.5453 6.7664

20.63 The U.S. Standard Atmosphere specifies atmospheric prop-
erties as a function of altitude above sea level. The following table 
shows selected values of temperature, pressure, and density 

 Altitude (km) T (°C) p (atm) ρ (kg/m3)

 −0.5 18.4 1.0607 1.2850
 2.5 −1.1 0.73702 0.95697
 6 −23.8 0.46589 0.66015
 11 −56.2 0.22394 0.36481
 20 −56.3 0.054557 0.088911
 28 −48.5 0.015946 0.025076
 50 −2.3 7.8721  ×  10−4 1.0269  ×  10−3

 60 −17.2 2.2165  ×  10−4 3.0588  ×  10−4

 80 −92.3 1.0227  ×  10−5 1.9992  ×  10−5

 90 −92.3 1.6216  ×  10−6 3.1703  ×  10−6

Develop a function to determine values of the three properties for a 
given altitude. If the user requests a value outside the range of alti-
tudes, have the function display an error message and terminate the 
application.
20.64 Felix Baumgartner ascended to 39 km in a stratospheric bal-
loon and made a free-fall jump, rushing toward earth at supersonic 
speeds before parachuting to the ground. As he fell, his drag coef-
ficient changed primarily because the air density changed. Recall 
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EPILOGUE: PART FIVE

 PT5.4 TRADE-OFFS
Table PT5.4 provides a summary of the trade-offs involved in curve fitting. The tech-
niques are divided into two broad categories, depending on the uncertainty of the data. 
For imprecise measurements, regression is used to develop a “best” curve that fits the 
overall trend of the data without necessarily passing through any of the individual points. 
For precise measurements, interpolation is used to develop a curve that passes directly 
through each of the points.
 All the regression methods are designed to fit functions that minimize the sum of 
the squares of the residuals between the data and the function. Such methods are termed 
least-squares regression. Linear least-squares regression is used for cases where a depen-
dent and an independent variable are related to each other in a linear fashion. For situ-
ations where a dependent and an independent variable exhibit a curvilinear relationship, 
several options are available. In some cases, transformations can be used to linearize the 
relationship. In these instances, linear regression can be applied to the transformed vari-
ables to determine the best straight line. Alternatively, polynomial regression can be 
employed to fit a curve directly to the data.
 Multiple linear regression is utilized when a dependent variable is a linear function 
of two or more independent variables. Logarithmic transformations can also be applied 
to this type of regression for some cases where the multiple dependency is curvilinear.

TABLE PT5.4 Comparison of the characteristics of alternative methods for curve fitting.

 Error Match of Number of   
 Associated  Individual Points Matched Programming 
Method with Data Data Points Exactly Effort Comments

Regression
 Linear regression Large Approximate 0 Easy
 Polynomial regression Large Approximate 0 Moderate  Round-off error becomes pro-

nounced for higher-order versions
 Multiple linear regression Large Approximate 0 Moderate
 Nonlinear regression Large Approximate 0 Difficult
Interpolation
 Newton’s Small Exact n + 1 Easy Usually preferred for exploratory 
 divided-difference     analyses 
 polynomials
 Lagrange polynomials Small Exact n + 1 Easy Usually preferred when order  
     is known
 Cubic splines Small Exact Piecewise fit of Moderate First and second derivatives equal  
   data points   at knots
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 PT5.5 IMPORTANT RELATIONSHIPS AND FORMULAS 593

 Polynomial regression and multiple linear regression (note that simple linear regres-
sion is a member of both) belong to a more general class of linear least-squares models. 
They are classified in this way because they are linear with respect to their coefficients. 
These models are typically implemented using linear algebraic systems that are some-
times  ill-conditioned. However, in many engineering applications (that is, for lower-order 
fits), this does not come into play. For cases where it is a problem, alternative approaches 
are available. For example, a technique called orthogonal polynomials is available to 
perform polynomial regression (see Sec. PT5.6).
 Equations that are not linear with respect to their coefficients are called nonlinear. 
Special regression techniques are available to fit such equations. These are approximate 
methods that start with initial parameter estimates and then iteratively home in on values 
that minimize the sum of the squares.
 Polynomial interpolation is designed to fit a unique nth-order polynomial that passes 
exactly through n + 1 precise data points. This polynomial is presented in two alternative 
formats. Newton’s divided-difference interpolating polynomial is ideally suited for those 
cases where the proper order of the polynomial is unknown. Newton’s polynomial is 
appropriate for such situations because it is easily programmed in a format to compare 
results with different orders. In addition, an error estimate can be simply incorporated into 
the technique. Thus, you can compare and choose from results using several different-
order polynomials.
 The Lagrange interpolating polynomial is an alternative formulation that is appropri-
ate when the order is known a priori. For these situations, the Lagrange version is 
somewhat simpler to program and does not require the computation and storage of finite 
divided differences.
 Another approach to curve fitting is spline interpolation. This technique fits a low-
order polynomial to each interval between data points. The fit is made smooth by setting 
the derivatives of adjacent polynomials to the same value at their connecting points. The 
cubic spline is the most common version. Splines are of great utility when fitting data 
that are generally smooth but exhibit local areas of abrupt change. Such data tend to 
induce wild oscillations in higher-order interpolating polynomials. Cubic splines are less 
prone to these oscillations because they are limited to third-order variations.
 Beyond the one-dimensional case, interpolation can be implemented for multidimen-
sional data. Both interpolating polynomials and splines can be used for this purpose. 
Software packages are available to expedite such applications.
 The final method covered in this part of the book is Fourier approximation. This 
approach deals with using trigonometric functions to approximate waveforms. In contrast 
to the other techniques, the major emphasis of this approach is not to fit a curve to data 
points. Rather, the curve fit is employed to analyze the frequency characteristics of a 
signal. In particular, a fast Fourier transform is available to very efficiently transform a 
function from the time to the frequency domain to elucidate its underlying harmonic 
structure.

 PT5.5 IMPORTANT RELATIONSHIPS AND FORMULAS
Table PT5.5 summarizes important information that was presented in Part Five. This 
table can be consulted to quickly access important relationships and formulas.
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sy∕x = √
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r2 =
St − Sr
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R2 = (x − x0) (x − x1) (x − x2)  

f  

(3)(ξ)
6

 

 or
R2 = (x − x0) (x − x1) (x − x2)f [x3, x2, x1, x0]

R2 = (x − x0) (x − x1) (x − x2)  

f  

(3)(ξ)
6

 

 or

R2 = (x − x0) (x − x1) (x − x2)f  [x3, x2, x1, x0]

Linear 
regression

Polynomial 
regression

Multiple  
linear 
regression

Newton’s 
divided-
difference 
interpolating 
polynomial*

Lagrange 
interpolating 
polynomial*

Cubic splines

y = a0 + a1x 

where a1 =
nΣxiyi − Σxi Σyi

nΣx2
i − (Σxi)

2

 a0 = y − a1x

y = a0 + a1x + … + am 
x 

m

(Evaluation of a’s equivalent to solution
of m + 1 linear algebraic equations)

y = a0 + a1x1 + … + am 
x m 

(Evaluation of a’s equivalent to solution  
of m + 1 linear algebraic equations)

f2(x) = b0 + b1(x − x0) + b2(x − x0)(x − x1) 
where b0 = f (x0) 

b1 = f [x1, x0] 
b2 = f [x2, x1, x0]

f2(x) = f (x0)(
x − x1

x0 − x1)(
x − x2

x0 − x2)

       + f  (x1)(
x − x0

x1 − x0)(
x − x2

x1 − x2)

       + f (x2)(
x − x0

x2 − x0)(
x − x1

x2 − x1)

A cubic,  
 aix

3 + bix
2 + cix + di 

is fit to each interval between knots.  
First and second derivatives are  
equal at each knot

TABLE PT5.5 Summary of important information presented in Part Five.

Method Formulation Graphical Interpretation Errors 

y

x
y

x

y

x1

x2

y

x

y

x

a1 x
3 + b1 x

2 + c1 x + d1

a2 x3 + b2 x
2 + c2 x + d2

knot

y

x

*Note: For simplicity, second-order versions are shown.

 PT5.6 ADVANCED METHODS AND ADDITIONAL REFERENCES
Although polynomial regression with normal equations is adequate for many engineering 
applications, there are problem contexts where its sensitivity to round-off error can rep-
resent a serious limitation. An alternative approach based on orthogonal polynomials can 
mitigate these effects. It should be noted that this approach does not yield a best-fit 
equation, but rather, yields individual predictions for given values of the independent 
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 PT5.6 ADVANCED METHODS AND ADDITIONAL REFERENCES 595

variable. Information on orthogonal polynomials can be found in Shampine and Allen 
(1973) and Guest (1961).
 Whereas the orthogonal polynomial technique is helpful for developing a polynomial 
regression, it does not represent a solution to the instability problem for the general 
linear regression model [Eq. (17.23)]. An alternative approach based on single-value 
decomposition, called the SVD method, is available for this purpose. Forsythe et al. 
(1977), Lawson and Hanson (1974), and Press et al. (2007) contain information on this 
approach.
 In addition to the Gauss-Newton algorithm, there are a number of optimization 
methods that can be used to directly develop a least-squares fit for a nonlinear equation. 
These nonlinear regression techniques include Marquardt’s and the steepest-descent 
methods (recall Part Four). General information on regression can be found in Draper 
and Smith (1981).
 All the methods in Part Five have been couched in terms of fitting a curve to data 
points. In addition, you may also desire to fit a curve to another curve. The primary 
motivation for such functional approximation is to represent a complicated function by 
a simpler version that is easier to manipulate. One way to do this is to use the compli-
cated function to generate a table of values. Then the techniques discussed in this part 
of the book can be used to fit polynomials to these discrete values.
 An alternative approach is based on the minimax principle (recall Fig. 17.2c). This 
principle specifies that the coefficients of the approximating polynomial be chosen so 
that the maximum discrepancy is as small as possible. Thus, although the approximation 
may not be as good as that given by the Taylor series at the base point, it is generally 
better across the entire range of the fit. Chebyshev economization is an example of an 
approach for functional approximation based on such a strategy (Ralston and Rabinowitz 
1978; Gerald and Wheatley 2004; and Carnahan, Luther, and Wilkes 1969).
 An important area in curve fitting is the combining of splines with least-squares 
regression. Thus, a cubic spline is generated that does not intercept every point, but 
rather, minimizes the sum of the squares of the residuals between the data points and 
the spline curves. The approach involves using the so-called B splines as basis functions. 
These are so named because of their use as basis functions but also because of their 
characteristic bell shape. Such curves are consistent with a spline approach in that their 
value and their first and second derivatives have continuity at their extremes. Thus, 
continuity of f(x) and its lower derivatives at the knots is ensured. Wold (1974), Prenter 
(1975), and Cheney and Kincaid (2008) present discussions of this approach.
 In summary, the foregoing is intended to provide you with avenues for deeper ex-
ploration of the subject. Additionally, all the above references provide descriptions of the 
basic techniques covered in Part Five. We urge you to consult these alternative sources 
to broaden your understanding of numerical methods for curve fitting.
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PA R T  S I X

596

NUMERICAL DIFFERENTIATION  
AND INTEGRATION

 PT6.1 MOTIVATION
Calculus is the mathematics of change. Because engineers must continuously deal with 
systems and processes that change, calculus is an essential tool of our profession. Stand-
ing at the heart of calculus are the related mathematical concepts of differentiation and 
integration.
 According to the dictionary definition, to differentiate means “to mark off by differences; 
distinguish; . . . to perceive the difference in or between.” Mathematically, the derivative, 
which serves as the fundamental vehicle for differentiation, represents the rate of change of 
a dependent variable with respect to an independent variable. As depicted in Fig. PT6.1, the 
mathematical definition of the derivative begins with a difference approximation:

Δy

Δx
=

f(xi + Δx) − f(xi)
Δx

 (PT6.1)

where y and f(x) are alternative representatives for the dependent variable and x is the 
independent variable. If Δx is allowed to approach zero, as occurs in moving from 
Fig. PT6.1a to c, the difference becomes a derivative

dy

dx
= lim

Δx→0

f(xi + Δx) − f(xi)
Δx

where dy∕dx [which can also be designated as y′ or f′(xi)] is the first derivative of y with 
respect to x evaluated at xi. As seen in the visual depiction of Fig. PT6.1c, the derivative 
is the slope of the tangent to the curve at xi.
 The second derivative represents the derivative of the first derivative,

d 
2y

dx2 =
d

dx(
dy

dx)

Thus, the second derivative tells us how fast the slope is changing. It is commonly  referred 
to as the curvature, because a high value for the second derivative means high curvature.
 Finally, partial derivatives are used for functions that depend on more than one 
variable. A partial derivative can be thought of as taking the derivative of the function 
at a point with all but one variable held constant. For example, given a function f that 
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FIGURE PT6.1
The graphical definition of a derivative: As Δx approaches zero in going from (a) to (c), the  
difference approximation becomes a derivative.

f (xi)
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f ' (xi)
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xi xi + Δx x

Δx

(a) (b)

Δy

xi x

(c)

depends on both x and y, the partial derivative of f with respect to x at an arbitrary point 
(x, y) is defined as

∂f

∂x
= lim

Δx→0

 f(x + Δx, y) − f (x, y)
Δx

Similarly, the partial derivative of f with respect to y is defined as

∂f

∂y
= lim

Δy→0

 f(x, y + Δy) − f(x, y)
Δy

 To get an intuitive grasp of partial derivatives, recognize that a function that depends 
on two variables is a surface rather than a curve. Suppose you are mountain climbing 
and have access to a function, f, that yields elevation as a function of longitude (the 
east-west oriented x-axis) and latitude (the north-south oriented y-axis). If you stop at a 
particular point, (x0, y0), the slope to the east would be ∂f(x0, y0)∕∂x and the slope to 
the north would be ∂f(x0, y0)∕∂y.
 The inverse process to differentiation in calculus is integration. According to the 
dictionary definition, to integrate means “to bring together, as parts, into a whole; to 
unite; to indicate the total amount . . . .” Mathematically, integration is represented by

I = ∫b

a
 f(x) dx (PT6.2)

which stands for the integral of the function f(x) with respect to the independent variable 
x, evaluated between the limits x = a to x = b. The function f(x) in Eq. (PT6.2) is  referred 
to as the integrand.
 As suggested by the dictionary definition, the “meaning” of Eq. (PT6.2) is the total 
value, or summation, of f(x) dx over the range x = a to b. In fact, the symbol ∫ is  actually 
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598 NUMERICAL DIFFERENTIATION AND INTEGRATION

1It should be noted that the process represented by Eq. (PT6.2) and Fig. PT6.2 is called definite integration. 
There is another type called indefinite integration in which the limits a and b are unspecified. As will be 
discussed in Part Seven, indefinite integration deals with determining a function whose derivative is given.

f (x)

a b x

FIGURE PT6.2
Graphical representation of the integral of f(x) between the limits x = a to b. The integral is 
equivalent to the area under the curve.

a stylized capital S that is intended to signify the close connection between integration 
and summation.
 Figure PT6.2 represents a graphical manifestation of the concept. For functions lying 
above the x axis, the integral expressed by Eq. (PT6.2) corresponds to the area under 
the curve of f(x) between x = a and b.1
 As outlined above, the “marking off” or “discrimination” of differentiation and the 
“bringing together” of integration are closely linked processes that are, in fact, inversely 
related (Fig. PT6.3). For example, if we are given a function y(t) that specifies an object’s 
position as a function of time, differentiation provides a means to determine its velocity, 
as in (Fig. PT6.3a).

υ(t) =
d

dt
  y(t)

Conversely, if we are provided with velocity as a function of time, integration can be 
used to determine the object’s position (Fig. PT6.3b),

y(t) = ∫ t

0
 υ(t) dt

Thus, we can make the general claim that the evaluation of the integral

I = ∫b

a
 f(x) dx
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 PT6.1 MOTIVATION 599

is equivalent to solving the differential equation
dy

dx
= f(x)

for y(b) given the initial condition y(a) = 0.
 Because of this close relationship, we have opted to devote this part of the book to 
both processes. Among other things, this will provide the opportunity to highlight their 
similarities and differences from a numerical perspective. In addition, our discussion will 
have relevance to the next parts of the book where we will cover differential equations.

PT6.1.1 Noncomputer Methods for Differentiation and Integration
The function to be differentiated or integrated will typically be in one of the following 
three forms:

1. A simple continuous function such as a polynomial, an exponential, or a trigonomet-
ric function.

2. A complicated continuous function that is difficult or impossible to differentiate or 
integrate directly.

3. A tabulated function, where values of x and f(x) are given at a number of discrete 
points, as is often the case with experimental or field data.

 In the first case, the derivative or integral of a simple function may be evaluated 
analytically using calculus. For the second case, analytical solutions are often impractical, 
and sometimes impossible, to obtain. In these instances, as well as in the third case of 
discrete data, approximate methods must be employed.

FIGURE PT6.3
The contrast between (a) differ-
entiation and (b) integration.
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600 NUMERICAL DIFFERENTIATION AND INTEGRATION

 A noncomputer method for determining derivatives from data is called equal-area 
graphical differentiation. In this method, the (x, y) data are tabulated and, for each inter-
val, a simple divided difference Δy∕Δx is employed to estimate the slope. Then these 
values are plotted as a stepped curve versus x (Fig. PT6.4). Next, a smooth curve is 
drawn that attempts to approximate the area under the stepped curve. That is, it is drawn 
so that, visually, the positive and negative areas are balanced. The rates at given values 
of x can then be read from the curve.
 In the same spirit, visually oriented approaches were employed to integrate tabulated 
data and complicated functions in the precomputer era. A simple intuitive approach is 
to plot the function on a grid (Fig. PT6.5) and count the number of boxes that approxi-
mate the area. This number multiplied by the area of each box provides a rough estimate 
of the total area under the curve. This estimate can be refined, at the expense of additional 
effort, by using a finer grid.
 Another commonsense approach is to divide the area into vertical segments, or 
strips, with a height equal to the function value at the midpoint of each strip (Fig. PT6.6). 
The areas of the rectangles can then be calculated and summed to estimate the total area. 
In this approach, it is assumed that the value at the midpoint provides a valid approxima-
tion of the average height of the function for each strip. As with the grid method, refined 
estimates are possible by using more (and thinner) strips to approximate the integral.
 Although such simple approaches have utility for quick estimates, alternative numer-
ical techniques are available for the same purpose. Not surprisingly, the simplest of these 
methods is similar in spirit to the noncomputer techniques.
 For differentiation, the most fundamental numerical techniques use finite divided 
differences to estimate derivatives. For data with error, an alternative approach is to fit 
a smooth curve to those data with a technique such as least-squares regression and then 
differentiate this curve to obtain derivative estimates.
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FIGURE PT6.4
Equal-area differentiation.  
(a) Centered finite divided dif-
ferences are used to estimate 
the derivative for each interval 
between the data points.  
(b) The derivative estimates are 
plotted as a bar graph. A 
smooth curve is superimposed 
on this plot to approximate the 
area under the bar graph. This 
is accomplished by drawing the 
curve so that positive and 
 negative areas are balanced. 
(c) Values of dy∕dx can then be 
read off the smooth curve.
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 PT6.1 MOTIVATION 601

 In a similar spirit, numerical integration, or quadrature, methods are available to 
obtain integrals. These methods, which are actually easier to implement than the grid 
approach, are similar in spirit to the strip method. That is, function heights are multiplied 
by strip widths and summed to estimate the integral. However, through clever choices 
of weighting factors, the resulting estimate can be made more accurate than that from 
the simple strip method.
 As in the simple strip method, numerical integration and differentiation techniques 
utilize data at discrete points. Because tabulated information is already in such a form, 

FIGURE PT6.5
The use of a grid to approxi-
mate an integral.

f (x)

a b x

f (x)

a b x

FIGURE PT6.6
The use of rectangles, or strips, 
to approximate the integral.
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602 NUMERICAL DIFFERENTIATION AND INTEGRATION

it is naturally compatible with many of the numerical approaches. Although continuous 
functions are not originally in discrete form, it is usually a simple proposition to use the 
given equation to generate a table of values. As depicted in Fig. PT6.7, the values from 
this table can then be evaluated with a numerical method.

PT6.1.2 Numerical Differentiation and Integration in Engineering
The differentiation and integration of a function has so many engineering applications that 
you were required to take differential and integral calculus in your first year at college. 
Many specific examples of such applications could be given for all fields of engineering.
 Differentiation is commonplace in engineering because so much of our work involves 
characterizing the changes of variables in both time and space. In fact, many of the laws 
and other generalizations that figure so prominently in our work are based on the predict-
able ways in which change manifests itself in the physical world. A prime example is 
Newton’s second law, which is not couched in terms of the position of an object but 
rather in terms of its change of position with respect to time.

x

f (x)

2.599

2.414

1.945

1.993

0.25

0.75

1.25

1.75

0
0

1

2

1

Discrete points Continuous
function

2

(c)

(b)

(a)  2 + cos (1 + x3/2)

1 + 0.5 sin x
e  0.5x  dx

0

2

x f (x)

FIGURE PT6.7
Application of a numerical inte-
gration method: (a) A compli-
cated, continuous function.  
(b) Table of discrete values of 
f (x) generated from the func-
tion. (c) Use of a numerical 
method (the strip method here) 
to estimate the integral on the 
basis of the discrete points. 
For a tabulated function, the 
data are already in tabular 
form (b); therefore, step (a) is 
unnecessary.
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 PT6.1 MOTIVATION 603

 Aside from such temporal examples, numerous laws governing the spatial behavior 
of variables are expressed in terms of derivatives. Among the most common of these are 
those laws involving potentials or gradients. For example, Fourier’s law of heat conduction 
quantifies the observation that heat flows from regions of high to low temperature. For 
the one-dimensional case, this can be expressed mathematically as

Heat flux = −k′ 
dT

dx

Thus, the derivative provides a measure of the intensity of the temperature change, or 
gradient, that drives the transfer of heat. Similar laws provide workable models in many 
other areas of engineering, including the modeling of fluid dynamics, mass transfer, 
chemical reaction kinetics, and electromagnetic flux. The ability to accurately estimate 
derivatives is an important facet of our capability to work effectively in these areas.
 Just as accurate estimates of derivatives are important in engineering, the calculation 
of integrals is equally valuable. A number of examples relate directly to the idea of the 
integral as the area under a curve. Figure PT6.8 depicts a few cases where integration 
is used for this purpose.
 Other common applications relate to the analogy between integration and summa-
tion. For example, a common application is to determine the mean of continuous func-
tions. In Part Five, you were introduced to the concept of the mean of n discrete data 
points [recall Eq. (PT5.1)]:

Mean =
∑

n

i=1
yi

n
 (PT6.3)

FIGURE PT6.8
Examples of how integration is used to evaluate areas in engineering applications. (a) A  
surveyor might need to know the area of a field bounded by a meandering stream and two  
roads. (b) A water-resource engineer might need to know the cross-sectional area of a river.  
(c) A structural engineer might need to determine the net force due to a nonuniform wind  
blowing against the side of a skyscraper.

(a () b () c)
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604 NUMERICAL DIFFERENTIATION AND INTEGRATION

where yi are individual measurements. The determination of the mean of discrete points 
is depicted in Fig. PT6.9a.
 In contrast, suppose that y is a continuous function of an independent variable x, as 
depicted in Fig. PT6.9b. For this case, there are an infinite number of values between a 
and b. Just as Eq. (PT6.3) can be applied to determine the mean of the discrete readings, 
you might also be interested in computing the mean or average of the continuous func-
tion y = f(x) for the interval from a to b. Integration is used for this purpose, as specified 
by the formula

Mean =
∫b

a
 f(x) dx

b − a
 (PT6.4)

This formula has hundreds of engineering applications. For example, it is used to calcu-
late the center of gravity of irregular objects in mechanical and civil engineering and to 
determine the root-mean-square current in electrical engineering.
 Integrals are also employed by engineers to evaluate the total amount or quantity of 
a given physical variable. The integral may be evaluated over a line, an area, or a volume. 
For example, the total mass of chemical contained in a reactor is given as the product 
of the concentration of chemical and the reactor volume, or

Mass = concentration × volume

y

0 4 62

Mean

3 51

ba

(a)
i

y = f (x)

Mean

(b)
x

FIGURE PT6.9
An illustration of the mean for 
(a) discrete and (b) continuous 
data.
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 PT6.1 MOTIVATION 605

where concentration has units of mass per volume. However, suppose that concentration 
varies from location to location within the reactor. In this case, it is necessary to sum 
the products of local concentrations ci and corresponding elemental volumes ΔVi:

Mass =∑
n

i=1
ci ΔVi

where n is the number of discrete volumes. For the continuous case, where c(x, y, z) is 
a known function and x, y, and z are independent variables designating position in 
 Cartesian coordinates, integration can be used for the same purpose:

Mass = ∫ ∫ ∫  c(x, y, z) dx dy dz

or

Mass = ∫ ∫
V

∫  
c(V) dV

which is referred to as a volume integral. Notice the strong analogy between summation 
and integration.
 Similar examples could be given in other fields of engineering. For example, the 
total rate of energy transfer across a plane where the flux (in calories per square centi-
meter per second) is a function of position is given by

Heat transfer = ∫
A

∫  
flux dA

which is referred to as an areal integral, where A = area.
 Similarly, for the one-dimensional case, the total mass of a variable-density rod with 
constant cross-sectional area is given by

m = A ∫L

0
 ρ(x) dx

where m = total weight (kg), L = length of the rod (m), ρ(x) = known density (kg/m3) 
as a function of length x (m), and A = cross-sectional area of the rod (m2).
 Finally, integrals are used to evaluate differential or rate equations. Suppose the 
velocity of a particle is a known continuous function of time υ(t),

dy

dt
= υ(t)

The total distance y traveled by this particle over a time t is given by (Fig. PT6.3b)

y = ∫ t

0
 υ(t) dt (PT6.5)

 These are just a few of the applications of differentiation and integration that you 
might face regularly in the pursuit of your profession. When the functions to be analyzed 
are simple, you will normally choose to evaluate them analytically. For example, in the 

cha32077_p06_596-611.indd   605 9/18/19   7:32 PM



606 NUMERICAL DIFFERENTIATION AND INTEGRATION

falling parachutist problem, we determined the solution for velocity as a function of 
time [Eq. (1.10)]. This relationship could be substituted into Eq. (PT6.5), which could 
then be integrated easily to determine how far the parachutist fell over a time period t. 
For this case, the integral is simple to evaluate. However, it is difficult or impossible 
when the function is complicated, as is typically the case in more realistic examples. In 
addition, the underlying function is often unknown and defined only by measurement at 
discrete points. For both these cases, you must have the ability to obtain approximate 
values for derivatives and integrals using numerical techniques. Several such techniques 
will be discussed in this part of the book.

 PT6.2 MATHEMATICAL BACKGROUND
In high school or during your first year of college, you were introduced to differential 
and integral calculus. There you learned techniques to obtain analytical or exact deriva-
tives and integrals.
 When we differentiate a function analytically, we generate a second function that 
can be used to compute the derivative for different values of the independent vari-
able. General rules are available for this purpose. For example, in the case of the 
monomial

y = xn

the following simple rule applies (n ≠ 0):

dy

dx
= nxn−1

which is the expression of the more general rule for

y = un

where u = a function of x. For this equation, the derivative is computed via

dy

dx
= nun−1

 
du

dx

Two other useful formulas apply to the products and quotients of functions. For example, 
if the product of two functions of x (u and υ) is represented as y = uυ, then the derivative 
can be computed as

dy

dx
= u 

dυ

dx
+ υ 

du

dx

For the division y = u∕υ, the derivative can be computed as

dy

dx
=

υ 
du

dx
− u 

dυ

dx

υ2

Other useful formulas are summarized in Table PT6.1.

cha32077_p06_596-611.indd   606 9/18/19   7:32 PM



 PT6.2 MATHEMATICAL BACKGROUND 607

 Similar formulas are available for definite integration, which deals with determining 
an integral between specified limits, as in

I = ∫b

a
 f(x) dx (PT6.6)

According to the fundamental theorem of integral calculus, Eq. (PT6.6) is evaluated as

∫b

a
 f(x) dx = F(x)∣ba

where F(x) = the integral of f(x)—that is, any function such that F′(x) = f(x). The 
 nomenclature on the right-hand side stands for

F(x)∣ba = F(b) − F(a) (PT6.7)

 An example of a definite integral is

I = ∫0.8

0
(0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5) dx (PT6.8)

For this case, the function is a simple polynomial that can be integrated analytically by 
evaluating each term according to the rule

∫b

a
 x

n dx =
x 

n+1

n + 1 ∣b

a
 (PT6.9)

where n cannot equal −1. Applying this rule to each term in Eq. (PT6.8) yields

I = (0.2x + 12.5x2 −
200
3

 x3 + 168.75x4 − 180x5 +
400
6

 x6
)∣0.8

0
 (PT6.10)

which can be evaluated according to Eq. (PT6.7) as I = 1.6405333. This value is equal 
to the area under the original polynomial [Eq. (PT6.8)] between x = 0 and 0.8.

TABLE PT6.1 Some commonly used derivatives.

 
d
dx

 sin x = cos x 
d
dx

 cot x = −csc2 x

 
d
dx

 cos x = −sin x 
d
dx

 sec x = sec x tan x

 
d
dx

 tan x = sec2 x 
d
dx

 csc x = −csc x cot x

 
d
dx

 ln x =
1
x

 
d
dx

 loga x =
1

x ln a

  
d
dx

 ex = ex 
d
dx

 ax = ax ln a
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608 NUMERICAL DIFFERENTIATION AND INTEGRATION

 The foregoing integration depends on knowledge of the rule expressed by Eq. (PT6.9). 
Other functions follow different rules. These “rules” are all merely instances of antidif-
ferentiation, that is, finding F(x) so that F′(x) = f(x). Consequently, analytical integration 
depends on prior knowledge of the answer. Such knowledge is acquired by training and 
experience. Many of the rules are summarized in handbooks and in tables of integrals. 
We list some commonly encountered integrals in Table PT6.2. However, many functions 
of practical importance are too complicated to be contained in such tables. One reason 
why the techniques in the present part of the book are so valuable is that they provide a 
means to evaluate relationships such as Eq. (PT6.8) without knowledge of the rules.

 PT6.3 ORIENTATION
Before proceeding to the numerical methods for integration, some further orientation 
might be helpful. The following is intended as an overview of the material discussed in 
Part Six. In addition, we have formulated some objectives to help focus your efforts when 
studying the material.

PT6.3.1 Scope and Preview
Figure PT6.10 provides an overview of Part Six. Chapter 21 is devoted to the most 
common approaches for numerical integration—the Newton-Cotes formulas. These 

TABLE PT6.2  Some simple integrals that are used in Part Six. The a and b in this 
table are constants and should not be confused with the limits of 
integration discussed in the text.

∫u dv = uv − ∫v du

∫un du =
un+ 1

n + 1
+ C  n ≠ −1

∫abx dx =
abx

b ln a
+ C  a > 0, a ≠ 1

∫ dx
x

= ln ∣x∣ + C  x ≠ 0

∫sin (ax + b) dx = −
1
a

 cos (ax + b) + C

∫cos (ax + b) dx =
1
a

 sin (ax + b) + C

∫ ln ∣x∣ dx = x ln ∣x∣ − x + C

∫eax dx =
eax

a
+ C

∫xeax dx =
eax

a2  (ax − 1) + C

∫ dx

a + bx2 =
1

√ab
 tan−1 √ab

a
 x + C
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 PT6.3 ORIENTATION 609

 relationships are based on replacing a complicated function or tabulated data with a 
simple polynomial that is easy to integrate. Three of the most widely used Newton-Cotes 
 formulas are discussed in detail: the trapezoidal rule, Simpson’s 1∕3 rule, and Simpson’s 
3∕8 rule. All these formulas are designed for cases where the data to be integrated are 

FIGURE PT6.10
Schematic of the organization of material in Part Six: Numerical Integration and Differentiation.
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610 NUMERICAL DIFFERENTIATION AND INTEGRATION

evenly spaced. In addition, we also include a discussion of numerical integration of 
unequally spaced data. This is a very important topic because many real-world applica-
tions deal with data that are in this form.
 All the above material relates to closed integration, where the function values at the 
ends of the limits of integration are known. In Chap. 21, we also present open integration 
formulas, where the integration limits extend beyond the range of the known data. 
Although they are not commonly used for definite integration, open integration formulas 
are presented here because they are utilized extensively in the solution of ordinary dif-
ferential equations in Part Seven.
 The formulations covered in Chap. 21 can be employed to analyze both tabulated 
data and equations. Chapter 22 deals with three techniques that are expressly designed 
to integrate equations and functions: Romberg integration, adaptive quadrature, and 
Gauss quadrature. Computer algorithms are provided for these methods. In addition, 
methods for evaluating improper integrals and Monte Carlo integration are discussed.
 In Chap. 23, we present additional information on numerical differentiation to sup-
plement the introductory material from Chap. 4. Topics include high-accuracy finite-
difference formulas, Richardson’s extrapolation, differentiation of unequally spaced data, 
and partial differentiation. The effect of errors on both numerical differentiation and 
integration is discussed. Finally, the chapter is concluded with a description of the appli-
cation of several software packages for integration and differentiation.
 Chapter 24 demonstrates how the methods can be applied for problem solving. As 
with other parts of the book, applications are drawn from various fields of engineering.
 A review section, or epilogue, is included at the end of Part Six. This review includes 
a discussion of trade-offs that are relevant to implementation in engineering practice. In 
addition, important formulas are summarized. Finally, we present a short review of 
advanced methods and alternative references that will facilitate your further studies of 
numerical differentiation and integration.

PT6.3.2 Goals and Objectives
Study Objectives. After completing Part Six, you should be able to solve many numer-
ical integration and differentiation problems and appreciate their application for engineer-
ing problem solving. You should strive to master several techniques and assess their 
reliability. You should understand the trade-offs involved in selecting the “best” method 
(or methods) for any particular problem. In addition to these general objectives, the 
specific concepts listed in Table PT6.3 should be assimilated and mastered.

Computer Objectives. You will be provided with software and simple computer 
algorithms to implement the techniques discussed in Part Six. All have utility as learn-
ing tools.
 Algorithms are provided for most of the other methods in Part Six. This information 
will allow you to expand your software library to include techniques beyond the trapezoi-
dal rule. For example, you may find it useful from a professional viewpoint to have 
software to implement numerical integration and differentiation of unequally spaced data. 
You may also want to develop your own software for Simpson’s rules, Romberg integra-
tion, adaptive integration, and Gauss quadrature, which are usually more efficient and 
accurate than the trapezoidal rule.
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 PT6.3 ORIENTATION 611

 Finally, one of your most important goals should be to master several of the general-
purpose software packages that are widely available. In particular, you should become 
adept at using these tools to implement numerical methods for engineering problem 
solving.

TABLE PT6.3 Specific study objectives for Part Six.

 1. Understand the derivation of the Newton-Cotes formulas; know how to derive the trapezoidal 
rule and how to set up the derivation of both of Simpson’s rules; recognize that the trapezoidal 
and Simpson’s 1∕3 and 3∕8 rules represent the areas under first-, second-, and third-order 
polynomials, respectively.

 2. Know the formulas and error equations for (a) the trapezoidal rule, (b) the multiple-application 
trapezoidal rule, (c) Simpson’s 1∕3 rule, (d) Simpson’s 3∕8 rule, and (e) the multiple-application 
Simpson’s rule. Be able to choose the “best” among these formulas for any particular  
problem context.

 3. Recognize that Simpson’s 1∕3 rule is fourth-order accurate even though it is based on only three 
points; realize that all the even-segment–odd-point Newton-Cotes formulas have similar 
enhanced accuracy.

 4. Know how to evaluate the integral and derivative of unequally spaced data.
 5. Recognize the difference between open and closed integration formulas.
 6. Understand how to evaluate multiple integrals numerically.
 7. Understand the theoretical basis of Richardson extrapolation and how it is applied in the 

Romberg integration algorithm and for numerical differentiation.
 8. Understand the fundamental difference between Newton-Cotes and Gauss quadrature formulas.
 9. Recognize why Romberg integration, adaptive quadrature, and Gauss quadrature all have utility 

when integrating equations (as opposed to tabular or discrete data).
 10. Know how open integration formulas are employed to evaluate improper integrals.
 11. Understand how to use random numbers to implement simple Monte Carlo integration.
 12. Understand the application of high-accuracy numerical differentiation formulas.
 13. Know how to differentiate unequally spaced data.
 14. Recognize the differing effects of data error on the processes of numerical integration and 

differentiation.
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C H A P T E R

21
Newton-Cotes Integration 
Formulas

The Newton-Cotes formulas are the most common numerical integration schemes. They 
are based on the strategy of replacing a complicated function or tabulated data with an 
approximating function that is easy to integrate:

I = ∫b

a

 f(x) dx ≅ ∫b

a
 fn(x) dx (21.1)

where fn(x) is a polynomial of the form

fn(x) = a0 + a1x + … + an−1x
n−1 + an 

xn

and n is the order of the polynomial. For example, in Fig. 21.1a, a first-order polynomial 
(a straight line) is used as an approximation. In Fig. 21.1b, a parabola is employed for 
the same purpose.
 The integral can also be approximated using a series of polynomials applied piece-
wise to the function or data over segments of constant length. For example, in Fig. 21.2, 

FIGURE 21.1
The approximation of an inte-
gral by the area under (a) a 
single straight line and (b) a 
single parabola.

f (x)

a b

(a) (b)
x

f (x)

a b x
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 21.1 THE TRAPEZOIDAL RULE 613

three straight-line segments are used to approximate the integral. Higher-order polynomi-
als can be utilized for the same purpose. With this background, we now recognize that 
the “strip method” in Fig. PT6.6 employed a series of zero-order polynomials (that is, 
constants) to approximate the integral.
 Closed and open forms of the Newton-Cotes formulas are available. The closed 
forms are those where the data points at the beginning and end of the limits of integra-
tion are known (Fig. 21.3a). The open forms have integration limits that extend beyond 
the range of the data (Fig. 21.3b). In this sense, they are akin to extrapolation as discussed 
in Sec. 18.5. Open Newton-Cotes formulas are not generally used for definite integration. 

FIGURE 21.2
The approximation of an inte-
gral by the area under three 
straight-line segments.

f (x)

a b x

FIGURE 21.3
The difference between  
(a) closed and (b) open integra-
tion formulas.

f (x)

a b

(a)
x

f (x)

a b

(b)
x
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614 NEWTON-COTES INTEGRATION FORMULAS

However, they are utilized for evaluating improper integrals and for the solution of 
 ordinary differential equations. This chapter emphasizes the closed forms. However, 
 material on open Newton-Cotes formulas is briefly introduced at the end of this chapter.

 21.1 THE TRAPEZOIDAL RULE
The trapezoidal rule is the first of the Newton-Cotes closed integration formulas. It cor-
responds to the case where the polynomial in Eq. (21.1) is first-order:

I = ∫b

a
 f(x) dx ≅ ∫b

a
 f1(x) dx

Recall from Chap. 18 that a straight line can be represented as [Eq. (18.2)]

f1(x) = f(a) +
f(b) − f(a)

b − a
 (x − a) (21.2)

The area under this straight line is an estimate of the integral of f(x) between the limits 
a and b:

I = ∫b

a
 [f(a) +

f(b) − f(a)
b − a

 (x − a)]dx

The result of the integration (see Box 21.1 for details) is

I = (b − a) 
f(a) + f(b)

2
 (21.3)

which is called the trapezoidal rule.

 Box 21.1 Derivation of Trapezoidal Rule

Before integration, Eq. (21.2) can be expressed as

f1(x) =
f (b) − f (a)

b − a
 x + f (a) −

a f (b) − a f (a)
b − a

Grouping the last two terms gives

f1(x) =
f (b) − f (a)

b − a
 x +

b f (a) − a f (a) − a f (b) + a f (a)
b − a

or

f1(x) =
f (b) − f (a)

b − a
 x +

b f (a) − a f (b)
b − a

which can be integrated between x = a and x = b to yield

I =
f (b) − f (a)

b − a
 
x2

2
+

b f (a) − a f (b)
b − a

 x ∣b

a

This result can be evaluated to give

I =
f (b) − f (a)

b − a
 
(b2 − a2)

2
+

b f (a) − a f (b)
b − a

 (b − a)

Now, since b2 − a2 = (b − a)(b + a),

I = [f (b) − f (a) ] 

b + a

2
+ b f (a) − a f (b)

Multiplying and collecting terms yields

I = (b − a) 

f (a) + f (b)
2

which is the formula for the trapezoidal rule.
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 21.1 THE TRAPEZOIDAL RULE 615

 Geometrically, the trapezoidal rule is equivalent to approximating the area of the 
trapezoid under the straight line connecting f(a) and f(b) in Fig. 21.4. Recall from 
 geometry that the formula for computing the area of a trapezoid is the height times the 
average of the bases (Fig. 21.5a). In our case, the concept is the same but the trapezoid 
is on its side (Fig. 21.5b). Therefore, the integral estimate can be represented as

I ≅ width × average height (21.4)

FIGURE 21.4
Graphical depiction of the trapezoidal rule.

f (x)

f (a)

f (b)

a b x

FIGURE 21.5
(a) The formula for computing the area of a trapezoid: height times the average of the bases.  
(b) For the trapezoidal rule, the concept is the same but the trapezoid is on its side.
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616 NEWTON-COTES INTEGRATION FORMULAS

or

I ≅ (b − a) × average height (21.5)

where, for the trapezoidal rule, the average height is the average of the function values 
at the end points, or [ f(a) + f(b)]∕2.
 All the Newton-Cotes closed formulas can be expressed in the general format of 
Eq. (21.5). In fact, they differ only with respect to the formulation of the average height.

21.1.1 Error of the Trapezoidal Rule
When we employ the integral under a straight-line segment to approximate the integral 
under a curve, we obviously can incur an error that may be substantial (Fig. 21.6). An 
estimate for the local truncation error of a single application of the trapezoidal rule is 
(Box. 21.2)

Et = −
1
12

  f ″(ξ) (b − a)3 (21.6)

where ξ lies somewhere in the interval from a to b. Equation (21.6) indicates that if the 
function being integrated is linear, the result from the trapezoidal rule will be exact. 
Otherwise, for functions with second- and higher-order derivatives (that is, with curva-
ture), some error can occur.

FIGURE 21.6
Graphical depiction of the use of a single application of the trapezoidal rule to approximate 
the integral of f (x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5 from x = 0 to 0.8.

f (x)

0.80

2.0

x

Error

Integral estimate
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 21.1 THE TRAPEZOIDAL RULE 617

 EXAMPLE 21.1 Single Application of the Trapezoidal Rule
Problem Statement. Use Eq. (21.3) to numerically integrate

f(x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. Recall from Sec. PT6.2 that the exact value of the integral can 
be determined analytically to be 1.640533.

Solution. The function values

f(0) = 0.2
f(0.8) = 0.232

can be substituted into Eq. (21.3) to yield

I ≅ 0.8
0.2 + 0.232

2
= 0.1728

which represents an error of

Et = 1.640533 − 0.1728 = 1.467733

which corresponds to a percent relative error of εt = 89.5%. The reason for this large 
error is evident from the graphical depiction in Fig. 21.6. Notice that the area under the 
straight line neglects a significant portion of the integral lying above the line.
 In actual situations, we would have no foreknowledge of the true value. Therefore, 
an approximate error estimate is required. To obtain this estimate, the function’s second 

 Box 21.2 Derivation and Error Estimate of the Trapezoidal Rule

An alternative derivation of the trapezoidal rule is possible by 
integrating the forward Newton-Gregory interpolating polyno-
mial. Recall that for the first-order version with an error term, 
the integral would be (Box 18.2)

I = ∫b

a
 [f (a) + Δf (a)α +

f ″(ξ)
2

 α(α − 1)h2
]

 

dx (B21.2.1)

To simplify the analysis, realize that because α = (x − a)∕h,

dx = h dα

Inasmuch as h = b − a (for the one-segment trapezoidal rule), 
the limits of integration a and b correspond to 0 and 1, respec-
tively. Therefore, Eq. (B21.2.1) can be expressed as

I = h ∫1

0
 [f (a) + Δf (a)α +

f ″(ξ)
2

 α(α − 1)h2
]

 

dα

If it is assumed that, for small h, the term f ″(ξ) is approximately 

constant, this equation can be integrated:

I = h[α f (a) +
α2

2
 Δf (a) + (

α3

6
−

α2

4 ) f ″(ξ)h2
]

1

0

and evaluated as

I = h[f (a) +
Δf (a)

2 ] −
1
12

 f ″(ξ)h3

Because Δf(a) = f(b) − f(a), the result can be written as

I = h 
f (a) + f (b)

2
−

1
12

 f ″(ξ)h3

 Trapezoidal rule Truncation error

Thus, the first term is the trapezoidal rule and the second is an 
 approximation for the error.
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618 NEWTON-COTES INTEGRATION FORMULAS

derivative over the interval can be computed by differentiating the original function twice 
to give

f ″(x) = −400 + 4050x − 10,800x2 + 8000x3

The average value of the second derivative can be computed using Eq. (PT6.4):

f  ″(x) =
∫0.8

0
(−400 + 4050x − 10,800x2 + 8000x3) dx

0.8 − 0
= −60

which can be substituted into Eq. (21.6) to yield

Ea = −
1
12

 (−60)(0.8)3 = 2.56

which is of the same order of magnitude and sign as the true error. A discrepancy does 
exist, however, because of the fact that for an interval of this size, the average second 
derivative is not necessarily an accurate approximation of f ″(ξ). Thus, we denote that 
the error is approximate by using the notation Ea, rather than using Et.

21.1.2 The Multiple-Application Trapezoidal Rule
One way to improve the accuracy of the trapezoidal rule is to divide the integration 
interval from a to b into a number of segments and apply the method to each segment 
(Fig. 21.7). The areas of individual segments can then be added to yield the integral for 
the entire interval. The resulting equations are called multiple-application, or composite, 
integration formulas.
 Figure 21.8 shows the general format and nomenclature we will use to characterize 
multiple-application integrals. There are n + 1 equally spaced base points (x0, x1, x2, . . . , 
xn). Consequently, there are n segments of equal width:

h =
b − a

n
 (21.7)

 If a and b are designated as x0 and xn, respectively, the total integral can be repre-
sented as

I = ∫ x1

x0

 f(x) dx + ∫ x2

x1

 f(x) dx + … + ∫ xn

xn−1

 f(x) dx

Substituting the trapezoidal rule for each integral yields

I = h 
 f(x0) + f(x1)

2
+ h 

 f(x1) + f(x2)
2

+ … + h 
 f(xn−1) + f(xn)

2
 (21.8)

or, grouping terms,

I =
h

2[f(x0) + 2∑
n−1

i=1
 
f(xi) + f(xn)] (21.9)
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 21.1 THE TRAPEZOIDAL RULE 619

FIGURE 21.7
Illustration of the multiple-application trapezoidal rule. (a) Two segments, (b) three segments,  
(c) four segments, and (d) five segments.

f (x)

x0 x1 x2

(a)
f (x)

x0 x1 x3x2

(b)
f (x)

x0 x1 x4x3x2

(c)
f (x)

x0 x1 x5x4x3x2

(d )
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620 NEWTON-COTES INTEGRATION FORMULAS

or, using Eq. (21.7) to express Eq. (21.9) in the general form of Eq. (21.5),

I = (b − a) 
 f(x0) + 2∑

n−1

i=1
 f(xi) + f(xn)

2n
 (21.10)

 Width Average height

Because the summation of the coefficients of f(x) in the numerator divided by 2n is equal 
to 1, the average height represents a weighted average of the function values. According 
to Eq. (21.10), the interior points are given twice the weight of the two end points f(x0) 
and f(xn).
 An error for the multiple-application trapezoidal rule can be obtained by summing 
the individual errors for each segment to give

Et = −
(b − a)3

12n3 ∑
n

i=1
 
f ″(ξi) (21.11)

 

FIGURE 21.8
The general format and 
 nomenclature for multiple- 
application integrals.

f (x)

f (x0)

f (x1) f (x2)

f (x3)

f (xn – 3)
f (xn – 2)

f (xn – 1)

f (xn)

x0 xx1 x2 x3 xn – 3 xn – 2 xn – 1 xn

x0 = a xn = b

b – a
          nh =
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 21.1 THE TRAPEZOIDAL RULE 621

where f ″(ξi) is the second derivative at a point ξi located in segment i. This result can 
be simplified by estimating the mean or average value of the second derivative for the 
entire interval as [Eq. (PT6.3)]:

f ″ ≅ 
∑

n

i=1
 
f ″(ξi)

n
 (21.12)

Therefore, Σ f ″(ξi) ≅ n f ″ and Eq. (21.11) can be rewritten as

Ea = −
(b − a)3

12n2  f ″  (21.13)

Thus, if the number of segments is doubled, the truncation error will be quartered. Note 
that Eq. (21.13) gives an approximate error because of the approximate nature of Eq. (21.12).

 EXAMPLE 21.2 Multiple-Application Trapezoidal Rule
Problem Statement. Use the two-segment trapezoidal rule to estimate the integral of

f(x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. Employ Eq. (21.13) to estimate the error. Recall that the correct 
value for the integral is 1.640533.

Solution. For n = 2 (h = 0.4):

 f(0) = 0.2  f(0.4) = 2.456  f(0.8) = 0.232

 I = 0.8
0.2 + 2(2.456) + 0.232

4
= 1.0688

 Et = 1.640533 − 1.0688 = 0.57173  εt = 34.9%

 Ea = −
0.83

12(2)2 (−60) = 0.64

where −60 is the average second derivative determined previously in Example 21.1.

 The results of the previous example, along with three- through ten-segment applica-
tions of the trapezoidal rule, are summarized in Table 21.1. Notice how the error decreases 
as the number of segments increases. However, also notice that the rate of decrease is 
gradual. This is because the error is inversely related to the square of n [Eq. (21.13)]. 
Therefore, doubling the number of segments quarters the error. In subsequent sections we 
develop higher-order formulas that are more accurate and that converge more quickly on 
the true integral as the segments are increased. However, before investigating these formu-
las, we will first discuss computer algorithms to implement the trapezoidal rule.

21.1.3 Computer Algorithms for the Trapezoidal Rule
Two simple algorithms for the trapezoidal rule are listed in Fig. 21.9. The first (Fig. 21.9a) 
is for the single-segment version. The second (Fig. 21.9b) is for the multiple-segment 
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622 NEWTON-COTES INTEGRATION FORMULAS

version with a constant segment width. Note that both are designed for data that are in 
tabulated form. A general program should have the capability to evaluate known func-
tions or equations as well. We will illustrate how functions are handled in Chap. 22.

 EXAMPLE 21.3 Evaluating Integrals with the Computer
Problem Statement. Use software based on Fig. 21.9b to solve a problem related to 
our friend, the falling parachutist. As you recall from Example 1.1, the velocity of the 
parachutist is given as the following function of time:

υ(t) =
gm

c
 (1 − e−(c∕m)t) (E21.3.1)

where υ = velocity (m/s); g = the gravitational constant, 9.8 m/s2; m = mass of the 
parachutist, equal to 68.1 kg; and c = the drag coefficient, 12.5 kg/s. The model predicts 
the velocity of the parachutist as a function of time, as described in Example 1.l.

TABLE 21.1  Results for multiple-application trapezoidal  
rule to estimate the integral of f(x) = 0.2 +  
25x − 200x2 + 675x3 − 900x4 + 400x5  
from x = 0 to 0.8. The exact value is  
1.640533.

 n h I εt (%)

 2 0.4 1.0688 34.9
 3 0.2667 1.3695 16.5
 4 0.2 1.4848 9.5
 5 0.16 1.5399 6.1
 6 0.1333 1.5703 4.3
 7 0.1143 1.5887 3.2
 8 0.1 1.6008 2.4
 9 0.0889 1.6091 1.9
 10 0.08 1.6150 1.6

(a) Single-segment (b) Multiple-segment

FUNCTION Trap(h, fO, f1) FUNCTION Trapm(h, n, f)
  Trap = h * (fO + f1)∕2   sum = fO
END Trap   DOFOR i = 1, n − 1
     sum = sum + 2 * fi
   END DO
   sum = sum + fn
   Trapm = h * sum ∕ 2
 END Trapm

FIGURE 21.9
Algorithms for the (a) single-segment and (b) multiple-segment trapezoidal rule.
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 21.1 THE TRAPEZOIDAL RULE 623

 Suppose we would like to know how far the parachutist has fallen after a certain 
time t. This distance is given by [Eq. (PT6.5)],

d = ∫ t

0
 υ(t) dt

where d is the distance in meters. Substituting Eq. (E21.3.1),

d =
gm

c ∫ t

0
(1 − e−(c∕m)t) dt

Use your software to determine this integral with the multiple-segment trapezoidal rule 
using different numbers of segments. Note that performing the integration analytically 
and substituting known parameter values results in an exact value of d = 289.43515 m.

Solution. For the case where n = 10 segments, a calculated integral of 288.7491 is 
obtained. Thus, we have evaluated the integral to three significant digits of accuracy. 
 Results for other numbers of segments can be readily generated.

 Segments Segment Size Estimated d, m εt (%)

 10 1.0 288.7491 0.237
 20 0.5 289.2636 0.0593
 50 0.2 289.4076 9.5 × 10−3

 100 0.1 289.4282 2.4 × 10−3

 200 0.05 289.4336 5.4 × 10−4

 500 0.02 289.4348 1.2 × 10−4

 1000 0.01 289.4360 −3.0 × 10−4

 2000 0.005 289.4369 −5.9 × 10−4

 5000 0.002 289.4337 5.2 × 10−4

 10,000 0.001 289.4317 1.2 × 10−3

 Up to about 500 segments, the multiple-application trapezoidal rule attains excellent 
accuracy. However, notice how the error changes sign and begins to increase in absolute 
value beyond the 500-segment case. The 10,000-segment case actually seems to be di-
verging from the true value. This is due to the intrusion of round-off error because of 
the great number of computations for this many segments. Thus, the level of precision 
is limited, and we would never reach the exact result of 289.4351 obtained analytically. 
This limitation and ways to overcome it will be discussed in further detail in Chap. 22.

 Three major conclusions can be drawn from the Example 21.3:

∙ For individual applications with nicely behaved functions, the multiple-segment 
trapezoidal rule is just fine for attaining the type of accuracy required in many 
engineering applications.

∙ If high accuracy is required, the multiple-segment trapezoidal rule demands a great deal 
of computational effort. Although this effort may be negligible for a single application, 
it could be very important when (a) numerous integrals are being evaluated or (b) where 
the function itself is time-consuming to evaluate. For such cases, more efficient 
approaches (like those in the remainder of this chapter and the next) may be necessary.
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624 NEWTON-COTES INTEGRATION FORMULAS

∙ Finally, round-off errors can limit our ability to determine integrals. This is due both 
to the machine precision as well as to the numerous computations involved in simple 
techniques like the multiple-segment trapezoidal rule.

 We now turn to one way in which efficiency is improved: by using higher-order 
polynomials to approximate the integral.

 21.2 SIMPSON’S RULES
Aside from applying the trapezoidal rule with finer segmentation, another way to obtain 
a more accurate estimate of an integral is to use higher-order polynomials to connect the 
points. For example, if there is an extra point midway between f(a) and f(b), the three 
points can be connected with a parabola (Fig. 21.10a). If there are two points equally 
spaced between f(a) and f(b), the four points can be connected with a third-order poly-
nomial (Fig. 21.10b). The formulas that result from taking the integrals under these 
polynomials are called Simpson’s rules.

21.2.1 Simpson’s 1/3 Rule
Simpson’s 1∕3 rule results when a second-order interpolating polynomial is substituted 
into Eq. (21.1):

I = ∫b

a
 f(x) dx ≅ ∫b

a
 f2(x) dx

If a and b are designated as x0 and x2 and f2(x) is represented by a second-order Lagrange 
polynomial [Eq. (18.23)], the integral becomes

I = ∫ x2

x0
[

(x − x1) (x − x2)
(x0 − x1) (x0 − x2)

 f(x0) +
(x − x0) (x − x2)

(x1 − x0) (x1 − x2)
 f(x1)

    +
(x − x0) (x − x1)

(x2 − x0) (x2 − x1)
 f(x2)]dx

FIGURE 21.10
(a) Graphical depiction of  
Simpson’s 1/3 rule: It consists 
of taking the area under a 
 parabola connecting three 
points. (b) Graphical depiction 
of Simpson’s 3/8 rule: It 
 consists of taking the area 
 under a cubic equation 
 connecting four points.

f (x)

(a)
x

f (x)

(b)
x

cha32077_ch21_612-641.indd   624 9/19/19   12:05 PM



 21.2 SIMPSON’S RULES 625

After integration and algebraic manipulation, the following formula results:

I ≅ 
h

3
 [ f(x0) + 4 f(x1) + f(x2) ] (21.14)

where, for this case, h = (b − a)∕2. This equation is known as Simpson’s 1∕3 rule. It is 
the second Newton-Cotes closed integration formula. The label “1∕3” stems from the 
fact that h is divided by 3 in Eq. (21.14). An alternative derivation is shown in Box 21.3 
where the Newton-Gregory polynomial is integrated to obtain the same formula.
 Simpson’s 1∕3 rule can also be expressed using the format of Eq. (21.5):

I ≅ (b − a) 
 f(x0) + 4 f(x1) + f(x2)

6
 (21.15)

 Width Average height
 

 Box 21.3 Derivation and Error Estimate of Simpson’s 1/3 Rule

As was done in Box 21.2 for the trapezoidal rule, Simpson’s 1∕3 
rule can be derived by integrating the forward Newton-Gregory 
interpolating polynomial (Box 18.2):

I = ∫ x2

x0

 [f (x0) + Δf (x0)α +
Δ2 f (x0)

2
 α(α − 1)

      +
Δ3 f (x0)

6
 α(α − 1)(α − 2)

      +
 f  

(4)(ξ)
24

 α(α − 1)(α − 2)(α − 3)h4
]

 

dx

Notice that we have written the polynomial up to the fourth- 
order term rather than the third-order term as would be ex-
pected. The reason for this will be apparent shortly. Also notice 
that the limits of integration are from x0 to x2. Therefore, when 
the simplifying substitutions are made (recall Box 21.2), the 
integral is from α = 0 to 2:

I = h ∫2

0
 [f (x0) + Δf (x0)α +

Δ2 f (x0)
2

 α(α − 1)

      +
Δ3 f (x0)

6
 α(α − 1)(α − 2)

      +
f  

(4)(ξ)
24

 α(α − 1)(α − 2)(α − 3)h4
]

 

dα

which can be integrated to yield

I = h[α f (x0) +
α2

2
 Δf (x0) + (

α3

6
−

α2

4 )Δ2 f (x0)

      + (
α4

24
−

α3

6
+

α2

6 )Δ3 f (x0)

      + (
α5

120
−

α4

16
+

11α3

72
−

α2

8 ) f (4)(ξ)h4
]

2

0

and evaluated for the limits to give

I = h[2 f (x0) + 2Δ f (x0) +
Δ2 f (x0)

3

      + (0)Δ3 f (x0) −
1
90

 f  
(4)(ξ)h4

] (B21.3.1)

Notice the significant result that the coefficient of the third di-
vided difference is zero. Because Δf(x0) = f(x1) − f(x0) and 
Δ2f(x0) =  f(x2) − 2f(x1) + f(x0), Eq. (B21.3.1) can be rewritten as

I =
h

3
 [ f (x0) + 4 f (x1) + f (x2) ] −

1
90

 f (4)(ξ)h5

 Simpson’s 1∕3 Truncation error

Thus, the first term is Simpson’s 1∕3 rule and the second is the 
truncation error. Because the third divided difference dropped 
out, we obtain the significant result that the formula is third-
order accurate.
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626 NEWTON-COTES INTEGRATION FORMULAS

where a = x0, b = x2, and x1 = the point midway between a and b, which is given by 
(b + a)∕2. Notice that, according to Eq. (21.15), the middle point is weighted by two-
thirds and the two end points by one-sixth.
 It can be shown that a single-segment application of Simpson’s 1∕3 rule has a trun-
cation error of (Box 21.3)

Et = −
1
90

 h5f 
(4)(ξ)

or, because h = (b − a)∕2,

Et = −
(b − a)5

2880
 f 

(4)(ξ) (21.16)

where ξ lies somewhere in the interval from a to b. Thus, Simpson’s 1∕3 rule is more 
accurate than the trapezoidal rule. However, comparison with Eq. (21.6) indicates that it 
is more accurate than expected. Rather than being proportional to the third derivative, 
the error is proportional to the fourth derivative. This is because, as shown in Box 21.3, 
the coefficient of the third-order term goes to zero during the integration of the interpo-
lating polynomial. Consequently, Simpson’s 1∕3 rule is third-order accurate even though 
it is based on only three points. In other words, it yields exact results for cubic polyno-
mials even though it is derived from a parabola!

 EXAMPLE 21.4 Single Application of Simpson’s 1/3 Rule
Problem Statement. Use Eq. (21.15) to integrate

f(x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. Recall that the exact value is 1.640533.

Solution.

f(0) = 0.2  f(0.4) = 2.456 f(0.8) = 0.232

Therefore, Eq. (21.15) can be used to compute

I ≅ 0.8 

0.2 + 4(2.456) + 0.232
6

= 1.367467

which represents an exact error of

Et = 1.640533 − 1.367467 = 0.2730667  εt = 16.6%

which is approximately five times more accurate than for a single application of the 
trapezoidal rule (Example 21.1).
 The estimated error is [Eq. (21.16)]

Ea = −
(0.8)5

2880
 (−2400) = 0.2730667

where −2400 is the average fourth derivative for the interval, as obtained using Eq. (PT6.4). 
As was the case in Example 21.1, the error is approximate (Ea) because the average fourth 
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 21.2 SIMPSON’S RULES 627

derivative is not an exact estimate of f (4)(ξ). However, because this case deals with a fifth-
order polynomial, the result matches.

21.2.2 The Multiple-Application Simpson’s 1/3 Rule
Just as with the trapezoidal rule, Simpson’s rule can be improved by dividing the integra-
tion interval into a number of segments of equal width (Fig. 21.11):

h =
b − a

n
 (21.17)

The total integral can be represented as

I = ∫ x2

x0

 f(x) dx + ∫ x4

x2

 f(x) dx + … + ∫ xn

xn−2

 f(x) dx

Substituting Simpson’s 1∕3 rule for the individual integrals yields

I ≅ 2h 
 f(x0) + 4 f(x1) + f(x2)

6
+ 2h 

 f(x2) + 4 f(x3) + f(x4)
6

+ … + 2h 
 f(xn−2) + 4 f(xn−1) + f(xn)

6

or, combining terms and using Eq. (21.17),

I ≅ (b − a)  
 f(x0) + 4 ∑

n−1

i=1, 3, 5
  f(xi) + 2 ∑

n−2

j=2, 4, 6
  f(xj) + f(xn)

3n
 (21.18)

  
 Width Average height

FIGURE 21.11
Graphical representation of  
the multiple application of  
Simpson’s 1∕3 rule. Note that 
the method can be employed 
only if the number of segments 
is even.

f (x)

xba
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Notice that, as illustrated in Fig. 21.11, an even number of segments must be utilized to 
implement the method. In addition, the coefficients 4 and 2 in Eq. (21.18) might seem 
peculiar at first glance. However, they follow naturally from Simpson’s 1∕3 rule. The 
odd points represent the middle term for each application and hence carry the weight of 
4 from Eq. (21.15). The even points are common to adjacent applications and hence are 
counted twice.
 An error estimate for the multiple-application Simpson’s rule is obtained in the same 
fashion as for the trapezoidal rule by summing the individual errors for the segments 
and averaging the derivative to yield

Ea = −
(b − a)5

180n4   f  
(4) (21.19)

where f  

(4) is the average fourth derivative for the interval.

 EXAMPLE 21.5 Multiple-Application Version of Simpson’s 1∕3 Rule
Problem Statement. Use Eq. (21.18) with n = 4 to estimate the integral of

f(x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

from a = 0 to b = 0.8. Recall that the exact value is 1.640533.

Solution. For n = 4 (h = 0.2):

f(0) = 0.2 f(0.2) = 1.288
f(0.4) = 2.456 f(0.6) = 3.464
f(0.8) = 0.232

From Eq. (21.18),

 I = 0.8 
0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232

12
= 1.623467

 Et = 1.640533 − 1.623467 = 0.017067  εt = 1.04%

The estimated error [Eq. (21.19)] is

Ea = −
(0.8)5

180(4)4 (−2400) = 0.017067

 The previous example illustrates that the multiple-application version of Simp-
son’s 1∕3 rule yields very accurate results. For this reason, it is considered superior 
to the trapezoidal rule for most applications. However, as mentioned previously, it is 
limited to cases where the values are equispaced. Further, it is limited to situations 
where there are an even number of segments and an odd number of points. Conse-
quently, as discussed in the next section, an odd-segment–even-point formula known 
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as Simpson’s 3∕8 rule is used in conjunction with the 1∕3 rule to permit evaluation 
of both even and odd numbers of segments.

21.2.3 Simpson’s 3/8 Rule
In a similar manner to the derivation of the trapezoidal and Simpson’s 1∕3 rule, a third-
order Lagrange polynomial can be fit to four points and integrated:

I = ∫b

a
  f(x) dx ≅ ∫b

a
  f3(x) dx

to yield

I ≅ 
3h

8
 [ f(x0) + 3 f(x1) + 3 f(x2) + f(x3) ]

where h = (b − a)∕3. This equation is called Simpson’s 3∕8 rule because h is multiplied 
by 3∕8. It is the third Newton-Cotes closed integration formula. The 3∕8 rule can also 
be expressed in the form of Eq. (21.5):

I ≅ (b − a)  
 f(x0) + 3 f(x1) + 3 f(x2) + f(x3)

8
 (21.20)

Thus, the two interior points are given weights of three-eighths, whereas the end points 
are weighted with one-eighth. Simpson’s 3∕8 rule has an error of

Et = −
3
80

 h5 f  

(4)(ξ)

or, because h = (b − a)∕3,

Et = −
(b − a)5

6480
 f  

(4)(ξ) (21.21)

Because the denominator of Eq. (21.21) is larger than that of Eq. (21.16), the 3∕8 rule 
is somewhat more accurate than the 1∕3 rule.
 Simpson’s 1∕3 rule is usually the method of preference because it attains third-
order accuracy with three points rather than the four points required for the 3∕8 
version. However, the 3∕8 rule has utility when the number of segments is odd. For 
instance, in Example 21.5 we used Simpson’s rule to integrate the given function 
for four segments. Suppose that you desired an estimate for five segments. One 
option would be to use a multiple-application version of the trapezoidal rule as was 
done in  Examples 21.2 and 21.3. This may not be advisable, however, because of 
the large truncation error associated with this method. An alternative would be to 
apply Simpson’s 1∕3 rule to the first two segments and Simpson’s 3∕8 rule to the 
last three (Fig. 21.12). In this way, you could obtain an estimate with third-order 
accuracy across the entire interval.

 
 Width Average height
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630 NEWTON-COTES INTEGRATION FORMULAS

 EXAMPLE 21.6 Simpson’s 3∕8 Rule
Problem Statement.

(a) Use Simpson’s 3∕8 rule to integrate

f(x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

 from a = 0 to b = 0.8.
(b) Use it in conjunction with Simpson’s 1∕3 rule to integrate the same function for five 

segments.

Solution.

(a) A single application of Simpson’s 3∕8 rule requires four equally spaced points:

f(0) = 0.2 f(0.2667) = 1.432724
f(0.5333) = 3.487177 f(0.8) = 0.232

 Using Eq. (21.20),

 I ≅ 0.8 
0.2 + 3(1.432724 + 3.487177) + 0.232

8
= 1.519170

 Et = 1.640533 − 1.519170 = 0.1213630  εt = 7.4%

 Ea = −
(0.8)5

6480
 (−2400) = 0.1213630

FIGURE 21.12
Illustration of how Simpson’s  
1∕3 and 3∕8 rules can be  
applied in tandem to handle  
multiple applications with odd  
numbers of intervals.

f (x)

x0.80.60.40.2

3/8 rule1/3 rule

0

3

2

1

0
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(b) The data needed for a five-segment application (h = 0.16) is

 f(0) = 0.2 f(0.16) = 1.296919
f(0.32) = 1.743393 f(0.48) = 3.186015
f(0.64) = 3.181929 f(0.80) = 0.232

 The integral for the first two segments is obtained using Simpson’s 1∕3 rule:

I ≅ 0.32 
0.2 + 4(1.296919) + 1.743393

6
= 0.3803237

 For the last three segments, the 3∕8 rule can be used to obtain

I ≅ 0.48 
1.743393 + 3(3.186015 + 3.181929) + 0.232

8
= 1.264754

 The total integral is computed by summing the two results:

 I = 0.3803237 + 1.264753 = 1.645077
 Et = 1.640533 − 1.645077 = −0.00454383  εt = −0.28%

21.2.4 Computer Algorithms for Simpson’s Rules
Pseudocodes for a number of forms of Simpson’s rule are outlined in Fig. 21.13. Note 
that all are designed for data that are in tabulated form. A general program should have 
the capability to evaluate known functions or equations as well. We will illustrate how 
functions are handled in Chap. 22.
 Notice that the program in Fig. 21.13d is set up so that either an even or odd num-
ber of segments may be used. For the even case, Simpson’s 1∕3 rule is applied to each 
pair of segments, and the results are summed to compute the total integral. For the odd 
case, Simpson’s 3∕8 rule is applied to the last three segments, and the 1∕3 rule is applied 
to all the previous segments.

21.2.5 Higher-Order Newton-Cotes Closed Formulas
As noted previously, the trapezoidal rule and both of Simpson’s rules are members of a 
family of integrating equations known as the Newton-Cotes closed integration formulas. 
Some of the formulas are summarized in Table 21.2 along with their truncation-error 
estimates.
 Notice that, as was the case with Simpson’s 1∕3 and 3∕8 rules, the five- and six-
point formulas have errors of the same order. This general characteristic holds for the 
higher-point formulas and leads to the result that the even-segment–odd-point formulas 
(for example, 1∕3 rule and Boole’s rule) are usually the methods of preference.
 However, it must also be stressed that, in engineering practice, the higher-order (that 
is, greater than four-point) formulas are rarely used. Simpson’s rules are sufficient for 
most applications. Accuracy can be improved by using the multiple-application version. 
Furthermore, when the function is known and high accuracy is required, methods such 
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632 NEWTON-COTES INTEGRATION FORMULAS

(a)
FUNCTION Simp13(h, f0, f1, f2)
  Simp13 = 2*h* (f0+4*f1+f2) / 6
END Simp13

(b)
FUNCTION Simp38(h, f0, f1, f2, f3)
  Simp38 = 3*h* (f0+3*(f1+f2)+f3) / 8
END Simp38

(c)
FUNCTION Simp13m(h, n, f)
  sum = f(0)
  DOFOR i = 1, n − 2, 2
    sum = sum + 4 * fi + 2 * fi+1

  END DO
  sum = sum + 4 * fn−1 + fn
  Simp13m = h * sum / 3
END Simp13m

(d )
FUNCTION SimpInt(a,b,n,f)
  h = (b − a) / n
  IF n = 1 THEN
    sum = Trap(h,fn−1,fn)
  ELSE
    m = n
    odd = n / 2 − INT(n / 2)
    IF odd > 0 AND n > 1 THEN
      sum = sum+Simp38(h,fn−3,fn−2,fn−1,fn)
      m = n − 3
    END IF
    IF m > 1 THEN
      sum = sum + Simp13m(h,m,f)
    END IF
  END IF
  SimpInt = sum
END SimpInt

TABLE 21.2  Newton-Cotes closed integration formulas. The formulas are presented in the  
format of Eq. (21.5) so that the weighting of the data points to estimate the 
average height is apparent. The step size is given by h = (b − a)/n.

 Segments  
 (n) Points Name Formula Truncation Error

 1 2 Trapezoidal rule (b − a) 
f (x0) + f (x1)

2
 − (1∕12)h3f''(ξ)

 2 3 Simpson’s 1/3 rule (b − a) 
f (x0) + 4f (x1) + f (x2)

6
 − (1∕90)h5f (4)(ξ)

 3 4 Simpson’s 3/8 rule (b − a) 
f (x0) + 3f (x1) + 3f (x2) + f (x3)

8
 − (3∕80)h5f (4)(ξ)

 4 5 Boole’s rule (b − a) 
7f (x0) + 32f (x1) + 12f (x2) + 32f (x3) + 7f (x4)

90
 − (8∕945)h7f (6)(ξ)

 5 6  (b − a) 
19f (x0) + 75f (x1) + 50f (x2) + 50f (x3) + 75f (x4) + 19f (x5)

288
 − (275∕12,096)h7f (6)(ξ)

FIGURE 21.13
Pseudocode for Simpson’s rules. (a) Single-application Simpson’s 1∕3 rule, (b) single- 
application Simpson’s 3∕8 rule, (c) multiple-application Simpson’s 1∕3 rule, and (d ) multiple- 
application Simpson’s rule for both odd and even number of segments. Note that for all cases,  
n must be ≥1.
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as Romberg integration or Gauss quadrature, described in Chap. 22, offer viable and 
attractive alternatives.

 21.3 INTEGRATION WITH UNEQUAL SEGMENTS
To this point, all formulas for numerical integration have been based on equally spaced 
data points. In practice, there are many situations where this assumption does not hold 
and we must deal with unequal-sized segments. For example, experimentally derived data 
are often of this type. For these cases, one method is to apply the trapezoidal rule to 
each segment and sum the results:

I = h1 
 f(x0) + f(x1)

2
+ h2 

 f(x1) + f(x2)
2

+ … + hn 
 f(xn−1) + f(xn)

2
 (21.22)

where hi = the width of segment i. Note that this was the approach used for the multiple-
application trapezoidal rule. The only difference between Eqs. (21.8) and (21.22) is that 
the h’s in the former are constant. Consequently, Eq. (21.8) could be simplified by 
grouping terms to yield Eq. (21.9). Although this simplification cannot be applied to 
Eq. (21.22), a computer program can be easily developed to accommodate unequal-sized 
segments. Before describing such an algorithm, we will illustrate in the following ex-
ample how Eq. (21.22) is applied to evaluate an integral.

 EXAMPLE 21.7 Trapezoidal Rule with Unequal Segments
Problem Statement. The information in Table 21.3 was generated using the same 
polynomial employed in Example 21.1. Use Eq. (21.22) to determine the integral for 
these data. Recall that the correct answer is 1.640533.

Solution. Applying Eq. (21.22) to the data in Table 21.3 yields

 I = 0.12 
1.309729 + 0.2

2
+ 0.10 

1.305241 + 1.309729
2

+ … + 0.10 
0.232 + 2.363

2
 = 0.090584 + 0.130749 + … + 0.12975 = 1.594801

which represents an absolute percent relative error of εt = 2.8%.

TABLE 21.3  Data for f (x) = 0.2 + 25x − 200x2 + 675x3 − 
900x4 + 400x5, with unequally spaced values  
of x.

 x f (x) x f(x)

0.0 0.200000 0.44 2.842985
0.12 1.309729 0.54 3.507297
0.22 1.305241 0.64 3.181929
0.32 1.743393 0.70 2.363000
0.36 2.074903 0.80 0.232000
0.40 2.456000

 21.3 INTEGRATION WITH UNEQUAL SEGMENTS 633
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634 NEWTON-COTES INTEGRATION FORMULAS

 The data from Example 21.7 are depicted in Fig. 21.14. Notice that some adjacent 
segments are of equal width and, consequently, could have been evaluated using Simpson’s 
rules. This usually leads to more accurate results, as illustrated by the following example.

 EXAMPLE 21.8 Inclusion of Simpson’s Rules in the Evaluation of Uneven Data
Problem Statement. Recompute the integral for the data in Table 21.3, but use  Simpson’s 
rules for those segments where they are appropriate.

Solution. The first segment is evaluated with the trapezoidal rule:

I = 0.12 
1.309729 + 0.2

2
= 0.09058376

Because the next two segments from x = 0.12 to 0.32 are of equal length, their integral 
can be computed with Simpson’s 1∕3 rule:

I = 0.2 
1.743393 + 4(1.305241) + 1.309729

6
= 0.2758029

The next three segments are also equal and, as such, may be evaluated with the 3∕8 rule 
to give I = 0.2726863. Similarly, the 1∕3 rule can be applied to the two segments from 
x = 0.44 to 0.64 to yield I = 0.6684701. Finally, the last two segments, which are of 
unequal length, can be evaluated with the trapezoidal rule to give values of 0.1663479 
and 0.1297500, respectively. The area of these individual segments can be summed to 

FIGURE 21.14
Use of the trapezoidal rule to determine the integral of unevenly spaced data. Notice how 
the shaded segments could be evaluated with Simpson’s rule to attain higher accuracy.

f (x)

x0.5

1/3 rule

3/8 rule

1/3 rule

0

3

0
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 21.3 INTEGRATION WITH UNEQUAL SEGMENTS 635

yield a total integral of 1.603641. This represents an error of εt = 2.2%, which is supe-
rior to the result using the trapezoidal rule in Example 21.7.

Computer Program for Unequally Spaced Data. It is a fairly simple proposition to 
program Eq. (21.22). Such an algorithm is listed in Fig. 21.15a.
 However, as demonstrated in Example 21.8, the approach is enhanced if it imple-
ments Simpson’s rules wherever possible. For this reason, we have developed a second 
algorithm that incorporates this capability. As depicted in Fig 21.15b, the algorithm 
checks the lengths of adjacent segments. If two consecutive segments are of equal length, 
Simpson’s 1∕3 rule is applied. If three are equal, the 3∕8 rule is used. When adjacent 
segments are of unequal length, the trapezoidal rule is implemented.

(a)
FUNCTION Trapun(x, y, n)
  LOCAL i, sum
  sum = 0
  DOFOR i = 1, n
    sum = sum + (xi − xi−1)*(yi−1 + yi) /2
  END DO
  Trapun = sum
END Trapun

(b)
FUNCTION Uneven(n,x,f)
  h = x1 − x0
  k = 1
  sum = 0.
  DOFOR j = 1, n
    hf = xj+1 − xj
    IF ABS (h − hf) < .000001 THEN
      IF k = 3 THEN
        sum = sum + Simp13(h,fj−3,fj−2,fj−1)
        k = k − 1
      ELSE
        k = k + 1
      END IF
    ELSE
      IF k = 1 THEN
        sum = sum + Trap(h,fj−1,fj)
      ELSE
        IF k = 2 THEN
          sum = sum + Simp13(h,fj−2,fj−1,fj)
        ELSE
          sum = sum + Simp38(h,fj−3,fj−2,fj−1,fj)
        END IF
        k = 1
      END IF
    END IF
    h = hf
  END DO
  Uneven = sum
END Uneven

FIGURE 21.15
Pseudocode for integrating unequally spaced data. (a) Trapezoidal rule and (b) combination  
of Simpson’s and trapezoidal rules.
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636 NEWTON-COTES INTEGRATION FORMULAS

 Thus, not only does it allow evaluation of unequally spaced data, but if equally 
spaced information is used, it reduces to using Simpson’s rules. As such, it represents a 
basic, all-purpose algorithm for the determination of the integral of tabulated data.

 21.4 OPEN INTEGRATION FORMULAS
Recall from Fig 21.3b that open integration formulas have limits that extend beyond the 
range of the data. Table 21.4 summarizes the Newton-Cotes open integration formulas. 
The formulas are expressed in the form of Eq. (21.5) so that the weighting factors are 
evident. As with the closed versions, successive pairs of the formulas have the same-
order error. The even-segment–odd-point formulas are usually the methods of preference 
because they require fewer points to attain the same accuracy as the odd-segment–even-
point formulas.
 The open formulas are not often used for definite integration. However, as discussed 
in Chap. 22, they have utility for analyzing improper integrals. In addition, they will have 
relevance to our discussion of multistep methods for solving ordinary differential equa-
tions in Chap. 26.

TABLE 21.4  Newton-Cotes open integration formulas. The formulas are presented in the 
format of Eq. (21.5) so that the weighting of the data points to estimate  
the average height is apparent. The step size is given by h = (b − a)/n.

 Segments 
 (n) Points Name Formula Truncation Error

 2 1 Midpoint method (b − a) f (x1)  (1∕3)h3f''(ξ)

 3 2  (b − a) 
f  (x1) + f (x2)

2
 (3∕4)h3f''(ξ)

 4 3  (b − a) 
2f  (x1) − f  (x2) + 2f (x3)

3
 (14∕45)h5f (4)(ξ)

 5 4  (b − a) 
11f (x1) + f  (x2) + f  (x3) + 11f  (x4)

24
 (95∕144)h5f (4)(ξ)

 6 5  (b − a) 
11f (x1) − 14f (x2) + 26f (x3) − 14f (x4) + 11f (x5)

20
 (41∕140)h7f (6)(ξ)

 21.5 MULTIPLE INTEGRALS
Multiple integrals are widely used in engineering. For example, a general equation to 
compute the average of a two-dimensional function can be written as (recall Eq. PT6.4)

f =
∫d

c
 ( ∫b

a
 f(x, y)dx)dy

(d − c) (b − a)
 (21.23)

The numerator is called a double integral.
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 21.5 MULTIPLE INTEGRALS 637

 The techniques discussed in this chapter (and the following chapter) can be readily 
employed to evaluate multiple integrals. A simple example would be to take the double 
integral of a function over a rectangular area (Fig. 21.16).
 Recall from calculus that such integrals can be computed as iterated integrals,

∫d

c
( ∫b

a
 f(x, y) dx)dy = ∫b

a
( ∫d

c

f(x, y)dy)dx (21.24)

Thus, the integral in one of the dimensions is evaluated first. The result of this first 
integration is integrated in the second dimension. Equation (21.24) states that the order 
of integration is not important.
 A numerical double integral would be based on the same idea. First, methods like 
the multiple-segment trapezoidal or Simpson’s rule would be applied in the first dimension 
with each value of the second dimension held constant. Then the method would be applied 
to integrate the second dimension. The approach is illustrated in the following example.

 EXAMPLE 21.9 Using a Double Integral to Determine Average Temperature
Problem Statement. Suppose that the temperature of a rectangular heated plate is 
described by the following function:

T (x, y) = 2xy + 2x − x2 − 2y2 + 72

If the plate is 8-m long (x dimension) and 6-m wide (y dimension), compute the average 
temperature.

FIGURE 21.16
Double integral as the area under the function surface.

f (x, y)

a

b

x

c

d

y
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Solution. First, let us merely use two-segment applications of the trapezoidal rule in each 
dimension. The temperatures at the necessary x and y values are depicted in Fig. 21.17. 
Note that a simple average of these values is 47.33. The function can also be evaluated 
analytically to yield a result of 58.66667.
 To make the same evaluation numerically, the trapezoidal rule is first implemented 
along the x dimension for each y value. These values are then integrated along the y 
dimension to give the final result of 2544. Dividing this by the area yields the average 
temperature as 2544∕(6 × 8) = 53.
 Now we can apply a single-segment Simpson’s 1∕3 rule in the same fashion. This results 
in an integral value of 2816 and an average of 58.66667, which is exact. Why does this occur? 
Recall that Simpson’s 1∕3 rule yielded perfect results for cubic polynomials. Since the highest-
order term in the function is second-order, the same exact result occurs for the present case.
 For higher-order algebraic functions as well as transcendental functions, it would be 
necessary to use multisegment applications to attain accurate integral estimates. In ad-
dition, Chap. 22 introduces techniques that are more efficient than the Newton-Cotes 
formulas for evaluating integrals of given functions. These often provide a superior 
means to implement the numerical integrations for multiple integrals.

40

70

64

0

54

72

48

54

24

(8 – 0)
0 + 2(40) + 48

4

(8 – 0)
54 + 2(70) + 54

4

(8 – 0)
72 + 2(64) + 24

4

(6 – 0) = 2544
256 + 2(496) + 448

4

256

448

496

x

y

FIGURE 21.17
Numerical evaluation of a double integral using the two-segment trapezoidal rule.

PROBLEMS

21.1 Evaluate the following integral:

∫π∕2

0
(8 + 4 cos x) dx

(a) analytically and then by (b) single application of the trapezoidal 
rule; (c) multiple-application trapezoidal rule, with n = 2 and 4;  
(d) single application of Simpson’s 1∕3 rule; (e) multiple-application 

Simpson’s 1∕3 rule, with n = 4; (f) single application of Simpson’s 
3∕8 rule; and (g) multiple-application Simpson’s rule, with n = 5. 
For each of the numerical estimates (b) through (g), determine the 
percent relative error based on (a).
21.2 Evaluate the following integral:

∫3

0
 (1 − e−x) dx
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 PROBLEMS 639

rule; (f) the midpoint method; (g) the 3-segment–2-point open integra-
tion formula; and (h) the 4-segment–3-point open integration formula.

∫3

0
 (5 + 3 cos x) dx

Compute percent relative errors for the numerical results.
21.9 Suppose that the upward force of air resistance on a falling 
object is proportional to the square of the velocity. For this case, the 
velocity can be computed as

υ(t) = √
gm

cd
 tanh(√

gcd

m
 t)

where cd = a second-order drag coefficient. (a) If g = 9.81 m/s2, m = 
68.1 kg, and cd = 0.25 kg/m, use analytical integration to determine 
how far the object falls in 10 s. (b) Make the same evaluation, but 
evaluate the integral with the multiple-segment trapezoidal rule. Use 
a sufficiently high n that you get three significant digits of accuracy.
21.10 Evaluate the integral of the following tabular data with 
(a) the trapezoidal rule and (b) Simpson’s rules:

x 0 0.1 0.2 0.3 0.4 0.5

f (x) 1 8 4 3.5 6 1

21.11 Evaluate the integral of the following tabular data with  
(a) the trapezoidal rule and (b) Simpson’s rules:

x −2 0 2 4 6 8 10

f (x) 35 5 −10 2 5 3 20

21.12 Determine the mean value of the function

f (x) = −46 + 45x − 13.8x2 + 1.71x3 − 0.0729x4

between x = 2 and 10 by (a) graphing the function and visually es-
timating the mean value, (b) using Eq. (PT6.4) and the analytical 
evaluation of the integral, and (c) using Eq. (PT6.4) and a five-
segment version of Simpson’s rule to estimate the integral. Calcu-
late the relative percent error.
21.13 The function f(x) = 2e−1.5x can be used to generate the fol-
lowing table of unequally spaced data:

x 0 0.05 0.15 0.25 0.35 0.475 0.6

f (x) 2 1.8555 1.5970 1.3746 1.1831 0.9808 0.8131

Evaluate the integral from a = 0 to b = 0.6 using (a) analytical 
means, (b) the trapezoidal rule, and (c) a combination of the trap-
ezoidal and Simpson’s rules; employ Simpson’s rules wherever 
possible to obtain the highest accuracy. For (b) and (c), compute 
the percent relative error (εt).
21.14 Evaluate the following double integral:

∫2

−2
∫4

0
 (x2 − 3y2 + xy3) dx dy

(a) analytically and then by (b) single application of the trape-
zoidal rule; (c) multiple-application trapezoidal rule, with n = 2 
and 4; (d) single application of Simpson’s 1∕3 rule; (e) multiple-
application  Simpson’s 1∕3 rule, with n = 4; (f) single application of 
Simpson’s 3∕8 rule; and (g) multiple-application Simpson’s rule, 
with n = 5. For each of the numerical estimates (b) through (g), de-
termine the percent relative error based on (a).
21.3 Evaluate the following integral:

∫4

−2
 (1 − x − 4x3 + 2x5) dx

(a) analytically and then by (b) single application of the trapezoidal 
rule; (c) composite trapezoidal rule, with n = 2 and 4; (d) single 
 application of Simpson’s 1∕3 rule; (e) Simpson’s 3∕8 rule; and  
(f) Boole’s rule. For each of the numerical estimates (b) through  
(f) determine the percent relative error based on (a).
21.4 Integrate the following function analytically and using the 
trapezoidal rule, with n = 1, 2, 3, and 4:

∫2

1
 (x + 1∕x)2 dx

Use the analytical solution to compute true percent relative errors 
to evaluate the accuracy of the trapezoidal approximations.
21.5 Integrate the following function both analytically and using 
Simpson’s rules, with n = 4 and 5. Discuss the results.

∫5

−3
 (4x − 3)3 dx

21.6 Integrate the following function both analytically and 
 numerically. Use both the trapezoidal and Simpson’s 1∕3 rules to 
numerically integrate the function. For both cases, use the multiple-
application version, with n = 4. Compute percent relative errors for 
the numerical results.

∫3

0
 x

2ex dx

21.7 Integrate the following function both analytically and numeri-
cally. For the numerical evaluations use (a) a single application of 
the trapezoidal rule, (b) Simpson’s 1∕3 rule, (c) Simpson’s 3∕8 rule, 
(d) Boole’s rule, (e) the midpoint method, (f) the 3-segment–2-point 
open integration formula, and (g) the 4-segment–3-point open integra-
tion formula. Compute percent relative errors for the numerical results.

∫1

0
 152x dx

21.8 Integrate the following function both analytically and numeri-
cally. For the numerical evaluations use (a) single application of the 
trapezoidal rule; (b) Simpson’s 1∕3 rule; (c) Simpson’s 3∕8 rule;  
(d) multiple application of Simpson’s rules, with n = 5; (e) Boole’s 
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640 NEWTON-COTES INTEGRATION FORMULAS

21.21 An 11-m beam is subjected to a load, and the shear force is 
given by the equation

V(x) = 5 + 0.25x2

where V is the shear force and x is length in distance along the 
beam. We know that V = dM∕dx, and M is the bending moment. 
Integration yields the relationship

M = M0 + ∫ x

0
 V dx

If M0 is zero and x = 11, calculate M using (a) analytical integration, 
(b) multiple-application trapezoidal rule, and (c) multiple-application 
Simpson’s rules. For (b) and (c), use 1-m increments.
21.22 The work produced by a constant temperature, pressure-
volume thermodynamic process can be computed as

W = ∫  p dV

where W is work, p is pressure, and V is volume. Using a combi-
nation of the trapezoidal rule, Simpson’s 1∕3 rule, and Simpson’s 
3∕8 rule, use the following data to compute the work in kJ  
(kJ = kN m):

Pressure 
(kPa)

336 294.4 266.4 260.8 260.5 249.6 193.6 165.6

Volume (m3) 0.5 2 3 4 6 8 10 11

21.23 Determine the distance traveled for the following data:

t, min 1 2 3.25 4.5 6 7 8 9 9.5 10

v, m/s 5 6 5.5 7 8.5 8 6 7 7 5

(a) Use the trapezoidal rule, (b) use the best combination of the 
trapezoidal and Simpson’s rules, and (c) analytically integrate 
 second- and third-order polynomials determined by regression.
21.24 The total mass of a variable-density rod is given by

m = ∫L

0
 ρ(x)Ac(x) dx

where m = mass, ρ(x) = density, Ac(x) = cross-sectional area, x = 
distance along the rod, and L = the total length of the rod. The fol-
lowing data have been measured for a 10-m length rod. Determine 
the mass in kilograms to the best possible accuracy.

x, m 0 2 3 4 6 8 10

ρ, g/cm3 4.00 3.95 3.89 3.80 3.60 3.41 3.30 

Ac, cm2 100 103 106 110 120 133 150

21.25 A transportation engineering study requires that you deter-
mine the number of cars that pass through an intersection during 

(a) analytically; (b) using a multiple-application trapezoidal rule, 
with n = 2; and (c) using single applications of Simpson’s 1∕3 rule. 
For (b) and (c), compute the percent relative error (εt).
21.15 Evaluate the following triple integral (a) analytically and  
(b) using single applications of Simpson’s 1∕3 rule. For (b) com-
pute the percent relative error (εt).

∫4

−4
∫6

0
∫3

−1
 (x3 − 2yz) dx dy dz

21.16 Develop a user-friendly computer program for the multiple-
application trapezoidal rule based on Fig. 21.9. Test your program 
by duplicating the computation from Example 21.2.
21.17 Develop a user-friendly computer program for the multiple-
application version of Simpson’s rule based on Fig. 21.13c. Test it 
by duplicating the computations from Example 21.5.
21.18 Develop a user-friendly computer program for integrating 
unequally spaced data based on Fig. 21.15b. Test it by duplicating 
the computation from Example 21.8.
21.19 The following data were collected for a cross section of a 
river (y = distance from bank, H = depth, and U = velocity):

y, m 0 1 3 5 7 8 9 10

H, m 0 1 1.5 3 3.5 3.2 2 0

U, m/s 0 0.1 0.12 0.2 0.25 0.3 0.15 0

Use numerical integration to compute the (a) average depth,  
(b) cross-sectional area, (c) average velocity, and (d) the flow rate. 
Note that the cross-sectional area (Ac) and the flow rate (Q) can be 
computed as

Ac = ∫ y

0
 H(y) dy       Q = ∫ y

0
 H(y)U(y) dy

21.20 The outflow concentration from a reactor is measured at a 
number of times over a 24-hr period:

t, hr 0 1 5.5 10 12 14 16 18 20 24

c, mg/L 1 1.5 2.3 2.1 4 5 5.5 5 3 1.2

The flow rate for the outflow in m3/s can be computed with the 
following equation:

Q(t) = 20 + 10 sin(
2π

24
 (t − 10))

Use the best numerical integration method to determine the flow-
weighted average concentration leaving the reactor over the 24-hr 
period,

c =
∫ t

0
 Q(t) c(t) dt

∫ t

0 Q(t) dt
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morning rush hour. You stand at the side of the road and count the 
number of cars that pass every 4 minutes at several times as 
 tabulated below. Use the best numerical method to determine  
(a) the total number of cars that pass between 7:30 and 9:15, and 
(b) the rate of cars going through the intersection per minute. (Hint: 
Be careful with units.)

Time (hr) 7:30 7:45 8:00 8:15 8:45 9:15

Rate (cars per 4 min) 18 24 14 24 21 9

21.26 Determine the average value for the data in Fig. P21.26. 
Perform the integral needed for the average in the order shown by 
the following equation:

I = ∫ xn

x0
[ ∫ ym

y0

 f(x, y)dy] dx

FIGURE P21.26
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C H A P T E R

22
Integration of Equations

In the introduction to Part Six, we noted that functions to be integrated numerically will 
typically be of two forms: a table of values or a function. The form of the data has an 
important influence on the approaches that can be used to evaluate the integral. For 
tabulated information, you are limited by the number of points that are given. In contrast, 
if the function is available, you can generate as many values of f(x) as are required to 
attain acceptable accuracy (recall Fig. PT6.7).
 This chapter is devoted to three techniques that are expressly designed to analyze cases 
where the function is given. Each capitalizes on the ability to generate function values to 
develop efficient schemes for numerical integration. The first is based on Richardson ex-
trapolation, which is a method for combining two numerical integral estimates to obtain a 
third, more accurate value. The computational algorithm for implementing Richardson 
 extrapolation in a highly efficient manner is called Romberg integration. This technique is 
recursive and can be used to generate an integral estimate within a prespecified error tolerance.
 The second method, adaptive integration, is based on dividing the integration interval 
into successively more refined subintervals in a recursive fashion. Thus, more refined spacing 
is employed where the function varies rapidly and coarser spacing used where the function 
varies slowly in order to attain a desired global accuracy with the least computational effort.
 The third method is called Gauss quadrature. Recall that, in the last chapter, values of f(x) 
for the Newton-Cotes formulas were determined at specified values of x. For example, if we 
used the trapezoidal rule to determine an integral, we were constrained to take the weighted 
average of f(x) at the ends of the interval. Gauss-quadrature formulas employ x values that are 
positioned between a and b in such a manner that a much more accurate integral estimate results.
 In addition to these three standard techniques, we devote a section to the evaluation 
of improper integrals. In this discussion, we focus on integrals with infinite limits and show 
how a change of variable and open integration formulas prove useful for such cases. Finally, 
we discuss Monte Carlo integration, a technique that employs random numbers to evaluate 
definite integrals.

 22.1 NEWTON-COTES ALGORITHMS FOR EQUATIONS
In Chap. 21, we presented algorithms for multiple-application versions of the trapezoidal 
rule and Simpson’s rules. Although these pseudocodes can certainly be used to analyze 
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equations, in our effort to make them compatible with either data or functions, they could 
not exploit the convenience of the latter.
 Figure 22.1 shows pseudocodes that are expressly designed for cases where the func-
tion is analytical. In particular, notice that neither the independent nor the dependent 
variable values are passed into the function via its argument as was the case for the codes 
in Chap. 21. For the independent variable x, the integration interval (a, b) and the number 
of segments are passed. This information is then employed to generate equispaced values 
of x within the function. For the dependent variable, the function values in Fig. 22.1 are 
computed using calls to the function being analyzed, f(x).
 We developed single-precision programs based on these pseudocodes to analyze the 
effort involved and the errors incurred as we progressively used more segments to esti-
mate the integral of a simple function. For an analytical function, the error equations 
[Eqs. (21.13) and (21.19)] indicate that increasing the number of segments n will result 
in more accurate integral estimates. This observation is borne out by Fig. 22.2, which is a 
plot of true error versus n for the integral of f(x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 
400x5. Notice how the error drops as n increases. However, also notice that at large values 
of n, the error starts to increase as round-off errors begin to dominate. Also observe that 
a very large number of function evaluations (and, hence, computational effort) is required 
to attain high levels of accuracy. As a consequence of these shortcomings, the multiple-
application trapezoidal rule and Simpson’s rules are sometimes inadequate for problem 
contexts where high efficiency and low errors are needed.

 22.2 ROMBERG INTEGRATION
Romberg integration is one technique that is designed to attain efficient numerical inte-
grals of functions. It is quite similar to the techniques discussed in Chap. 21 in the sense 
that it is based on successive application of the trapezoidal rule. However, through math-
ematical manipulations, superior results are attained for less effort.

(a)
FUNCTION TrapEq (n, a, b)
  h = (b − a) ∕ n
  x = a
  sum = f(x)
  DOFOR i = 1, n − 1
    x = x + h
    sum = sum + 2 * f(x)
  END DO
  sum = sum + f(b)
  TrapEq = (b − a) * sum ∕ (2 * n)
END TrapEq

(b)
FUNCTION SimpEq (n, a, b)
  h = (b − a) ∕ n
  x = a
  sum = f(x)
  DOFOR i = 1, n − 2, 2
    x = x + h
    sum = sum + 4 * f(x)
    x = x + h
    sum = sum + 2 * f(x)
  END DO
  x = x + h
  sum = sum + 4 * f(x)
  sum = sum + f(b)
  SimpEq = (b − a) * sum ∕(3 * n)
END SimpEq

FIGURE 22.1
Algorithms for multiple applica-
tions of the (a) trapezoidal and 
(b) Simpson’s 1/3 rules, where 
the function is available.
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22.2.1 Richardson Extrapolation
Recall that, in Sec. 10.3.3, we used iterative refinement to improve the solution of a set 
of simultaneous linear equations. Error-correction techniques are also available to  improve 
the results of numerical integration on the basis of the integral estimates themselves. 
Generally called Richardson extrapolation, these methods use two estimates of an inte-
gral to compute a third, more accurate approximation.
 The estimate and error associated with a multiple-application trapezoidal rule can 
be represented generally as

I = I(h) + E(h)

where I = the exact value of the integral, I(h) = the approximation from an n-segment 
application of the trapezoidal rule with step size h = (b − a)∕n, and E(h) = the trunca-
tion error. If we make two separate estimates using step sizes of h1 and h2 and have exact 
values for the error,

I(h1) + E(h1) = I(h2) + E(h2) (22.1)

FIGURE 22.2
Absolute value of the true per-
cent relative error versus num-
ber of segments for the 
determination of the integral of 
f (x) = 0.2 + 25x − 200x2 +  
675x3 − 900x4 + 400x5, evalu-
ated from a = 0 to b = 0.8 
 using the multiple-application 
trapezoidal rule and the 
 multiple-application Simpson’s 
1/3 rule. Note that both results 
indicate that for a large num-
ber of segments, round-off 
 errors limit precision.
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Now recall that the error of the multiple-application trapezoidal rule can be represented 
approximately by Eq. (21.13) [with n = (b − a)∕h]:

E ≅ −
b − a

12
 h2

 f ″  (22.2)

If it is assumed that f ″  is constant regardless of step size, Eq. (22.2) can be used to 
determine that the ratio of the two errors will be

E(h1)
E(h2)

 ≅ 
h2

1

h2
2
 (22.3)

This calculation has the important effect of removing the term f ″  from the computation. 
In so doing, we have made it possible to utilize the information embodied by Eq. (22.2) 
without prior knowledge of the function’s second derivative. To do this, we rearrange 
Eq. (22.3) to give

E(h1) ≅ E(h2)(
h1

h2)
2

which can be substituted into Eq. (22.1):

I(h1) + E(h2)(
h1

h2)
2

≅ I(h2) + E(h2)

which can be solved for

E(h2) ≅ 
I(h1) − I(h2)
1 − (h1∕h2)2

Thus, we have developed an estimate of the truncation error in terms of the integral 
estimates and their step sizes. This estimate can then be substituted into

I = I(h2) + E(h2)
to yield an improved estimate of the integral:

I ≅ I(h2) +
1

(h1∕h2)2 − 1
 [I(h2) − I(h1) ] (22.4)

It can be shown (Ralston and Rabinowitz 1978) that the error of this estimate is O(h4). Thus, 
we have combined two trapezoidal rule estimates of O(h2) to yield a new estimate of O(h4). 
For the special case where the interval is halved (h2 = h1∕2), this equation becomes

I ≅ I(h2) +
1

22 − 1
 [I(h2) − I(h1) ]

or, collecting terms,

I ≅ 
4
3

 I(h2) −
1
3

 I(h1) (22.5)

 EXAMPLE 22.1 Error Corrections of the Trapezoidal Rule
Problem Statement. In the previous chapter (Example 21.1 and Table 21.1), we used 
a variety of numerical integration methods to evaluate the integral of f(x) = 0.2 + 25x − 
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200x2 + 675x3 − 900x4 + 400x5 from a = 0 to b = 0.8. For example, single and  multiple 
applications of the trapezoidal rule yielded the following results:

 Segments h Integral εt, %

 1 0.8 0.1728 89.5
 2 0.4 1.0688 34.9
 4 0.2 1.4848  9.5

Use this information along with Eq. (22.5) to compute improved estimates of the integral.

Solution. The estimates for one and two segments can be combined to yield

I ≅ 
4
3

 (1.0688) −
1
3

 (0.1728) = 1.367467

The error of the improved integral is Et = 1.640533 − 1.367467 = 0.273067 (εt = 16.6%), 
which is superior to the estimates upon which it was based.
 In the same manner, the estimates for two and four segments can be combined to give

I ≅ 
4
3

 (1.4848) −
1
3

 (1.0688) = 1.623467

which represents an error of Et = 1.640533 − 1.623467 = 0.017067 (εt = 1.0%).

 Equation (22.4) provides a way to combine two applications of the trapezoidal rule 
with error O(h2) to compute a third estimate with error O(h4). This approach is a subset 
of a more general method for combining integrals to obtain improved estimates. For 
instance, in Example 22.1, we computed two improved integrals of O(h4) on the basis 
of three trapezoidal rule estimates. These two improved estimates can, in turn, be com-
bined to yield an even better value with O(h6). For the special case where the original 
trapezoidal estimates are based on successive halving of the step size, the equation used 
for O(h6) accuracy is

I ≅ 
16
15

  Im −
1
15

  Il (22.6)

where Im and Il are the more and less accurate estimates, respectively. Similarly, two 
O(h6) results can be combined to compute an integral that is O(h8) using

I ≅ 
64
63

  Im −
1
63

  Il (22.7)

 EXAMPLE 22.2 Higher-Order Error Correction of Integral Estimates
Problem Statement. In Example 22.1, we used Richardson extrapolation to compute 
two integral estimates of O(h4). Utilize Eq. (22.6) to combine these estimates to compute 
an integral with O(h6).
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Solution. The two integral estimates of O(h4) obtained in Example 22.1 were 1.367467 
and 1.623467. These values can be substituted into Eq. (22.6) to yield

I =
16
15

 (1.623467) −
1
15

 (1.367467) = 1.640533

which is the correct answer to the seven significant figures that are carried in this 
 example.

22.2.2 The Romberg Integration Algorithm
Notice that the coefficients in each of the extrapolation equations [Eqs. (22.5), (22.6), 
and (22.7)] add up to 1. Thus, they represent weighting factors that, as accuracy in-
creases, place relatively greater weight on the superior integral estimate. These for-
mulations can be expressed in a general form that is well-suited for computer 
implementation:

Ij, k ≅ 
4k−1 Ij+1, k−1 − Ij, k−1

4k−1 − 1
 (22.8)

where Ij+1, k−1 and Ij, k−1 = the more and less accurate integrals, respectively, and Ij, k = the 
improved integral. The index k signifies the level of the integration, where k = 1 cor-
responds to the original trapezoidal rule estimates, k = 2 corresponds to O(h4), k = 3 to 
O(h6), and so forth. The index j is used to distinguish between the more ( j + 1) and the 
less ( j) accurate estimates. For example, for k = 2 and j = 1, Eq. (22.8) becomes

I1, 2 ≅ 
4I2,1 − I1,1

3

which is equivalent to Eq. (22.5).
 The general form represented by Eq. (22.8) is attributed to Romberg, and its systematic 
application to evaluate integrals is known as Romberg integration. Figure 22.3 is a 

FIGURE 22.3
Graphical depiction of the  
sequence of integral estimates 
generated using Romberg  
integration. (a) First iteration.  
(b) Second iteration. (c) Third  
iteration.

 O(h2) O(h4) O(h6) O(h8)

(a) 0.172800 1.367467
 1.068800

(b) 0.172800 1.367467 1.640533
 1.068800 1.623467
 1.484800

(c) 0.172800 1.367467 1.640533 1.640533
 1.068800 1.623467 1.640533
 1.484800 1.639467
 1.600800
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 graphical depiction of the sequence of integral estimates generated using this approach. 
Each matrix corresponds to a single iteration. The first column contains the trapezoidal 
rule evaluations that are designated Ij,1, where j = 1 is for a single-segment application 
(step size is b − a), j = 2 is for a two-segment application [step size is (b − a)∕2], j = 3 
is for a four-segment application [step size is (b − a)∕4], and so forth. The other columns 
of the matrix are generated by systematically applying Eq. (22.8) to obtain successively 
better estimates of the integral.
 For example, the first iteration (Fig. 22.3a) involves computing the one- and two-
segment trapezoidal rule estimates (I1,1 and I2,1). Equation (22.8) is then used to compute 
the element I1,2 = 1.367467, which has an error of O(h4).
 Now, we must check to determine whether this result is adequate for our needs. As 
in other approximate methods in this book, a termination, or stopping, criterion is re-
quired to assess the accuracy of the results. One method that can be employed for the 
present purposes is [Eq. (3.5)]

∣εa∣ = ∣ I1, k − I2, k−1

I1,k
∣100% (22.9)

where εa = an estimate of the percent relative error. Thus, as was done previously in 
other iterative processes, we compare the new estimate with a previous value. When the 
change between the old and new values as represented by εa is below a prespecified error 
criterion εs, the computation is terminated. For Fig. 22.3a, this evaluation indicates an 
21.8 percent change over the course of the first iteration.
 The object of the second iteration (Fig. 22.3b) is to obtain the O(h6) estimate—I1,3. 
To do this, an additional trapezoidal rule estimate, I3,1 = 1.4848, is determined. Then it 
is combined with I2,1 using Eq. (22.8) to generate I2,2 = 1.623467. The result is, in turn, 
combined with I1,2 to yield I1,3 = 1.640533. Equation (22.9) can be applied to determine 
that this result represents a change of 1.0 percent when compared with the previous 
result I1,2.
 The third iteration (Fig. 22.3c) continues the process in the same fashion. In this case, 
a trapezoidal estimate is added to the first column, and then Eq. (22.8) is applied to 
compute successively more accurate integrals along the lower diagonal. After only three 
iterations, because we are evaluating a fifth-order polynomial, the result (I1,4 = 1.640533) 
is exact.
 Romberg integration is more efficient than the trapezoidal rule and Simpson’s rules 
discussed in Chap. 21. For example, for determination of the integral as shown in Fig. 22.1, 
Simpson’s 1∕3 rule would require a 256-segment application to yield an estimate of 
1.640533. Finer approximations would not be possible because of round-off error. In 
contrast, Romberg integration yields an exact result (to seven significant figures) based 
on combining one-, two-, four-, and eight-segment trapezoidal rules; that is, with only 15 
function evaluations!
 Figure 22.4 presents pseudocode for Romberg integration. By using loops, this 
 algorithm implements the method in an efficient manner. Romberg integration is de-
signed for cases where the function to be integrated is known. This is because knowledge 
of the function permits the evaluations required for the initial implementations of the 
 trapezoidal rule. Tabulated data are rarely in the form needed to make the necessary 
successive halvings.
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Although Romberg integration is more efficient than the composite Simpson’s 1∕3 
rule, both use equally spaced points. This global perspective ignores the fact that many 
functions have regions of high variability along with other sections where change is 
gradual.
 Adaptive quadrature methods remedy this situation by adjusting the step size so that 
small intervals are used in regions of rapid variations and larger intervals are used where 
the function changes gradually. Most of these techniques are based on applying the 
composite Simpson’s 1∕3 rule to subintervals in a fashion that is very similar to the way 
in which the composite trapezoidal rule was used in Richardson extrapolation. That is, 
the 1∕3 rule is applied at two levels of refinement and the difference between these two 
levels is used to estimate the truncation error. If the truncation error is acceptable, no 
further refinement is required and the integral estimate for the subinterval is deemed 
acceptable. If the error estimate is too large, the step size is refined and the process 
repeated until the error falls to acceptable levels. The total integral is then computed as 
the summation of the integral estimates for the subintervals.
 The theoretical basis of the approach can be illustrated for an interval x = a to x = b with 
a width of h1 = b − a. A first estimate of the integral can be estimated with Simpson’s 
1∕3 rule,

I(h1) =
h1

6
 ( f(a) + 4 f(c) + f(b) ) (22.10)

where c = (a + b)∕2.

FIGURE 22.4
Pseudocode for Romberg  
integration that uses the  
equal-size-segment version of 
the trapezoidal rule from  
Fig. 22.1.

FUNCTION Romberg (a, b, maxit, es)
  LOCAL I(10, 10)
  n = 1
  I1,1 = TrapEq(n, a, b)
  iter = 0
  DO
    iter = iter + 1
    n = 2iter

    Iiter+1,1 = TrapEq(n, a, b)
    DOFOR k = 2, iter + 1
      j = 2 + iter − k
      Ij,k = (4k−1 * Ij+1,k−1 − Ij,k−1) ∕ (4k−1 − 1)
    END DO
    ea = ABS((I1,iter+1 − I2,iter) ∕ I1,iter+1) * 100
    IF (iter ≥ maxit OR ea ≤ es) EXIT
  END DO
  Romberg = I1,iter+1

END Romberg

 22.3 ADAPTIVE QUADRATURE 649
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650 INTEGRATION OF EQUATIONS

 As in Richardson extrapolation, a more refined estimate can be obtained by halving the 
step size. That is, by applying the multiple-application Simpson’s 1∕3 rule with n = 4,

I(h2) =
h2

6
( f(a) + 4 f(d) + 2 f(c) + 4 f(e) + f(b) ) (22.11)

where d = (a + c)∕2, e = (c + b)∕2, and h2 = h1∕2.
 Because both I(h1) and I(h2) are estimates of the same integral, their difference 
provides a measure of the error. That is,

E ≅ I(h2) − I(h1) (22.12)

In addition, the estimate and error associated with either application can be represented 
generally as

I = I(h) + E(h) (22.13)

where I = the exact value of the integral, I(h) = the approximation from an n-segment 
application of the Simpson’s 1∕3 rule with step size h = (b − a)∕n, and E(h) = the cor-
responding truncation error.
 Using an approach similar to Richardson extrapolation, we can derive an estimate 
for the error of the more refined estimate, I(h2), as a function of the difference between 
the two integral estimates,

E(h2) =
1
15

 [I(h2) − I(h1) ] (22.14)

The error can then be added to I(h2) to generate an even better estimate

I = I(h2) +
1
15

 [I(h2) − I(h1)] (22.15)

This result is equivalent to Boole’s rule.
 The equations developed above can now be combined into an efficient algorithm. 
Figure 22.5 presents pseudocode for such an algorithm that is based on a MATLAB 
software M-file developed by Cleve Moler (2004).
 The function consists of a main calling function, quadapt, along with a recursive 
function, qstep, that actually performs the integration. As set up in Fig. 22.5, both qadapt 
and qstep must have access to another function, f, that evaluates the integrand.
 The main calling function, quadapt, is passed the integration limits, a and b. After 
setting the tolerance, the function evaluations required for the initial application of Simpson’s 
1∕3 rule (Eq. 22.10) are computed. These values along with the integration limits are then 
passed to qstep. Within qstep, the remaining step sizes and function values are deter-
mined and the two integral estimates (Eqs. 22.10 and 22.11) are computed.
 At this point, the error is estimated as the absolute difference between the integral 
estimates. Depending on the value of the error, two things can then happen:

 1) If the error is less than or equal to the tolerance, Boole’s rule is generated, the func-
tion terminates and the result is returned.

 2) If the error is larger than the tolerance, qstep is invoked twice to evaluate each of 
the two subintervals of the current call.
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 The two recursive calls in the second step represent the real beauty of this algorithm. 
They just keep subdividing until the tolerance is met. Once this occurs, their results are 
passed back up the recursive path, combining with the other integral estimates along the 
way. The process ends when the final call is satisfied and the total integral is evaluated 
and returned to the main calling function.
 It should be stressed that the algorithm in Fig. 22.5 is a stripped-down version of 
the quad function that is the professional quadrature function employed in MATLAB. 
Thus, it does not guard against failure such as cases where integrals do not exist. 
 Nevertheless, it works just fine for many applications, and certainly serves to illustrate 
how adaptive quadrature works.

 22.4 GAUSS QUADRATURE
In Chap. 21, we studied the group of numerical integration or quadrature formulas known 
as the Newton-Cotes equations. A characteristic of these formulas (with the exception of 
the special case of Sec. 21.3) was that the integral estimate was based on evenly spaced 
function values. Consequently, the location of the base points used in these equations 
was predetermined or fixed.

FUNCTION quadapt(a, b) (main calling function)
tol = 0.000001
c = (a + b)∕2 (initialization)
fa = f(a)
fc = f(c)
fb = f(b)
quadapt = qstep(a, b, tol, fa, fc, fb)
END quadapt

FUNCTION qstep(a, b, tol, fa, fc, fb) (recursive function)
h1 = b − a
h2 = h1∕2
c = (a + b)∕2
fd = f((a + c)∕2)
fe = f((c + b)∕2)
I1 = h1∕6 * (fa + 4 * fc + fb) (Simpson’s 1∕3 rule)
I2 = h2∕6 * (fa + 4 * fd + 2 * fc + 4 * fe + fb)
IF |I2 − I1| ≤ tol THEN (terminate after Boole’s rule)
  I = I2 + (I2 − I1)∕15
ELSE (recursive calls if needed)
  Ia = qstep(a, c, tol, fa, fd, fc)
  Ib = qstep(c, b, tol, fc, fe, fb)
  I = Ia + Ib
END IF
qstep = I
END qstep

FIGURE 22.5
Pseudocode for simplified 
adaptive quadrature algorithm 
based on a MATLAB M-file 
presented in Moler (2004).
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652 INTEGRATION OF EQUATIONS

 For example, as depicted in Fig. 22.6a, the trapezoidal rule is based on taking the 
area under the straight line connecting the function values at the ends of the integration 
interval. The formula that is used to compute this area is

I ≅ (b − a) 
f(a) + f(b)

2
 (22.16)

where a and b = the limits of integration and b − a = the width of the integration in-
terval. Because the trapezoidal rule must pass through the end points, there are cases 
such as Fig. 22.6a where the formula results in a large error.
 Now, suppose that the constraint of fixed base points was removed and we were 
free to evaluate the area under a straight line joining any two points on the curve. By 
positioning these points wisely, we could define a straight line that would balance the 
positive and negative errors. Hence, as in Fig. 22.6b, we would arrive at an improved 
estimate of the integral.
 Gauss quadrature is the name for one class of techniques to implement such a 
strategy. The particular Gauss quadrature formulas described in this section are called 
Gauss-Legendre formulas. Before describing the approach, we will show how numerical 
integration formulas such as the trapezoidal rule can be derived using the method of 
undetermined coefficients. This method will then be employed to develop the Gauss-
Legendre formulas.

FIGURE 22.6
(a) Graphical depiction of the 
trapezoidal rule as the area 
 under the straight line joining 
fixed end points. (b) An 
 improved integral estimate 
 obtained by taking the area 
 under the straight line passing 
through two intermediate 
points. By positioning these 
points wisely, the positive and  
negative errors are balanced, 
and an improved integral  
estimate results.

f (x)

(a)
x

f (x)

(b)
x
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22.4.1 Method of Undetermined Coefficients
In Chap. 21, we derived the trapezoidal rule by integrating a linear interpolating polynomial 
and by geometrical reasoning. The method of undetermined coefficients offers a third ap-
proach that also has utility in deriving other integration techniques such as Gauss quadrature.
 To illustrate the approach, Eq. (22.16) is expressed as

I ≅ c0 f(a) + c1 f(b) (22.17)

where the c’s = constants. Now realize that the trapezoidal rule should yield exact results 
when the function being integrated is a constant or a straight line. Two simple equations 
that represent these cases are y = 1 and y = x. Both are illustrated in Fig. 22.7. Thus, 
the following equalities should hold:

c0 + c1 = ∫ (b−a)∕2

−(b−a)∕2
1 dx

and

−c0 
b − a

2
+ c1 

b − a

2
= ∫ (b−a)∕2

−(b−a)∕2
 x dx

y

y = 1

(a)

x– (b – a)
         2

b – a
          2

y

y = x

(b)

x

– (b – a)
          2

b – a
         2

FIGURE 22.7
Two integrals that should be 
evaluated exactly by the trap-
ezoidal rule: (a) a constant and 
(b) a straight line.
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or, evaluating the integrals,

c0 + c1 = b − a

and

−c0 

b − a

2
+ c1 

b − a

2
= 0

These are two equations with two unknowns that can be solved for

c0 = c1 =
b − a

2

which, when substituted back into Eq. (22.17), gives

I =
b − a

2
 f(a) +

b − a

2
 f(b)

which is equivalent to the trapezoidal rule.

22.4.2 Derivation of the Two-Point Gauss-Legendre Formula
Just as was the case for the above derivation of the trapezoidal rule, the object of Gauss 
quadrature is to determine the coefficients of an equation of the form

I ≅ c0  f(x0) + c1 f(x1) (22.18)

where the c’s = the unknown coefficients. However, in contrast to the trapezoidal rule 
that used fixed end points a and b, the function arguments x0 and x1 are not fixed at the 
end points, but are unknowns (Fig. 22.8). Thus, we now have a total of four unknowns 
that must be evaluated, and consequently, we require four conditions to determine them 
exactly.

FIGURE 22.8
Graphical depiction of the unknown variables x0 and x1 for integration by Gauss quadrature.

f (x)

f (x0)

f (x1)

– 1 1x1 xx0
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 Just as for the trapezoidal rule, we can obtain two of these conditions by assuming 
that Eq. (22.18) fits the integral of a constant and a linear function exactly. Then, to 
arrive at the other two conditions, we merely extend this reasoning by assuming that it 
also fits the integral of a parabolic (y = x2) and a cubic (y = x3) function. By doing this, 
we determine all four unknowns and in the bargain derive a linear two-point integration 
formula that is exact for cubics. The four equations to be solved are

c0  f(x0) + c1  f(x1) = ∫1

−1
 1 dx = 2 (22.19)

c0  f(x0) + c1  f(x1) = ∫1

−1
 x dx = 0 (22.20)

c0  f(x0) + c1 f(x1) = ∫1

−1
 x

2
 dx =

2
3

 (22.21)

c0  f(x0) + c1  f(x1) = ∫1

−1
 x

3
 dx = 0 (22.22)

Equations (22.19) through (22.22) can be solved simultaneously for

c0 = c1 = 1

x0 = −
1

√3
= −0.5773503 …

x1 =
1

√3
= 0.5773503 …

which can be substituted into Eq. (22.18) to yield the two-point Gauss-Legendre formula

I ≅ f (
−1
√3) +  f (

1
√3) (22.23)

Thus, we arrive at the interesting result that the simple addition of the function values 
at x = 1∕√3 and −1∕√3 yields an integral estimate that is third-order accurate.
 Notice that the integration limits in Eqs. (22.19) through (22.22) are from −1 to 1. 
This was done to simplify the mathematics and to make the formulation as general as 
possible. A simple change of variable can be used to translate other limits of integration 
into this form. This is accomplished by assuming that a new variable xd is related to the 
original variable x in a linear fashion, as in

x = a0 + a1xd (22.24)

If the lower limit, x = a, corresponds to xd = −1, these values can be substituted into 
Eq. (22.24) to yield

a = a0 + a1(−1) (22.25)

Similarly, the upper limit, x = b, corresponds to xd = 1, to give

b = a0 + a1(1) (22.26)
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Equations (22.25) and (22.26) can be solved simultaneously for

a0 =
b + a

2
 (22.27)

and

a1 =
b − a

2
 (22.28)

which can be substituted into Eq. (22.24) to yield

x =
(b + a) + (b − a)xd

2
 (22.29)

This equation can be differentiated to give

dx =
b − a

2
 dxd (22.30)

Equations (22.29) and (22.30) can be substituted for x and dx, respectively, in the equation to 
be integrated. These substitutions effectively transform the integration interval without chang-
ing the value of the integral. The following example illustrates how this is done in practice.

 EXAMPLE 22.3 Two-Point Gauss-Legendre Formula
Problem Statement. Use Eq. (22.23) to evaluate the integral of

f(x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5

between the limits x = 0 to 0.8. Recall that this was the same problem that we solved in 
Chap. 21 using a variety of Newton-Cotes formulations. The exact value of the integral is 
1.640533.

Solution. Before integrating the function, we must perform a change of variable so that 
the limits are from −1 to +1. To do this, we substitute a = 0 and b = 0.8 into Eq. (22.29) 
to yield

x = 0.4 + 0.4xd

The derivative of this relationship is [Eq. (22.30)]

dx = 0.4 dxd

Both of these can be substituted into the original equation to yield

∫0.8

0
(0.2 + 25x − 200x2 + 675x3 − 900x4 + 400x5) dx

  = ∫1

−1
 [0.2 + 25(0.4 + 0.4xd) − 200(0.4 + 0.4xd)2 + 675(0.4 + 0.4xd)3

      − 900(0.4 + 0.4xd)4 + 400(0.4 + 0.4xd)5]0.4 dxd

Therefore, the right-hand side is in the form that is suitable for evaluation using Gauss 
quadrature. The transformed function can be evaluated at −1∕√3 to be equal to 0.516741 
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and at 1∕√3 to be equal to 1.305837. Therefore, the integral according to Eq. (22.23) is

I ≅ 0.516741 + 1.305837 = 1.822578

which represents a percent relative error of −11.1 percent. This result is comparable in 
magnitude to a four-segment application of the trapezoidal rule (Table 21.1) or a single 
application of Simpson’s 1∕3 and 3∕8 rules (Examples 21.4 and 21.6). This latter result 
is to be expected because Simpson’s rules are also third-order accurate. However, because 
of the clever choice of base points, Gauss quadrature attains this accuracy on the basis 
of only two function evaluations.

22.4.3 Higher-Point Formulas
Beyond the two-point formula described in the previous section, higher-point versions 
can be developed in the general form

I ≅ c0  f(x0) + c1  f(x1) + … + cn−1  f(xn−1) (22.31)

where n = the number of points. Values for c’s and x’s for up to and including the six-
point formula are summarized in Table 22.1.

TABLE 22.1  Weighting factors c and function arguments x used in Gauss-Legendre 
formulas.

  Weighting Function Truncation 
 Points Factors Arguments Error

 2 c0 = 1.0000000 x0 = −0.577350269 ≅f (4)(ξ)
   c1 = 1.0000000   x1 =   0.577350269 

 3 c0 = 0.5555556 x0 = −0.774596669 ≅f (6)(ξ)
   c1 = 0.8888889   x1 =   0.0
  c2 = 0.5555556 x2 =   0.774596669

 4 c0 = 0.3478548 x0 = −0.861136312 ≅f (8)(ξ)
   c1 = 0.6521452   x1 = −0.339981044
  c2 = 0.6521452 x2 =   0.339981044
  c3 = 0.3478548 x3 =   0.861136312

 5 c0 = 0.2369269 x0 = −0.906179846 ≅f (10)(ξ)
   c1 = 0.4786287   x1 = −0.538469310
  c2 = 0.5688889 x2 =   0.0
  c3 = 0.4786287 x3  =   0.538469310
  c4 = 0.2369269 x4  =   0.906179846

 6 c0 = 0.1713245 x0 = −0.932469514 ≅f (12)(ξ)
   c1 = 0.3607616   x1 = −0.661209386
  c2 = 0.4679139 x2  = −0.238619186
  c3 = 0.4679139 x3  =   0.238619186
  c4 = 0.3607616 x4  =   0.661209386
  c5 = 0.1713245 x5  =   0.932469514
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 EXAMPLE 22.4 Three-Point Gauss-Legendre Formula
Problem Statement. Use the three-point formula from Table 22.1 to estimate the inte-
gral for the same function as in Example 22.3.

Solution. According to Table 22.1, the three-point formula is

I = 0.5555556 f(−0.7745967) + 0.8888889 f(0) + 0.5555556 f(0.7745967)

which is equal to

I = 0.2813013 + 0.8732444 + 0.4859876 = 1.640533

which is exact.

 Because Gauss quadrature requires function evaluations at nonuniformly spaced 
points within the integration interval, it is not appropriate for cases where the function 
is unknown. Thus, it is not suited for engineering problems that deal with tabulated data. 
However, where the function is known, its efficiency can be a decided advantage. This 
is particularly true when numerous integral evaluations must be performed.

 EXAMPLE 22.5 Applying Gauss Quadrature to the Falling Parachutist Problem
Problem Statement. In Example 21.3, we used the multiple-application trapezoidal 
rule to evaluate

d =
gm

c ∫10

0
[1 − e−(c∕m)t] dt

where g = 9.8, c = 12.5, and m = 68.1. The exact value of the integral was determined 
by calculus to be 289.4351. Recall that the best estimate obtained using a 500-segment 
trapezoidal rule was 289.4348 with an ∣εt∣ ≅ 1.15 × 10−4 percent. Repeat this computa-
tion using Gauss quadrature.

Solution. After modifying the function, the following results are obtained:

Two-point estimate = 290.0145
Three-point estimate = 289.4393
Four-point estimate = 289.4352
Five-point estimate = 289.4351
Six-point estimate = 289.4351

Thus, the five- and six-point estimates yield results that are exact to seven significant figures.

22.4.4 Error Analysis for Gauss Quadrature
The error for the Gauss-Legendre formulas is specified generally by (Carnahan et al. 1969)

Et =
22n+3[(n + 1)!]4

(2n + 3)[(2n + 2)!]3  f (2n+2)(ξ) (22.32)
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where n = the number of points minus one and f (2n+2)(ξ) = the (2n + 2)th derivative of 
the function after the change of variable with ξ located somewhere on the interval from 
−1 to 1. Comparison of Eq. (22.32) with Table 21.2 indicates the superiority of Gauss 
quadrature to Newton-Cotes formulas, provided the higher-order derivatives do not in-
crease substantially with increasing n. Problem 22.8 at the end of this chapter  illustrates 
a case where the Gauss-Legendre formulas perform poorly. In these situations, the 
 multiple-application Simpson’s rule or Romberg integration would be preferable. How-
ever, for many functions confronted in engineering practice, Gauss quadrature  provides 
an efficient means for evaluating integrals.

 22.5 IMPROPER INTEGRALS
To this point, we have dealt exclusively with integrals having finite limits and 
bounded integrands. Although these types are commonplace in engineering, there 
will be times when improper integrals must be evaluated. In this section, we will 
focus on one type of improper integral—that is, one with a lower limit of −∞ or an 
upper limit of +∞.
 Such integrals usually can be evaluated by making a change of variable that trans-
forms the infinite range to one that is finite. The following identity serves this purpose 
and works for any function that decreases toward zero at least as fast as l∕x2 as x 
 approaches infinity:

∫b

a
 f(x) dx = ∫1∕a

1∕b

 
1
t2 f (

1
t )dt (22.33)

for ab > 0. Therefore, it applies when a is positive and b is ∞ or when a is −∞ and b 
is negative. For cases where the limits are from −∞ to a positive value or from a nega-
tive value to ∞, the integral can be implemented in two steps. For example,

∫b

−∞
 f(x) dx = ∫−A

−∞
 f(x) dx + ∫b

−A
 f(x) dx (22.34)

where −A is chosen as a sufficiently large negative value so that the function has begun 
to approach zero asymptotically at least as fast as l∕x2. After the integral has been divided 
into two parts, the first can be evaluated with Eq. (22.33) and the second with a Newton-
Cotes closed formula such as Simpson’s 1∕3 rule.
 One problem with using Eq. (22.33) to evaluate an integral is that the transformed 
function will be singular at one of the limits. The open integration formulas can be used 
to circumvent this dilemma as they allow evaluation of the integral without employing 
data at the end points of the integration interval. To allow the maximum flexibility, a 
multiple-application version of one of the open formulas from Table 21.4 is required.
 Multiple-application versions of the open formulas can be concocted by using closed 
formulas for the interior segments and open formulas for the ends. For example, the 
multiple-segment trapezoidal rule and the midpoint rule can be combined to give

∫ xn

x0

 f(x) dx = h[
3
2

 f(x1) +∑
n−2

i=2
f(xi) +

3
2

 f(xn−1)]
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660 INTEGRATION OF EQUATIONS

 In addition, semiopen formulas can be developed for cases where one or the other 
end of the interval is closed. For example, a formula that is open at the lower limit and 
closed at the upper limit is given as

∫ xn

x0

 f(x) dx = h[
3
2

 f(x1) +∑
n−1

i=2
f(xi) +

1
2

 f(xn)]

Although these relationships can be used, a preferred formula is (Press et al. 2007)

∫ xn

x0

 f(x) dx = h[ f(x1∕2) + f(x3∕2) + … + f(xn−3∕2) + f(xn−1∕2) ] (22.35)

which is called the extended midpoint rule. Notice that this formula is based on limits 
of integration that are h∕2 after and before the first and last data points (Fig. 22.9).

 EXAMPLE 22.6 Evaluation of an Improper Integral
Problem Statement. The cumulative normal distribution is an important formula in 
statistics (see Fig. 22.10):

N(x) = ∫ x

−∞

1
√2π

 e−x2∕2
 dx (E22.6.1)

where x = (y − y)∕sy is called the normalized standard deviate. It represents a change 
of variable to scale the normal distribution so that it is centered on zero and the distance 
along the abscissa is measured in multiples of the standard deviation (Fig. 22.10b).
 Equation (E22.6.1) represents the probability that an event will be less than x. For 
example, if x = 1, Eq. (E22.6.1) can be used to determine that the probability that an 
event will occur that is less than one standard deviation above the mean is N(1) = 0.8413. 
In other words, if 100 events occur, approximately 84 will be less than the mean plus one 
standard deviation. Because Eq. (E22.6.1) cannot be evaluated in a simple functional form, 
it is solved numerically and listed in statistical tables. Use Eq. (22.34) in conjunction with 
Simpson’s 1∕3 rule and the extended midpoint rule to determine N(1) numerically.

Solution. Equation (E22.6.1) can be reexpressed in terms of Eq. (22.34) as

N(x) =
1

√2π
 ( ∫−2

−∞
e−x2∕2 dx + ∫1

−2
e−x2∕2 dx)

The first integral can be evaluated by applying Eq. (22.33) to give

∫−2

−∞
 e

−x2∕2
 dx = ∫0

−1∕2

1
t2 e−1∕(2t2)

 dt

x0

x1/2 x3/2 x5/2

xn

xn – 5/2 xn – 3/2 xn – 1/2FIGURE 22.9
Placement of data points rela-
tive to integration limits for the 
extended midpoint rule.
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Then the extended midpoint rule with h = 1∕8 can be employed to estimate

∫0

−1∕2
 
1
t2 e−1∕(2t2) dt ≅ 

1
8

 [ f(x−7∕16) + f(x−5∕16) + f(x−3∕16) + f(x−1∕16) ]

         =
1
8

[0.3833 + 0.0612 + 0 + 0] = 0.0556

FIGURE 22.10
(a) The normal distribution, (b) the transformed abscissa in terms of the standardized normal 
 deviate, and (c) the cumulative normal distribution. The shaded area in (a) and the point in  
(c) represent the probability that a random event will be less than the mean plus one stan-
dard deviation.

(a)
y

x

y– – 2sy y– + 2syy–y– – sy y– + sy

(b)
–3 –2 – 1 3210

x

N(x)

(c)
–3 –2 – 1 3210

0.5

1

N(x) =  e– x
2/2 dx

  1
–

11
2π

N(x) =  e– x
2/2 dx

  1
–

11
2π
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Simpson’s 1∕3 rule with h = 0.5 can be used to estimate the second integral as

∫1

−2
 e

−x2∕2 dx

= [1 − (−2)]
0.1353 + 4(0.3247 + 0.8825 + 0.8825) + 2(0.6065 + 1) + 0.6065

3(6)
= 2.0523

Therefore, the final result can be computed as

N(1) ≅ 
1

√2π
 (0.0556 + 2.0523) = 0.8409

which represents an error of εt = 0.046 percent.

 The foregoing computation can be improved in a number of ways. First, higher-order 
formulas could be used. For example, a Romberg integration could be employed. Second, 
more points could be used. Press et al. (2007) explore both options in depth.
 Aside from infinite limits, there are other ways in which an integral can be improper. 
Common examples include cases where the integral is singular at either the limits or at 
a point within the integral. Press et al. (2007) provide a nice discussion of ways to 
handle these situations.

 22.6 MONTE CARLO INTEGRATION
Earlier in this book, we used random numbers for optimization (recall Sec. 14.1.1). Now, 
we turn to Monte Carlo (MC) integration, a technique that employs random numbers to 
evaluate definite integrals. As with so much of integration, a visual explanation grounded 
in integrals as areas under curves is helpful.
 The basic approach can be illustrated for the standard one-dimensional definite in-
tegral,

I = ∫b

a
 f(x) dx

As depicted in Fig. 22.11, because of its similarity to the game of darts, this method 
can be called dartboard Monte Carlo integration. The function to be integrated, f(x), 
is contained within a rectangular target, with the rectangle’s width spanning the inte-
gration interval, and its height equal to or greater than the function’s maximum value 
over the integration interval. Just like aimlessly throwing darts at a target, random 
values of x and y can be generated within the whole rectangle and then identified as 
being either below (shaded symbols) or above (unshaded) the function. The integral 
estimate corresponds to the product of the rectangle’s area times the ratio of the filled 
to the total number of symbols. The more darts that are thrown, the better the integral 
estimate.
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 EXAMPLE 22.7 Dartboard Monte Carlo Integration
Problem Statement. Develop computer code for the dartboard MC integration method 
for the special case of a function that is positive across the whole integration interval 
but can be greater than or equal to zero at the limits. Use it to estimate the same definite 
integral evaluated in Fig. 22.11,

I = ∫0.8

0
 (400x5 − 900x4 + 675x3 − 200x2 + 25x + 0.2) dx

where the exact value of the integral is 1.640533. Test your code for n = 100,000.

Solution. The following MATLAB function can be developed to implement the ap-
proach:

function Q = MonteCarloDartDummy(func,n,a,b)
ymx=@(x) −func(x);
[xmax,ymax]=fminbnd(ymx,a,b);
ymax=−ymax;
TotalArea=ymax*(b−a);
count = 0;
for i = 1:n
  x=a+(b−a)*rand(1); y=ymax*rand(1);
  if y<func(x), count = count + 1; end
end
Q = count/n*TotalArea;

0
0

1

2

3

4

0.2 0.4 0.6 0.8 x

f (x)

FIGURE 22.11
Graphical depiction of the “dartboard” version of Monte Carlo integration for the polynomial 
f(x) = 400x5 – 900x4 + 675x3 – 200x2 + 25x + 0.2 between a = 0 and b = 0.8. For this ex-
ample, 100 samples were generated with 51 landing between the function and the abscissa. 
Thus, the resulting value of the integral is 0.51 × 0.8 × 4 = 1.6320, as compared with the 
 exact value of 1.6405333.
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664 INTEGRATION OF EQUATIONS

A script can then be written to implement the function for this example:

clear,clc,
format compact, format long
points = 100000;
f=@(x) 400*x.^5−900*x.^4+675*x.^3−200*x.^2+25*x+0.2;
a=0; b=0.8;
Q = MonteCarloDartDummy(f,points,a,b);
fprintf('Computed value of integral is %8.7f.\n',Q);

The result is

Computed value of integral is 1.6373760.

Because each toss is random, every time this code is executed, the result will be some-
what different.

PROBLEMS

22.1 Use order of h8 Romberg integration to evaluate

∫3

0
 xe2x dx

Compare εa and εt.
22.2 Use Romberg integration to evaluate

I = ∫2

1
 (x +

1
x)

2

 dx

to an accuracy of εs = 0.5% based on Eq. (22.9). Your results should 
be presented in the form of Fig. 22.3. Use the analytical solution of 
the integral to determine the percent relative error of the result ob-
tained with Romberg integration. Check that εt is less than the stop-
ping criterion εs.

22.3 Use Romberg integration to evaluate

∫2

0
 
ex sin x
1 + x2  dx

to an accuracy of εs = 0.5%. Your results should be presented in the 
form of Fig. 22.3.
22.4 Obtain an estimate of the integral from Prob. 22.2, but using 
two-, three-, and four-point Gauss-Legendre formulas. Compute εt 
for each case on the basis of the analytical solution.
22.5 Obtain an estimate of the integral from Prob. 22.1, but using 
two-, three-, and four-point Gauss-Legendre formulas. Compute εt 
for each case on the basis of the analytical solution.
22.6 Obtain an estimate of the integral from Prob. 22.3 using the 
five-point Gauss-Legendre formula.

 Whereas the simple dartboard version described above certainly offers a straightfor-
ward illustration of the general idea behind MC integration, it converges very slowly. In 
general, the convergence rates of most simple MC integration approaches are proportional 
to 1∕√n. This means that four times more samples are needed to halve the error.
 In summary, MC integration has the advantage of simplicity and is especially advan-
tageous for multidimensional integrals. Further, it is well-suited for parallel processing as 
each processor can make a random trial. It has disadvantages related to its slow conver-
gence rate and the difficulty of evaluating the error of the results. Additional information 
on Monte Carlo methods, including descriptions of advanced MC integration techniques 
that improve the performance, can be found elsewhere (Hammersley and Handscomb 1964; 
Press et al. 2007; Newman and Barkema 1999; Robert and Casella 2004).
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Determine the mass transported between t1 = 2 and t2 = 8 min with 
Romberg integration to a tolerance of 0.1%.
22.16 The depths of a river H are measured at equally spaced 
 distances across a channel as tabulated below. The river’s cross-
sectional area can be determined by integration as in

Ac = ∫ x

0
 H(x) dx

Use Romberg integration to perform the integration to a stopping 
criterion of 1%.

x, m 0 2 4 6 8 10 12 14 16

H, m 0 1.8 2 2 2.5 2.6 2.25 1.12     0

22.17 Recall that the velocity of the freefalling parachutist with 
linear drag can be computed analytically as

υ(t) =
gm

c
 (1 − e−(c∕m)t)

where v(t) = velocity (m/s), t = time (s), g = 9.81 m/s2, m = mass 
(kg), c = linear drag coefficient (kg/s). Use Romberg integration to 
compute how far the jumper travels during the first 8 seconds of 
free fall given m = 80 kg and c = 10 kg/s. Compute the answer to 
εs = 1%.
22.18 Prove that Eq. (22.15) is equivalent to Boole’s rule.
22.19 Whereas the “dartboard” version described in Sec. 22.6 cer-
tainly offered a straightforward illustration of the general idea be-
hind MC integration, it converges slowly and inefficiently. An 
equally simple alternative, which we will call rectangular MC inte-
gration, is based on this algorithm:

∙ Repeat the following three steps i = 1 to n times:
 Generate a random point, xi, along the abscissa within the in-

tegration interval, a to b.
 Compute the function value, f(xi), at that point.
 Compute the area of a rectangle, Ai = f(xi) × (b – a).

∙ The integral is then computed as the average of the areas:

I =
∑

n

i=1
Ai

n

Because each iteration requires a single random variable along a 
single dimension (x), this algorithm is more efficient than the 
 dartboard version. Develop a computer code for the rectangle MC 
integration method. Use it to estimate the same definite integral eval-
uated with the dartboard method in Fig. 22.11 and Example 22.7,

I = ∫0.8

0
 (400x5 − 900x4 + 675x3 − 200x2 + 25x + 0.2) dx

for which the exact value is 1.640533.

22.7 Perform the computation in Examples 21.3 and 22.5 for the 
falling parachutist, but use Romberg integration (εs = 0.05%).
22.8 Employ two- through six-point Gauss-Legendre formulas to 
solve

∫3

−3

1
1 + x2 dx

Interpret your results in light of Eq. (22.32).
22.9 Use numerical integration to evaluate the following:

(a) ∫ ∞

2
 

dx

x(x + 2)
 (b) ∫ ∞

0
 e

−y sin2 y dy

(c) ∫ ∞

0
 

1
(1 + y2) (1 + y2∕2)

 dy (d) ∫ ∞

−2
 ye−y dy

(e) ∫ ∞

0
 

1
√2π

 e−x2∕2 dx

Note that (e) is the normal distribution (recall Fig. 22.10).
22.10 Develop a user-friendly computer program for the multiple-
segment (a) trapezoidal and (b) Simpson’s 1∕3 rule based on  
Fig. 22.1. Test it by integrating

∫1

0
 x

0.1(1.2 − x) (1 − e20(x−1)) dx

Use the true value of 0.602298 to compute εt for n = 4.
22.11 Develop a user-friendly computer program for Romberg in-
tegration based on Fig. 22.4. Test it by duplicating the results of 
Examples 22.3 and 22.4 and the function in Prob. 22.10.
22.12 Develop a user-friendly computer program for adaptive 
quadrature based on Fig. 22.5. Test it by solving Prob. 22.10.
22.13 Develop a user-friendly computer program for Gauss 
quadrature. Test it by duplicating the results of Examples 22.3 and 
22.4 and the function in Prob. 22.10.
22.14 There is no closed form solution for the error function,

erf(a) =
2

√π
 ∫a

0
 e

−x2
 dx

Use the two-point Gauss quadrature approach to estimate erf(1.5). 
Note that the exact value is 0.966105.
22.15 The amount of mass transported via a pipe over a period of 
time can be computed as

M = ∫ t2

t1

Q(t)c(t)dt

where M = mass (mg), t1 = the initial time (min), t2 = the final time 
(min), Q(t) = flow rate (m3/min), and c(t) = concentration (mg/m3). 
The following functional representations define the temporal varia-
tions in flow and concentration:

 Q(t) = 8 + 5 cos2(0.4t)

 c(t) = 5e−0.5t + 3e0.15t

 PROBLEMS 665
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666 INTEGRATION OF EQUATIONS

(a) Analytically
(b) Using Romberg integration with a stopping criterion of εs = 

0.01%
(c) Using three-point Gauss quadrature
(d) Using dartboard Monte Carlo integration with n = 10,000
For (b) through (d), compute the absolute % relative error. 
22.24 The humps function defines a curve with two maxima 
(peaks) of unequal height, 

f(x) =
1

(x − 0.3)2 + 0.01
+

1
(x − 0.9)2 + 0.04

− 6

Estimate the definite integral of this function between the limits 
a = 0 and b = 2 with
(a) Romberg integration with a stopping criterion of εs = 0.01%
(b) Three-point Gauss quadrature
(c) Monte Carlo integration with n = 10,000, using the software 

you developed in Prob. 22.19 or 22.21.

22.20 Using the rectangular Monte Carlo algorithm described in 
Prob. 22.19, estimate the integral

I = ∫15

1.5
 (−0.0125x3 + 0.115x2 + 1.18x − 6.3) dx

Employ n = 20,000 and compare your result with the analytical 
solution.
22.21 Develop computer code for dartboard MC integration for 
cases where the function can be positive, negative, or zero across 
the integration interval. Use your code to estimate the derivative of 
the integral from Prob. 22.20.
22.22 Another example of MC integration is its use to evaluate π. 
If a square is drawn circumscribing a circle (Fig. P22.22), the ratio 
of the two areas is equal to π∕4. If we randomly generate ns points 
within the square and then count the number of points falling within 
the circle, nc, π ≅ 4 × (nc∕ns). Note that because the circle and 
square are centered on the origin, we can obtain the same result by 
limiting the analysis to the first quadrant. If the following condition 
tests true, x2 + y2 ≤ R, can conclude that the trial is within the 
 circle. Use this approach to estimate π for 5 cases: n = 103, 104, 105, 
106, and 107. Compute the absolute % relative error, |εt|, for each 
case. Develop a log-log plot of the error versus n in order to evalu-
ate the dependency of the error on the number of iterations.
22.23 Evaluate the following integral:

I = ∫4

0
 x

3 dx

DAS = D2
AC =

πD2

4

FIGURE P22.22
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C H A P T E R

23
Numerical Differentiation

We have already introduced the notion of numerical differentiation in Chap. 4. Recall 
that we employed Taylor series expansions to derive finite-divided-difference approxima-
tions of derivatives. In Chap. 4, we developed forward, backward, and centered difference 
approximations of first and higher derivatives. Recall that, at best, these estimates had 
errors that were O(h2)—that is, their errors were proportional to the square of the step 
size. This level of accuracy is due to the number of terms of the Taylor series that were 
retained during the derivation of these formulas. We will now illustrate how to develop 
more accurate formulas by retaining more terms.

 23.1 HIGH-ACCURACY DIFFERENTIATION FORMULAS
As noted above, high-accuracy divided-difference formulas can be generated by including 
additional terms from the Taylor series expansion. For example, the forward Taylor series 
expansion can be written as [Eq. (4.21)]

f(xi+1) = f(xi) + f ′(xi)h +
f ″(xi)

2
 h2 + … (23.1)

which can be solved for

f ′(xi) =
f(xi+1) − f(xi)

h
−

f ″(xi)
2

 h + O(h2) (23.2)

 In Chap. 4, we truncated this result by excluding the second- and higher-derivative 
terms and were thus left with a final result of

f ′(xi) =
f(xi+1) − f(xi)

h
+ O(h) (23.3)

 In contrast to this approach, we now retain the second-derivative term by substitut-
ing the following approximation of the second derivative [recall Eq. (4.24)]

f ″(xi) =
f(xi+2) − 2 f(xi+1) + f(xi)

h2 + O(h) (23.4)
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668 NUMERICAL DIFFERENTIATION

into Eq. (23.2) to yield

f ′(xi) =
f(xi+1) − f(xi)

h
−

f(xi+2) − 2 f(xi+1) + f(xi)
2h2  h + O(h2)

or, after collecting terms,

f ′(xi) =
−f(xi+2) + 4 f(xi+1) − 3 f(xi)

2h
+ O(h2) (23.5)

 Notice that inclusion of the second-derivative term has improved the accuracy to 
O(h2). Similar improved versions can be developed for the backward and centered for-
mulas as well as for the approximations of the higher derivatives. The formulas are 
summarized in Figs. 23.1 through 23.3 along with all the results from Chap. 4. The 
following example illustrates the utility of these formulas for estimating derivatives.

FIGURE 23.1
Forward finite-divided-difference formulas: Two versions are presented for each derivative. The 
latter version incorporates more terms of the Taylor series expansion and is, consequently, 
more accurate.

First Derivative Error

f ′(xi) =
f (xi+1) − f (xi)

h
 O(h)

f ′(xi) =
−f (xi+2) + 4f (xi+1) − 3f (xi)

2h
 O(h2)

Second Derivative

f″(xi) =
f (xi+2) − 2f (xi+1) + f (xi)

h2  O(h)

f″(xi) =
−f (xi+3) + 4f (xi+2) − 5f (xi+1) + 2f (xi)

h2  O(h2)

Third Derivative

f‴(xi) =
f (xi+3) − 3f (xi+2) + 3f (xi+1) − f (xi)

h3  O(h)

f‴(xi) =
−3f (xi+4) + 14f (xi+3) − 24f (xi+2) + 18f (xi+1) − 5f (xi)

2h3  O(h2)

Fourth Derivative

f″″(xi) =
f (xi+4) − 4f (xi+3) + 6f (xi+2) − 4f (xi+1) + f (xi)

h4  O(h)

f″″(xi) =
−2f (xi+5) + 11f (xi+4) − 24f (xi+3) + 26f (xi+2) − 14f (xi+1) + 3f (xi)

h4  O(h2)
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 23.1 HIGH-ACCURACY DIFFERENTIATION FORMULAS 669

FIGURE 23.2
Backward finite-divided- 
difference formulas: Two  
versions are presented for each  
derivative. The latter version  
incorporates more terms of the  
Taylor series expansion and is,  
consequently, more accurate.

First Derivative Error

f ′(xi) =
f (xi) − f (xi−1)

h
 O(h)

f ′(xi) =
3f (xi) − 4f (xi−1) + f (xi−2)

2h
 O(h2)

Second Derivative

f″(xi) =
f (xi) − 2f (xi−1) + f (xi−2)

h2  O(h)

f″(xi) =
2f (xi) − 5f (xi−1) + 4f (xi−2) − f (xi−3)

h2  O(h2)

Third Derivative

f‴(xi) =
f (xi) − 3f (xi−1) + 3f (xi−2) − f (xi−3)

h3  O(h)

f‴(xi) =
5f (xi) − 18f (xi−1) + 24f (xi−2) − 14f (xi−3) + 3f (xi−4)

2h3  O(h2)

Fourth Derivative

f″″(xi) =
f (xi) − 4f (xi−1) + 6f (xi−2) − 4f (xi−3) + f (xi−4)

h4  O(h)

f″″(xi) =
3f (xi) − 14f (xi−1) + 26f (xi−2) − 24f  (xi−3) + 11f (xi−4) − 2f (xi−5)

h4  O(h2)

FIGURE 23.3
Centered finite-divided-  
difference formulas: Two 
 versions are presented for each 
derivative. The latter version 
 incorporates more terms of the 
Taylor series expansion and is, 
consequently, more accurate.

First Derivative Error

f ′(xi) =
f (xi+1) − f (xi−1)

2h
 O(h2)

f ′(xi) =
−f (xi+2) + 8f (xi+1) − 8f (xi−1) + f (xi−2)

12h
 O(h4)

Second Derivative

f″(xi) =
f (xi+1) − 2f (xi) + f (xi−1)

h2  O(h2)

f″(xi) =
−f (xi+2) + 16f (xi+1) − 30f (xi) + 16f (xi−1) − f (xi−2)

12h2  O(h4)

Third Derivative

f‴(xi) =
f (xi+2) − 2f (xi+1) + 2f (xi−1) − f (xi−2)

2h3  O(h2)

f‴(xi) =
−f (xi+3) + 8f (xi+2) − 13f (xi+1) + 13f (xi−1) − 8f (xi−2) + f (xi−3)

8h3  O(h4)

Fourth Derivative

f″″(xi) =
f (xi+2) − 4f (xi+1) + 6f (xi) − 4f (xi−1) + f (xi−2)

h4  O(h2)

f″″(xi) =
−f (xi+3) + 12f (xi+2) − 39f (xi+1) + 56f (xi) − 39f (xi−1) + 12f (xi−2) − f (xi−3)

6h4  O(h4)
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 EXAMPLE 23.1 High-Accuracy Differentiation Formulas
Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f(x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using finite divided differences and a step size of h = 0.25,

 Forward Backward Centered 
 O(h) O(h) O(h2)

Estimate −1.155 −0.714 −0.934
εt (%) −26.5 21.7 −2.4

where the errors were computed on the basis of the true value of −0.9125. Repeat this com-
putation, but employ the high-accuracy formulas from Figs. 23.1 through 23.3.

Solution. The data needed for this example are

xi−2 = 0 f(xi−2) = 1.2
xi−1 = 0.25 f(xi−1) = 1.1035156
xi = 0.5 f(xi) = 0.925
xi+1 = 0.75 f(xi+1) = 0.6363281
xi+2 = 1 f(xi+2) = 0.2

The forward difference of accuracy O(h2) is computed as (Fig. 23.1)

f ′(0.5) =
−0.2 + 4(0.6363281) − 3(0.925)

2(0.25)
= −0.859375  εt = 5.82%

The backward difference of accuracy O(h2) is computed as (Fig. 23.2)

f ′(0.5) =
3(0.925) − 4(1.1035156) + 1.2

2(0.25)
= −0.878125  εt = 3.77%

The centered difference of accuracy O(h4) is computed as (Fig. 23.3)

f ′(0.5) =
−0.2 + 8(0.6363281) − 8(1.1035156) + 1.2

12(0.25)
= −0.9125  εt = 0%

 As expected, the errors for the forward and backward differences are considerably 
more accurate than the results from Example 4.4. However, surprisingly, the centered 
difference yields a perfect result. This is because the formulas based on the Taylor series 
are equivalent to passing polynomials through the data points.

 23.2 RICHARDSON EXTRAPOLATION
To this point, we have seen that there are two ways to improve derivative estimates when 
employing finite divided differences: (1) decrease the step size or (2) use a higher-order 
formula that employs more points. A third approach, based on Richardson extrapolation, 
uses two derivative estimates to compute a third, more accurate approximation.
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 Recall from Sec. 22.2.1 that Richardson extrapolation provided a means to obtain 
an improved integral estimate I with the formula [Eq. (22.4)]

I ≅ I(h2) +
1

(h1∕h2)2 − 1
 [I(h2) − I(h1)] (23.6)

where I(h1) and I(h2) are integral estimates using two step sizes, h1 and h2. Because of 
its convenience when expressed as a computer algorithm, this formula is usually written 
for the case where h2 = h1∕2, as in

I ≅ 
4
3

 I(h2) −
1
3

 I(h1) (23.7)

In a similar fashion, Eq. (23.7) can be written for derivatives as

D ≅ 
4
3

 D(h2) −
1
3

 D(h1) (23.8)

For centered difference approximations with O(h2), the application of this formula will 
yield a new derivative estimate of O(h4).

 EXAMPLE 23.2 Richardson Extrapolation
Problem Statement. Using the same function as in Example 23.1, estimate the first 
derivative at x = 0.5 employing step sizes of h1 = 0.5 and h2 = 0.25. Then use Eq. (23.8) 
to compute an improved estimate with Richardson extrapolation. Recall that the true value 
is −0.9125.

Solution. The first-derivative estimates can be computed with centered differences as

D(0.5) =
0.2 − 1.2

1
= −1.0  εt = −9.6%

and

D(0.25) =
0.6363281 − 1.1035156

0.5
= −0.934375  εt = −2.4%

The improved estimate can be determined by applying Eq. (23.8) to give

D =
4
3

 (−0.934375) −
1
3

 (−1) = −0.9125

which for the present case is a perfect result.

 The previous example yielded a perfect result because the function being analyzed 
was a fourth-order polynomial. The perfect outcome was due to the fact that Richardson 
extrapolation is actually equivalent to fitting a higher-order polynomial to the data and 
then evaluating the derivatives by centered divided differences. Thus, the present case 
matched the derivative of the fourth-order polynomial precisely. For most other functions, 
of course, this would not occur and our derivative estimate would be improved but not 
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672 NUMERICAL DIFFERENTIATION

perfect. Consequently, as was the case for the application of Richardson extrapolation, 
the approach can be applied iteratively using a Romberg algorithm until the result falls 
below an acceptable error criterion.

 23.3 DERIVATIVES OF UNEQUALLY SPACED DATA
The approaches discussed to this point are primarily designed to determine the derivative 
of a given function. For the finite-divided-difference approximations of Sec. 23.1, these 
data had to be evenly spaced. For the Richardson extrapolation technique of Sec. 23.2, 
these data had to be evenly spaced and generated for successively halved intervals. Such 
control of data spacing is usually available only in cases where we can use a function 
to generate a table of values.
 In contrast, empirically derived information—that is, data from experiments or field 
studies—is often collected at unequal intervals. Such information cannot be analyzed 
with the techniques discussed to this point.
 One way to handle nonequispaced data is to fit a second-order Lagrange interpolat-
ing polynomial [recall Eq. (18.23)] to each set of three adjacent points. Remember that 
this polynomial does not require that the points be equispaced. The second-order poly-
nomial can be differentiated analytically to give

 f ′(x) = f(xi−1) 
2x − xi − xi+1

(xi−1 − xi) (xi−1 − xi+1)
+ f(xi) 

2x − xi−1 − xi+1

(xi − xi−1)(xi − xi+1)

 + f(xi+1) 
2x − xi−1 − xi

(xi+1 − xi−1)(xi+1 − xi)
 (23.9)

where x is the value at which you want to estimate the derivative. Although this equation 
is certainly more complicated than the first-derivative approximations from Figs. 23.1 
through 23.3, it has some important advantages. First, it can be used to estimate the 
derivative anywhere within the range prescribed by the three points. Second, the points 
themselves do not have to be equally spaced. Third, the derivative estimate is of the same 
accuracy as the centered difference [Eq. (4.22)]. In fact, for equispaced points, Eq. (23.9) 
evaluated at x = xi reduces to Eq. (4.22).

 EXAMPLE 23.3 Differentiating Unequally Spaced Data
Problem Statement. As in Fig. 23.4, a temperature gradient can be measured down 
into the soil. The heat flux at the soil-air interface can be computed with Fourier’s law,

q(z = 0) = −kρC 
dT

dz ∣
z=0

where q = heat flux (W/m2), k = coefficient of thermal diffusivity in soil (≅ 3.5 × 10−7 m2/s), 
ρ = soil density (≅ 1800 kg/m3), and C = soil specific heat (≅ 840 J/(kg °C)). Note that a 
positive value for flux means that heat is transferred from the air to the soil. Use numerical 
differentiation to evaluate the gradient at the soil-air interface and employ this estimate to 
determine the heat flux into the ground.
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Solution. Equation (23.9) can be used to calculate the derivative as

 f ′(x) = 13.5 
2(0) − 1.25 − 3.75

(0 − 1.25)(0 − 3.75)
+ 12 

2(0) − 0 − 3.75
(1.25 − 0)(1.25 − 3.75)

 + 10 
2(0) − 0 − 1.25

(3.75 − 0)(3.75 − 1.25)
 = −14.4 + 14.4 − 1.333333 = −1.333333°C/cm

which can be used to compute (note that 1 W = 1 J/s),

 q(z = 0) = −3.5 × 10−7
 
m2

s (1800 
kg
m3)(840 

J
kg °C)(−133.3333 

°C
m )

 = 70.56 W/m2

 23.4 DERIVATIVES AND INTEGRALS FOR DATA WITH ERRORS
Aside from unequal spacing, another problem related to differentiating empirical data is 
that it usually includes measurement error. A shortcoming of numerical differentiation is 
that it tends to amplify errors in the data. Figure 23.5a shows smooth, error-free data that 
when numerically differentiated yield a smooth result (Fig. 23.5c). In contrast, Fig. 23.5b 
uses the same data, but with some points raised and some lowered slightly. This minor 
modification is barely apparent from Fig. 23.5b. However, the resulting effect in Fig. 23.5d 
is significant because the process of differentiation amplifies errors.
 As might be expected, the primary approach for determining derivatives for imprecise 
data is to use least-squares regression to fit a smooth, differentiable function to the data. In 
the absence of any other information, a lower-order polynomial regression might be a good 
first choice. Obviously, if the true functional relationship between the dependent and inde-
pendent variable is known, this relationship should form the basis for the least-squares fit.

FIGURE 23.4
Temperature versus depth into the soil.

z, cm

T (°C)10Air

Soil

3.75

13.512

1.25
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23.4.1 Differentiation versus Integration of Uncertain Data
Just as curve-fitting techniques like regression can be used to differentiate uncertain data, 
a similar process can be employed for integration. However, because of the difference in 
stability between differentiation and integration, this is rarely done.
 As depicted in Fig. 23.5, differentiation tends to be unstable—that is, it amplifies 
errors. In contrast, the fact that integration is a summing process tends to make it very 
forgiving with regard to uncertain data. In essence, as points are summed to form an 
integral, random positive and negative errors tend to cancel out. In contrast, because 
differentiation is subtractive, random positive and negative errors tend to add.

 23.5 PARTIAL DERIVATIVES
Partial derivatives along a single dimension are computed in the same fashion as ordinary 
derivatives. For example, suppose that we want to determine to partial derivatives for a 
two-dimensional function, f(x, y). For equally spaced data, the partial first derivatives 
can be approximated with centered differences,

∂f

∂x
=

f(x + Δx, y) − f(x − Δx, y)
2Δx

 (23.10)

∂f

∂y
=

f(x, y + Δy) − f(x, y − Δy)
2Δy

 (23.11)

FIGURE 23.5
Illustration of how small data 
 errors are amplified by 
 numerical differentiation:  
(a) data with no error, (b) data 
modified slightly, (c) the result-
ing numerical differentiation of 
curve (a), and (d) the resulting 
differentiation of curve (b), man-
ifesting increased variability. In 
contrast, the reverse operation 
of integration [moving from  
(d) to (b) by taking the area 
 under (d)] tends to  attenuate or 
smooth data errors.
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All the other formulas and approaches discussed to this point can be applied to evaluate 
partial derivatives in a similar fashion.
 For higher-order derivatives, we might want to differentiate a function with respect 
to two or more different variables. The result is called a mixed partial derivative. For 
example, we might want to take the partial derivative of f(x, y) with respect to both 
independent variables

∂2 f

∂x∂y
=

∂
∂x(

∂f

∂y) (23.12)

To develop a finite-difference approximation, we can first form a difference in x of the 
partial derivatives in y,

∂2 f

∂x∂y
=

∂f

∂y
 (x + Δx, y) −

∂f

∂y
 (x − Δx, y)

2Δx
 (23.13)

Then, we can use finite differences to evaluate each of the partials in y,

∂2 f

∂x∂y
=

f(x + Δx, y + Δy) − f(x + Δx, y − Δy)
2Δy

−
f(x − Δx, y + Δy) − f(x − Δx, y − Δy)

2Δy

2Δx
 (23.14)

Collecting terms yields the final result:

∂2 f

∂x∂y
=

f(x + Δx, y + Δy) − f(x + Δx, y − Δy) − f(x − Δx, y + Δy) + f(x − Δx, y − Δy)
4ΔxΔy

 (23.15)

 23.6 NUMERICAL INTEGRATION/DIFFERENTIATION 
WITH SOFTWARE PACKAGES
Software packages have great capabilities for numerical integration and differentiation. 
In this section, we will give you a taste of some of the more useful ones.

23.6.1 MATLAB
MATLAB software has a variety of built-in functions that allow functions and data to 
be integrated and differentiated (Table 23.1). In this section, we will illustrate some of 
these capabilities.
 MATLAB can integrate both discrete data and functions. For example, trapz com-
putes the integral of discrete values using the multiple-application trapezoidal rule. A 
simple representation of its syntax is

q = trapz(x, y)

where the two vectors, x and y, hold the independent and dependent variables, respec-
tively, and q holds the resulting integral. MATLAB also has another function,  cumtrapz, 
that computes the cumulative integral. For this case, the result is a vector whose elements 
q(k) hold the integral from x(1) to x(k).

cha32077_ch23_667-684.indd   675 10/1/19   2:09 PM



676 NUMERICAL DIFFERENTIATION
S

O
F

T
W

A
R

E

 When the integrand is available in functional form, quad generates the definite 
 integral using adaptive quadrature. A simple representation of its syntax is

q = quad(fun, a, b)

where fun is the function to be integrated and a and b are the integration limits.

 EXAMPLE 23.4 Using Numerical Integration to Compute Distance from Velocity
Problem Statement. As described in Sec. PT6.1, integration can be used to compute 
the distance traveled, y(t), of an object based on its velocity, v(t), as in,

y(t) = ∫ t

0
 υ(t) dt (E23.4.1)

Recall from Sec. 1.1, that the velocity of a free-falling parachutist, subject to linear drag 
and with zero initial velocity, can be computed with

υ(t) =
gm

c
 (1 − e−(c∕m)t) (E23.4.2)

If we substitute, Eq. (E23.4.2) into Eq. (E23.4.1), the result can be integrated analytically, 
with the initial condition, y(0) = 0, to yield

y(t) =
gm

c
 t −

gm2

c2  (1 − e−(c∕m)t)

This result can be used to compute that a 70-kg parachutist with a drag coefficient of 
12.5 kg/s will fall 799.73 m over a 20-s period.
 Use MATLAB functions to perform the same integration numerically. In addition, de-
velop a plot of the analytical and computed distances along with velocity on the same graph.

TABLE 23.1 MATLAB functions to implement (a) integration and (b) differentiation.

Function Description

(a) Integration:
cumtrapz Cumulative trapezoidal numerical integration
dblquad Numerically evaluate double integral
polyint Integrate polynomial analytically
quad Numerically evaluate integral, adaptive Simpson quadrature
quadgk Numerically evaluate integral, adaptive Gauss-Kronrod quadrature
quadl Numerically evaluate integral, adaptive Lobatto quadrature
quadv Vectorized quadrature
trapz Trapezoidal numerical integration
triplequad Numerically evaluate triple integral

(b) Differentiation:
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient
polyder Polynomial derivative
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Solution. We can first use Eq. (E23.4.2) to generate some unequally spaced times and 
velocities. We can then round these velocities so that they are more like measured values; 
that is, they are not exact,

>> format short g
>> t=[0 1 2 3 4.3 7 12 16];
>> g=9.81;m=70;c=12.5;
>> v=round(g*m/c*(1-exp(-c/m*t)));

The total distance can then be computed as

>> y=trapz(t,v)

y =
789.6

Thus, after 20 seconds, the jumper has fallen 789.6 m, which is reasonably close to the 
exact, analytical solution of 799.73 m.
 If we desire the cumulative distance traveled at each time, cumtrapz can be em-
ployed to compute,

>> yc=cumtrapz(t,v)

yc =
0  4.5  17  36.5  70.3  162.1  379.6  579.6  789.6

 A graph of the numerical and analytical solutions along with both the exact and 
rounded velocities is generated with the following commands,

>> ta=linspace (t(1), t(length(t)));
>> ya=g*m/c*ta-g*m^2/c^2*(1-exp(-c/m*ta));
>> plot (ta, ya, t, yc, 'o')
>> title ('Distance versus time')
>> xlabel ('t (s)'), ylabel ('x (m)')
>> legend ('analytical', 'numerical')

As in Fig. 23.6, the numerical and analytical results match fairly well.
 Finally, the quad function can be used to evaluate the integral with adaptive quadrature

>> va=@(t) g*m/c*(1-exp(-c/m*t));
>> yq=quad(va,t(1),t(length(t)))

yq =
799.73

This result is identical to the analytical solution to within the 5 significant digits displayed.

 As listed in Table 23.1b, MATLAB has a number of built-in functions for evaluating 
derivatives including the diff and gradient functions. When it is passed a one- 
dimensional vector of length n, the diff function returns a vector of length n − 1 
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containing the  differences between adjacent elements. These can then be employed to 
determine finite-difference approximations of first derivatives.
 The gradient function also returns differences. However, it does so in a manner 
that is more compatible with evaluating derivatives at the values themselves rather than 
in the intervals between values. A simple representation of its syntax is

fx = gradient(f)

where f = a one-dimensional vector of length n and fx is a vector of length n contain-
ing differences based on f. Just as with the diff function, the first value returned is 
the difference between the first and second value. However, for the intermediate values, 
a centered difference based on the adjacent values is returned,

diffi =
fi+1 − fi−1

2

The last value is then computed as the difference between the final two values. Hence, 
the results correspond to using centered differences for all the intermediate values, with 
forward and backward differences at the ends.
 Note that the spacing between points is assumed to be equal to 1. If the vector 
represents equally spaced data, the following version divides all the results by the inter-
val and hence returns the actual values of the derivatives,

fx = gradient(f, h)

where h = the spacing between points.

 EXAMPLE 23.5 Using diff and gradient for Differentiation
Problem Statement. Explore how the MATLAB’s diff and gradient functions can 
be employed to differentiate the function f(x) = 0.2 + 25x − 200x2 + 675x3 − 900x4 + 

FIGURE 23.6
Plot of distance versus time. 
The line was computed with 
the analytical solution, 
whereas the points were de-
termined numerically with the 
cumtrapz function.
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400x5 from x = 0 to 0.8. Compare your results with the exact solution: f ′(x) = 25 − 400x2 + 
2025x2 − 3600x3 + 2000x4.

Solution. We can first express f(x) as an anonymous function

>> f=@(x) 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5;

We then generate a series of equally spaced values of the independent and dependent 
variables,

>> x=0:0.1:0.8;
>> y=f(x);

The diff function is then used to determine the differences between adjacent elements 
of each vector. For example,

>> format short g
>> diff(x)

0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

As expected, the result represents the differences between each pair of elements of x. 
To compute divided-difference approximations of the derivative, we merely perform a 
vector division of the y differences by the x differences by entering

>> d=diff(y)./diff(x)

10.89 −0.01 3.19 8.49 8.69 1.39 −11.01 −21.31

Note that because we are using equally spaced values, after generating the x values, we 
could have simply performed the above computation concisely as

>> d=diff(f(x))/0.1;

The vector d now contains derivative estimates corresponding to the midpoints between 
adjacent elements. Therefore, in order to develop a plot of our results, we must first 
generate a vector holding the x values for the midpoint of each interval

>> n=length(x);
>> xm=(x(1:n-1)+x(2:n))./2;

We can compute values for the analytical derivative at a finer level of resolution to 
 include on the plot for comparison.

>> xa=0:.01:.8;
>> ya=25-400*xa+3*675*xa.^2-4*900*xa.^3+5*400*xa.^4;

A plot of the numerical and analytical estimates is then generated with

subplot (1, 2, 1), plot (xm, d, 'o', xa, ya)
xlabel ('x'), ylabel ('y')
legend ('numerical', 'analytical'),title ('(a) diff')

As displayed in Fig. 23.7a, the results of the numerical approximation compare favorably 
with the exact, analytical solution for this case.
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FIGURE 23.7
Comparison of the exact de-
rivative (line) with numerical 
estimates (dots) computed 
with MATLAB’s (a) diff, and  
(b) gradient functions.

 We can also use the gradient function to determine the derivatives as

>> dy=gradient(y,0.1)

dy = 10.89 5.44 1.59 5.84 8.59 5.04 −4.81 −16.16 −21.31

As was done for the diff function, we can also display both the numerical and analytical 
estimates on a plot,

>> subplot(1,2,2), plot(x,dy,'o',xa,ya)
>> xlabel('x')
>> legend('numerical','analytical'),title('(b)gradient')

 The results (Fig. 23.7b) are not as accurate as those obtained with the diff function 
(Fig. 23.7a). This is due to the fact that gradient employs intervals that are two times 
(0.2) as wide as for those used for diff (0.1).

 Beyond one-dimensional vectors, the gradient function is particularly well-suited 
for determining the partial derivatives of matrices. For example, for a two-dimensional 
matrix, the function can be invoked as

[fx, fy] = gradient(f, h)

where f is a two-dimensional array, fx corresponds to the differences in the x (column) 
direction and fy corresponds to the differences in the y (row) direction, and h = the 
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spacing between points. If h is omitted, the spacing between points in both dimensions 
is assumed to be 1. In Sec. 31.4.2, we will illustrate how this capability can be used to 
visualize vector fields.

23.6.2 Mathcad
Mathcad has operators that perform numerical integration and differentiation. These 
 operators employ and look like the same traditional mathematical symbols you have used 
since high school or your first semester of college.
 The integration operator uses a sequence of trapezoidal rule evaluations of the inte-
gral and the Romberg algorithm. Iterations are performed until successive results vary by 
less than a specified tolerance. The derivative operator uses a similar method to compute 
derivatives between order 0 and order 5. This operator creates a table of approximations 
based on divided-difference calculations of the derivative using various orders and step 
sizes. Extrapolation techniques are used to estimate values in a manner resembling 
 Richardson’s method.
 Figure 23.8 shows a Mathcad example where f(x) is created using the definition 
symbol (:=), and then the integral is calculated over a range from x = 0 to x = 0.8. In 
this case, we used the simple polynomial we evaluated throughout Chap. 21. Note that 
the range as defined by the variables a and b is input with the definition symbol.
 Figure 23.9 shows a Mathcad example where a function f(x) is created with the 
definition symbol (:=) and then first and third derivatives are calculated at a point where 
x = −6. Note that the location of the point and the order of the derivative are input with 
the definition symbol.

FIGURE 23.8
Mathcad screen to determine 
the integral of a polynomial 
with Romberg integration.
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FIGURE 23.9
Mathcad screen to implement 
numerical differentiation.

PROBLEMS

23.1 Compute forward and backward difference approximations of 
O(h) and O(h2), and central difference approximations of O(h2) and 
O(h4) for the first derivative of y = sin x at x = π∕4 using a value of 
h = π∕12. Estimate the true percent relative error, εt, for each ap-
proximation.
23.2 Repeat Prob. 23.1, but for y = log x evaluated at x = 25 with 
h = 2.
23.3 Use centered difference approximations to estimate the first 
and second derivatives of y = ex at x = 2 for h = 0.1. Employ both 
O(h2) and O(h4) formulas for your estimates.
23.4 Use Richardson extrapolation to estimate the first deriva-
tive of y = cos x at x = π∕4 using step sizes of h1 = π∕3 and h2 = 
π∕6. Employ centered differences of O(h2) for the initial 
 estimates.
23.5 Repeat Prob. 23.4, but for the first derivative of ln x at x = 5 
using h1 = 2 and h2 = 1.
23.6 Employ Eq. (23.9) to determine the first derivative of y = 
2x4 − 6x3 − 14x − 8 at x = 0 based on values at x0 = −0.5, x1 = 1, 
and x2 = 2. Compare this result with the true value and with an 
estimate obtained using a centered difference approximation 
based on h = 1.
23.7 Prove that for equispaced data points, Eq. (23.9) reduces to 
Eq. (4.22) at x = xi.

23.8 Compute the first-order central difference approximations of 
O(h4) for each of the following functions at the specified location 
and for the specified step size:
(a) y = x3 + 3x − 15 at x = 0, h = 0.25
(b) y = x2 cos x at x = 0.5, h = 0.1
(c) y = tan(x∕3) at x = 2, h = 0.5
(d) y = sin(0.5√x)∕x at x = 1, h = 0.2
(e) y = ex + x at x = 3, h = 0.2
Compare your results with the analytical solutions.
23.9 The following data were collected for the distance traveled 
versus time for a rocket:
t, s 0 25 50 75 100 125

y, km 0 32 58 78 92 100

Use numerical differentiation to estimate the rocket’s velocity and 
acceleration at each time.
23.10 Develop a user-friendly program to apply a Romberg algo-
rithm to estimate the derivative of a given function.
23.11 Develop a user-friendly program to obtain first-derivative 
estimates for unequally spaced data. Test it with the following data:
x 1 1.5 1.6 2.5 3.5

f (x) 0.6767 0.3734 0.3261 0.08422 0.01596

where f(x) = 5e−2xx. Compare your results with the true derivatives.
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23.17 Evaluate the following integral with MATLAB,

∫2π

0
 
sin t

t
 dt

using both the quad and quadl functions. To learn more about 
quadl, type help quadl at the MATLAB prompt.
23.18 Use the diff function in MATLAB and compute the 
 finite-difference approximation to the first and second derivative at 
each x-value in the table below, excluding the two end points. Use 
 finite-difference approximations that are second-order correct, O(Δx2).

x 0 1 2 3 4 5 6 7 8 9 10

y 1.5 2.1 3.3 4.8 7.0 6.6 8.7 7.5 9.0 10.9 10

23.19 The objective of this problem is to compare second-order 
accurate forward, backward, and centered finite-difference approx-
imations of the first derivative of a function to the actual value of 
the derivative. This will be done for

f(x) = e−2x − x

(a) Use calculus to determine the correct value of the derivative at 
x = 2.

(b) To evaluate the centered finite-difference approximations, start 
with x = 0.5. Thus, for the first evaluation, the x values for the 
centered difference approximation will be x = 2 ± 0.5 or x = 
1.5 and 2.5. Then, decrease in increments of 0.01 down to a 
minimum value of Δx = 0.01.

(c) Repeat part (b) for the second-order forward and backward dif-
ferences. (Note that these can be done at the same time that the 
centered difference is computed in the loop.)

(d) Plot the results of (b) and (c) versus x. Include the exact result 
on the plot for comparison.

23.20 Use a Taylor series expansion to derive a centered finite-
difference approximation to the third derivative that is second- 
order accurate. To do this, you will have to use four different 
expansions for the points xi−2, xi−1, xi+1, and xi+2. In each case, the 
expansion will be around the point xi. The interval Δx will be used 
in each case of i − 1 and i + 1, and 2Δx will be used in each case of 
i − 2 and i + 2. The four equations must then be combined in a way 
to eliminate the first and second derivatives. Carry enough terms 

23.12 The following data are provided for the velocity of an object 
as a function of time,

t, s 0 4 8 12 16 20 24 28 32 36

v, m/s 0 34.7 61.8 82.8 99.2 112.0 121.9 129.7 135.7 140.4

(a) Using the best numerical method available, how far does the 
object travel from t = 0 to 28 s?

(b) Using the best numerical method available, what is the object’s 
acceleration at t = 28 s?

(c) Using the best numerical method available, what is the object’s 
acceleration at t = 0 s?

23.13 Recall that for the falling parachutist problem, the velocity is 
given by

υ(t) =
gm

c
 (1 − e−(c∕m)t) (P23.13.1)

and the distance traveled can be obtained by

d(t) =
gm

c
 ∫ t

0
 (1 − e−(c∕m)t) dt (P23.13.2)

Given g = 9.81, m = 70, and c = 12,
(a) Use MATLAB or Mathcad to integrate Eq. (P23.13.1) from  

t = 0 to 10.
(b) Analytically integrate Eq. (P23.13.2) with the initial condition 

that d = 0 at t = 0. Evaluate the result at t = 10 to confirm (a).
(c) Use MATLAB or Mathcad to differentiate Eq. (P23.13.1) at 

t = 10.
(d) Analytically differentiate Eq. (P23.13.1) at t = 10 to confirm (c).
23.14 The normal distribution is defined as

f(x) =
1

√2π
 e−x2∕2

(a) Use MATLAB or Mathcad to integrate this function from  
x = −1 to 1 and from −2 to 2.

(b) Use MATLAB or Mathcad to determine the inflection points 
of this function.

23.15 The following data were generated from the normal 
 distribution:

x −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

f (x) 0.05399 0.12952 0.24197 0.35207 0.39894 0.35207 0.24197 0.12952 0.05399

(a) Use MATLAB to integrate these data from x = −1 to 1 and −2 
to 2 with the trap function.

(b) Use MATLAB to estimate the inflection points of these data.
23.16 Evaluate ∂f∕∂x, ∂f∕∂y, and ∂f∕(∂x∂y) for the following 
function at x = y = 1 (a) analytically and (b) numerically with Δx = 
Δy = 0.0001,

f(x, y) = 3xy + 3x − x3 − 3y3

along in each expansion to evaluate the first term that will be trun-
cated to determine the order of the approximation.
23.21 Use the following data to find the velocity and acceleration 
at t = 10 seconds:

Time, t, s 0 2 4 6 8 10 12 14 16

Position, x, m 0 0.7 1.8 3.4 5.1 6.3 7.5 8.0 8.4
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23.27 Chemical reactions often follow the model:
dc

dt
= −kcn

where c = concentration, t = time, k = reaction rate, and n = reac-
tion order. Given values of c and dc∕dt, k and n can be evaluated by 
a linear regression of the logarithm of this equation:

log(−
dc

dt ) = log k + n log c

Use this approach along with the following data to estimate k and n:

t 10 20 30 40 50       60

c 3.5 2.5 1.8 1.3 0.9 0.6

23.28 The velocity profile of a fluid in a circular pipe can be rep-
resented as

υ = 10(1 −
r

r0)
1∕n

where v = velocity, r = radial distance measured out from the pipe’s 
centerline, r0 = the pipe’s radius, and n = a parameter. Determine 
the flow in the pipe if r0 = 0.75 and n = 7 using (a) Romberg inte-
gration to a tolerance of 0.1%, (b) the two-point Gauss-Legendre 
formula, and (c) the MATLAB quad function. Note that flow is 
equal to velocity times area.
23.29 The amount of mass transported via a pipe over a period of 
time can be computed as

M = ∫ t2

t1

 Q(t)c(t) dt

where M = mass (mg), t1 = the initial time (min), t2 = the final time 
(min), Q(t) = flow rate (m3/min), and c(t) = concentration (mg/m3). 
The following functional representations define the temporal varia-
tions in flow and concentration,

Q(t) = 9 + 4cos2(0.4t)
c(t) = 5e−0.5t + 2e0.15t

Determine the mass transported between t1 = 2 and t2 = 8 min using 
(a) Romberg integration to a tolerance of 0.1% and (b) the 
 MATLAB quad function.
23.30 The velocity (m/s) of an object at time t (in seconds) is given by

v =
2t

√1 + t2

Using Richardson extrapolation, find the acceleration of the parti-
cle at time t = 5 s using h = 0.5 and 0.25. Employ the exact solution 
to compute the true percent relative error of each estimate.

Use second-order correct (a) centered finite-difference, (b) forward 
finite-difference, and (c) backward finite-difference methods.
23.22 A plane is being tracked by radar, and data are taken every 
second in polar coordinates θ and r:

t, s 200 202 204 206 208     210

θ, rad 0.75 0.72 0.70 0.68 0.67    0.66

r, m 5120 5370 5560 5800 6030 6240

At 206 s, use the centered finite difference (second-order correct) to 
find the vector expressions for velocity υ

→, and acceleration a
→. The 

velocity and acceleration given in polar coordinates are

υ
→ = r


e
→

r + rθ

e
→

θ and a
→ = (r − r θ


 2) e

→
r + (rθ


+ 2r


θ

) e

→
θ

23.23 Develop an Excel∕VBA macro program to read in adjacent 
columns of x and y values from a worksheet. Evaluate the deriva-
tives at each point using Eq. (23.9), and display the results in a third 
column adjacent to the x and y values on the spreadsheet. Test 
your program by applying it to evaluate the velocities for the time–
position values from Prob. 23.21.
23.24 Use regression to estimate the acceleration at each time for the 
following data with second-, third-, and fourth-order polynomials. 
Plot the results.

t 1 2 3.3 4.5 6 7 8 8.6 9.3 10

v 10 12 11 14 17 16 12 14 13.5 10

23.25 You have to measure the flow rate of water through a small 
pipe. In order to do it, you place a bucket at the pipe’s outlet and 
measure the volume in the bucket as a function of time as tabulated 
below. Estimate the flow rate at t = 6.7 s.

Time, s 0 1 5 8

Volume, cm3 0 1 8 16.4

23.26 The velocity υ (m/s) of air flowing past a flat surface is mea-
sured at several distances y (m) away from the surface. Determine 
the shear stress τ (N/m2) at the surface (y = 0), using Newton’s vis-
cosity law,

τ = μ 
dυ

dy

Assume this value of dynamic viscosity: μ = 1.8 × 10−5 N s/m2.

y, m 0 0.002 0.006 0.012 0.018 0.024

v, m/s 0 0.287 0.899 1.915 3.048 4.299
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C H A P T E R

24
Case Studies: Numerical 
Integration and Differentiation

The purpose of this chapter is to apply the methods of numerical integration and differen-
tiation discussed in Part Six to practical engineering problems. Two situations are most 
frequently encountered. In the first case, the function under study can be expressed in 
analytic form but is too complicated to be readily evaluated using the methods of calculus. 
Numerical methods are applied to situations of this type by using the analytic expression 
to generate a table of arguments and function values. In the second case, the function to 
be evaluated is inherently tabular in nature. This type of function usually represents a series 
of measurements, observations, or some other empirical information. Data for either case 
are directly compatible with several schemes discussed in this part of the book.
 Section 24.1, which deals with heat calculations from chemical engineering, involves 
equations. In this application, an analytic function is integrated numerically to determine 
the heat required to raise the temperature of a material.
 Sections 24.2 and 24.3 also involve functions that are available in equation form. 
Section 24.2, which is taken from civil engineering, uses numerical integration to deter-
mine the total wind force acting on the mast of a racing sailboat. Section 24.3 determines 
the root-mean-square current for an electric circuit. This example is used to demonstrate 
the utility of Romberg integration and Gauss quadrature.
 Section 24.4 focuses on the analysis of tabular information to determine the work 
required to move a block. Although this application has a direct connection with me-
chanical engineering, it is germane to all other areas of engineering. Among other things, 
we use this example to illustrate the integration of unequally spaced data. 

 24.1 INTEGRATION TO DETERMINE THE TOTAL QUANTITY  
OF HEAT (CHEMICAL/BIO ENGINEERING)

Background. Heat calculations are employed routinely in chemical and bio engineering 
as well as in many other fields of engineering. This application provides a simple but 
useful example of such computations.
 One problem that is often encountered is the determination of the quantity of heat 
required to raise the temperature of a material. The characteristic that is needed to carry 
out this computation is the heat capacity, c. This parameter represents the quantity of 
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686 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

heat required to raise a unit mass by a unit temperature. If c is constant over the range 
of temperatures being examined, the required heat ΔH (in calories) can be calculated by

ΔH = mc ΔT  (24.1)

where c has units of cal/(g °C), m = mass (g), and ΔT = change in temperature (°C). For 
example, the amount of heat required to raise 20 g of water from 5 to 10°C is equal to

ΔH = 20(1)(10 − 5) = 100 cal

where the heat capacity of water is approximately 1 cal/(g °C). Such a computation is 
adequate when ΔT is small. However, for large ranges of temperature, the heat capacity is 
not constant and, in fact, varies as a function of temperature. For example, the heat capac-
ity of a material could increase with temperature according to a relationship such as

c(T) = 0.132 + 1.56 × 10−4T + 2.64 × 10−7T 
2 (24.2)

Here you are asked to compute the heat required to raise 1000 g of this material from 
−100 to 200°C.

Solution. Equation (PT6.4) provides a way to calculate the average value of c(T):

c(T) =
∫T2

T1

 c(T) dT

T2 − T1
 (24.3)

which can be substituted into Eq. (24.1) to yield

ΔH = m ∫T2

T1

 c(T) dT  (24.4)

where ΔT = T2 − T1. Now because, for the present case, c(T) is a simple quadratic, ΔH 
can be determined analytically. Equation (24.2) is substituted into Eq. (24.4) and the result 
integrated to yield an exact value of ΔH = 42,732 cal. It is useful and instructive to 
compare this result with those from the numerical methods developed in Chap. 21. To 
accomplish this, it is necessary to generate a table of values of c for various values of T:

T, °C c, cal/(g °C)

 −100 0.11904
 −50 0.12486
 0 0.13200
 50 0.14046
 100 0.15024
 150 0.16134
 200 0.17376

These points can be used in conjunction with a six-segment Simpson’s 1∕3 rule to com-
pute an integral estimate of 42,732. This result can be substituted into Eq. (24.4) to yield 
a value of ΔH = 42,732 cal, which agrees exactly with the analytical solution. This exact 
agreement would occur no matter how many segments were used. This is to be expected 
because c is a quadratic function and Simpson’s rule is exact for polynomials of the third 
order or less (see Sec. 21.2.1).
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 24.2 EFFECTIVE FORCE ON THE MAST OF A RACING SAILBOAT 687

 The results using the trapezoidal rule are listed in Table 24.1. It is seen that the 
trapezoidal rule is also capable of estimating the total heat very accurately. However, a 
small step (<10°C) is required for five-place accuracy. The same calculation can also be 
implemented with software. For example, MATLAB software yields

>> m=1000;
>> DH=m*quad(@(T) 0.132+1.56e-4*T+2.64e-7*T.^2,-100,200)

DH =
42732

 24.2 EFFECTIVE FORCE ON THE MAST OF A RACING 
SAILBOAT (CIVIL/ENVIRONMENTAL ENGINEERING)

Background. A cross section of a racing sailboat is shown in Fig. 24.1a. Wind force 
( f ) exerted per foot of mast from the sails varies as a function of distance above the 

TABLE 24.1 Results using the trapezoidal rule with various step sizes.

Step Size, °C ΔH εt (%)

 300 96,048 125
 150 43,029 0.7
 100 42,864 0.3
 50 42,765 0.07
 25 42,740 0.018
 10 42,733.3 <0.01
 5 42,732.3 <0.01
 1 42,732.01 <0.01
 0.05 42,732.00003 <0.01

Wind

z = 30 ft

z = 0

Mast
support
cables

Mast

T

3 ft

(b)

(a)

FIGURE 24.1
(a) Cross section of a racing 
sailboat. (b) Wind force f  
exerted per foot of mast as a 
function of distance z above 
the deck of the boat.

cha32077_ch24_685-707.indd   687 10/1/19   2:11 PM
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deck of the boat (z), as in Fig. 24.1b. Calculate the tensile force T in the left mast sup-
port cable, assuming that the right support cable is completely slack and the mast joins 
the deck in a manner that transmits horizontal or vertical forces but no moments. Assume 
that the mast remains vertical.

Solution. To proceed with this problem, it is required that the distributed force f be 
converted to an equivalent total force F and that its effective location above the deck d 
be calculated (Fig. 24.2). This computation is complicated by the fact that the force 
exerted per foot of mast varies with the distance above the deck. The total force exerted 
on the mast can be expressed as the integral of a continuous function:

F = ∫30

0
 200(

z

5 + z) e−2z∕30 dz (24.5)

This nonlinear integral is difficult to evaluate analytically. Therefore, it is convenient to 
employ numerical approaches such as Simpson’s rule and the trapezoidal rule for this 
problem. This is accomplished by calculating f(z) for various values of z and then using 
Eq. (21.10) or (21.18). For example, Table 24.2 has values of f(z) for a step size of 3 ft 
that provide data for Simpson’s 1∕3 rule or the trapezoidal rule. Results for several step 
sizes are given in Table 24.3. It is observed that both methods give a value of F = 1480.6 lb 
as the step size becomes small. In this case, step sizes of 0.05 ft for the trapezoidal rule 
and 0.5 ft for Simpson’s rule provide good results.

TABLE 24.3  Values of F computed on the basis of various versions of the trapezoidal 
rule and Simpson’s 1/3 rule.

Technique Step Size, ft Segments F, lb

Trapezoidal rule 15 2 1001.7
 10 3 1222.3
 6 5 1372.3
 3 10 1450.8
 1 30 1477.1
 0.5 60 1479.7
 0.25 120 1480.3
 0.1 300 1480.5
 0.05 600 1480.6
Simpson’s 1/3 rule 15 2 1219.6
 5 6 1462.9
 3 10 1476.9
 1 30 1480.5
 0.5 60 1480.6

TABLE 24.2  Values of f(z) for a step size of 3 ft that provide data for the trapezoidal 
rule and Simpson’s 1/3 rule.

z, ft 0 3 6 9 12 15 18 21 24 27     30

f (z), lb/ft 0 61.40 73.13 70.56 63.43 55.18 47.14 39.83 33.42 27.89 23.20

FIGURE 24.2
Free-body diagram of the 
forces exerted on the mast of 
a sailboat.

0
3 ft

d = 13.05 ft

V

T

H

F = 1480.6 lb

θ  = tan–1 (3/30)
= 0.0996687
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 The effective line of action of d (Fig. 24.2) can be calculated by evaluation of the integral

d =
∫30

0
 z f(z) dz

∫30

0
 f(z) dz

 (24.6)

or

d =
∫30

0
 200z[z∕(5 + z) ]e−2z∕30 dz

1480.6
 (24.7)

This integral can be evaluated using methods similar to the above. For example, Simpson’s 
1∕3 rule with a step size of 0.5 gives d = 19,326.9∕1480.6 = 13.05 ft.
 With F and d known from numerical methods, a free-body diagram is used to develop 
force and moment balance equations. This free-body diagram is shown in Fig. 24.2. Sum-
ming forces in the horizontal and vertical direction and taking moments about point 0 gives

 ΣFH = 0 = F − T sin θ − H (24.8)
 ΣFV = 0 = V − T cos θ  (24.9)
 ΣM0 = 0 = 3V − Fd  (24.10)

where T = the tension in the cable and H and V = the unknown reactions on the mast 
transmitted by the deck. The direction, as well as the magnitude, of H and V is unknown. 
Equation (24.10) can be solved directly for V because F and d are known:

V =
Fd

3
=

(1480.6)(13.05)
3

= 6440.6 lb

Therefore, from Eq. (24.9),

T =
V

cos θ
=

6440.6
0.995

= 6473 lb

and from Eq. (24.8),

H = F − T sin θ = 1480.6 − (6473)(0.0995) = 836.54 lb

 These forces now enable you to proceed with other aspects of the structural design of 
the boat such as the cables and the deck support system for the mast. This problem illus-
trates nicely two uses of numerical integration that may be encountered during the engi-
neering design of structures. It is seen that both the trapezoidal rule and Simpson’s 1∕3 
rule are easy to apply and are practical problem-solving tools. Simpson’s 1∕3 rule is more 
accurate than the trapezoidal rule for the same step size and thus may often be preferred.

 24.3 ROOT-MEAN-SQUARE CURRENT BY NUMERICAL  
INTEGRATION (ELECTRICAL ENGINEERING)

Background. The average value of an oscillating electric current over one period may 
be zero. For example, suppose that the current is described by a simple sinusoid: i(t) = 
sin (2πt∕T), where T is the period. The average value of this function can be determined 
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by the following equation:

i =
∫T

0
 sin(

2πt

T )dt

T − 0
=

−cos (2π) + cos 0
T

= 0

 Despite the fact that the net result is zero, such current is capable of performing work 
and generating heat. Therefore, electrical engineers often characterize such current by

IRMS = √
1
T ∫T

0
 i

2(t) dt (24.11)

where i(t) = the instantaneous current. Calculate the RMS, or root-mean-square, current 
of the waveform shown in Fig. 24.3 using the trapezoidal rule, Simpson’s l∕3 rule, 
Romberg integration, and Gauss quadrature for T = 1 s.

Solution. Integral estimates for various applications of the trapezoidal rule and Simpson’s 
1∕3 rule are listed in Table 24.4. Notice that Simpson’s rule is more accurate than the 
trapezoidal rule.
 The exact value for the integral is 15.41261. This result is obtained using a 
128- segment trapezoidal rule or a 32-segment Simpson’s rule. The same estimate is also 
determined using Romberg integration (Fig. 24.4).
 In addition, Gauss quadrature can be used to make the same estimate. The determi-
nation of the root-mean-square current involves the evaluation of the integral (T = 1),

I = ∫1∕2

0
 (10e−t sin 2πt)2dt (24.12)

i

0 T/2T/4 t

For 0 ≤ t ≤ T/2, i(t) = 10e– t /T sin  2π
For T/2 < t ≤ T, i(t) = 0

t
T

FIGURE 24.3
A periodically varying electric 
current.
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TABLE 24.4  Values for the integral calculated using various numerical schemes. The 
percent relative error εt is based on a true value of 15.41261.

Technique Segments Integral εt (%)

Trapezoidal rule 1 0.0 100
 2 15.16327 1.62
 4 15.40143 0.0725
 8 15.41196 4.21 × 10−3

 16 15.41257 2.59 × 10−4

 32 15.41261 1.62 × 10−5

 64 15.41261 1.30 × 10−6

 128 15.41261 0

Simpson’s 1/3 rule 2 20.21769 −31.2
 4 15.48082 −0.443
 8 15.41547 −0.0186
 16 15.41277 1.06 × 10−3

 32 15.41261 0

 First, a change in variable is performed by applying Eqs. (22.29) and (22.30) to yield

t =
1
4

+
1
4

 td   dt =
1
4

 dtd

These relationships can be substituted into Eq. (24.12) to yield

I = ∫1

−1
 [10e−[1∕4+(1∕4)td] sin 2π (

1
4

+
1
4

 td)]
2

 
1
4

 dt (24.13)

 For the two-point Gauss-Legendre formula, this function is evaluated at td = −1∕√3 
and 1∕√3, with the results being 7.684096 and 4.313728, respectively. These values can 
be substituted into Eq. (22.23) to yield an integral estimate of 11.99782, which represents 
an error of εt = 22.1%.
 The three-point formula is (Table 22.1)

 I = 0.5555556(1.237449) + 0.8888889(15.16327) + 0.5555556(2.684915)
 = 15.65755  ∣εt∣ = 1.6

The results of using the higher-point formulas are summarized in Table 24.5.

O(h2) O(h4) O(h6) O(h8) O(h10) O(h12)

0 20.21769 15.16503 15.41502 15.41261 15.41261
15.16327 15.48082 15.41111 15.41262 15.41261
15.40143 15.41547 15.41225 15.41261
15.41196 15.41277 15.41261
15.41257 15.41262
15.41261

FIGURE 24.4
Result of using Romberg  
integration to estimate the 
RMS current.
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TABLE 24.5  Results of using various-point Gauss quadrature 
formulas to approximate the integral.

Points Estimate εt (%)

 2 11.9978243 22.1
 3 15.6575502 −1.59
 4 15.4058023 4.42 × 10−2

 5 15.4126391 −2.01 × 10−4

 6 15.4126109 −1.82 × 10−5

 The integral estimate of 15.41261 can be substituted into Eq. (24.12) to compute an 
IRMS of 3.925890 A. This result could then be employed to guide other aspects of the 
design and operation of the circuit.

 24.4 NUMERICAL INTEGRATION TO COMPUTE WORK 
(MECHANICAL/AEROSPACE ENGINEERING)

Background. Many engineering problems involve the calculation of work. The general 
formula is

Work = force × distance

When you were introduced to this concept in high school physics, simple applications 
were presented using forces that remained constant throughout the displacement. For 
example, if a force of 10 lb was used to pull a block a distance of 15 ft, the work would 
be calculated as 150 ft lb.
 Although such a simple computation is useful for introducing the concept, realistic 
problem settings are usually more complex. For example, suppose that the force varies 
during the course of the calculation. In such cases, the work equation is re-expressed as

W = ∫ xn

x0

 F(x) dx (24.14)

where W = work (ft lb), x0 and xn = the initial and final positions, respectively, and F(x) 
a force that varies as a function of position. If F(x) is easy to integrate, Eq. (24.14) can 
be evaluated analytically. However, in a realistic problem setting, the force might not be 
expressed in such a manner. In fact, when analyzing measured data, the force might be 
available only in tabular form. For such cases, numerical integration is the only viable 
option for the evaluation.
 Further complexity is introduced if the angle between the force and the direction of 
movement also varies as a function of position (Fig. 24.5). The work equation can be 
modified further to account for this effect, as in

W = ∫ xn

x0

 F(x)cos [θ(x) ] dx (24.15)

Again, if F(x) and θ(x) are simple functions, Eq. (24.15) might be solved analytically. How-
ever, as in Fig. 24.5, it is more likely that the functional relationship is complicated. For 
this situation, numerical methods provide the only alternative for determining the integral.
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 Suppose that you have to perform the computation for the situation depicted in 
Fig. 24.5. Although the figure shows the continuous values for F(x) and θ(x), assume that, 
because of experimental constraints, you are provided with only discrete measurements at 
x = 5-ft intervals (Table 24.6). Use single- and multiple-application versions of the trap-
ezoidal rule and Simpson’s 1∕3 and 3∕8 rules to compute work for this data.

FIGURE 24.5
The case of a variable force 
acting on a block. For this 
case, the angle, as well as the 
magnitude, of the force varies.

F(x)

x0

0
0

30

x, ft

10

F
(x

), 
lb

1

0
0

30

x, ft

θ 
(x

), 
ra

d

F(x)

xn

θθ

TABLE 24.6  Data for force F(x) and angle θ(x) as a function of 
position x.

x, ft F(x), lb θ, rad F(x) cos θ

 0 0.0 0.50 0.0000
 5 9.0 1.40 1.5297
 10 13.0 0.75 9.5120
 15 14.0 0.90 8.7025
 20 10.5 1.30 2.8087
 25 12.0 1.48 1.0881
 30 5.0 1.50 0.3537

cha32077_ch24_685-707.indd   693 10/1/19   2:12 PM



694 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

Solution. The results of the analysis are summarized in Table 24.7. A percent relative 
error εt was computed in reference to a true value of the integral of 129.52 that was 
estimated on the basis of values taken from Fig. 24.5 at 1-ft intervals.
 The results are interesting because the most accurate outcome occurs for the simple 
two-segment trapezoidal rule. More refined estimates using more segments, as well as 
Simpson’s rules, yield less accurate results.
 The reason for this apparently counterintuitive result is that the coarse spacing of the 
points is not adequate to capture the variations of the forces and angles. This is particularly 
evident in Fig. 24.6, where we have plotted the continuous curve for the product of F(x) 
and cos [θ(x)]. Notice how the use of seven points to characterize the continuously vary-
ing function misses the two peaks at x = 2.5 and 12.5 ft. The omission of these two points 
effectively limits the accuracy of the numerical integration estimates in Table 24.7. The 
fact that the two-segment trapezoidal rule yields the most accurate result is due to the 
chance positioning of the points for this particular problem (Fig. 24.7).
 The conclusion to be drawn from Fig. 24.6 is that an adequate number of measure-
ments must be made to accurately compute integrals. For the present case, if data were 

TABLE 24.7  Estimates of work calculated using the trapezoidal rule and Simpson’s rules. 
The percent relative error εt was computed in reference to a true value of 
the integral (129.52 ft lb) that was estimated on the basis of values at 1-ft 
intervals.

Technique Segments Work εt, %

Trapezoidal 1 5.31 95.9
 2 133.19 2.84
 3 124.98 3.51
 6 119.09 8.05
Simpson’s 1/3 rule 2 175.82 −35.75
 6 117.13 9.57
Simpson’s 3/8 rule 3 139.93 −8.04

x, ft

0 30

F
(x

) c
os

[θ
 (x

)]

Work

FIGURE 24.6
A continuous plot of  
F(x) cos [θ(x)] versus position 
with the seven discrete points 
used to develop the numerical  
integration estimates in  
Table 24.7. Notice how the use 
of seven points to  
characterize this continuously 
varying function misses two 
peaks at x = 2.5 and 12.5 ft.
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available at F(2.5) cos [θ(2.5)] = 4.3500 and F(12.5) cos [θ(12.5)] = 11.3600, we could 
determine an integral estimate using the algorithm for unequally spaced data described 
previously in Sec. 21.3. Figure 24.8 illustrates the unequal segmentation for this case. 
 Including the two additional points yields an improved integral estimate of 126.9 (εt = 2.02%). 
Thus, the inclusion of the additional data would incorporate the peaks that were missed 
previously and, as a consequence, lead to better results.

FIGURE 24.7
Graphical depiction of why the 
two-segment trapezoidal rule 
yields a good estimate of the  
integral for this particular case. 
By chance, the use of two  
trapezoids happens to lead to 
an even balance between  
positive and negative errors.

x, ft

0
0

10

30

F
(x

) c
os

[θ
 (x

)]

Overestimates

Underestimates

FIGURE 24.8
The unequal segmentation 
scheme that results from the  
inclusion of two additional 
points at x = 2.5 and 12.5 in 
the data in Table 24.6. The 
numerical integration formu-
las applied to each set of  
segments are shown.
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PROBLEMS

Chemical/Bio Engineering
24.1 Perform the same computation as in Sec. 24.1, but compute 
the amount of heat required to raise the temperature of 1200 g of 
the material from −150 to 100°C. Use Simpson’s rule for your 
computation, with values of T at 50°C increments.
24.2 Repeat Prob. 24.1, but use Romberg integration to εs = 0.01%.
24.3 Repeat Prob. 24.1, but use a two- and a three-point Gauss-
Legendre formula. Interpret your results.
24.4 Integration provides a means to compute how much mass 
enters or leaves a reactor over a specified time period, as in

M = ∫ t2

t1

 Qc dt

where t1 and t2 = the initial and final times, respectively. This for-
mula makes intuitive sense if you recall the analogy between inte-
gration and summation. Thus, the integral represents the summation 
of the product of flow times concentration to give the total mass 
entering or leaving from t1 to t2. If the flow rate is constant, Q can 
be moved outside the integral:

M = Q ∫ t2

t1

 c dt (P24.4.1)

Use numerical integration to evaluate this equation for the data 
listed below. Note that Q = 4 m3/min.

t, min 0 10 20 30 35 40 45 50

c, mg/m3 10 36 55 52 41 37 33 34

24.5 Use numerical integration to compute how much mass leaves 
a reactor based on the following measurements.

t, min 0 10 20 30 35 40 45   50

Q, m3/min 4 4.7 5.2 5.0 4.6 4.3 4.3 4.9

c, mg/m3 10 35 55 52 42 37 32   34

24.6 Fick’s first diffusion law states that

Mass flux = −D  

dc

dx
 (P24.6.1)

where mass flux = the quantity of mass that passes across a unit 
area per unit time (g/cm2/s), D = a diffusion coefficient (cm2/s), 
c = concentration, and x = distance (cm). An environmental engi-
neer measures the following concentration of a pollutant in the 

sediments underlying a lake (x = 0 at the sediment-water interface 
and increases downward):

x, cm 0 1 3

c, 10−6 g/cm3 0.06 0.32 0.6

Use the best numerical differentiation technique available to esti-
mate the derivative at x = 0. Employ this estimate in conjunction 
with Eq. (P24.6.1) to compute the mass flux of pollutant out of the 
sediments and into the overlying waters (D = 1.6 × 10−6 cm2/s). For 
a lake with 4 × 106 m2 of sediments, how much pollutant would be 
transported into the lake over a year’s time?
24.7 The following data were collected when a large oil tanker was 
loading:

t, min 0 10 20 30 45 60 75

V, 106 barrels 0.4 0.7 0.8 0.9 1.05 1.2 1.35

Calculate the flow rate Q (that is, dV∕dt) for each time with an error 
of O(h2).
24.8 You are interested in measuring the fluid velocity in a narrow 
rectangular open channel carrying petroleum waste between loca-
tions in an oil refinery. You know that, because of bottom friction, 
the velocity varies with depth in the channel. If your technician has 
time to perform only two velocity measurements, at what depths 
would you take them to obtain the best estimate of the average ve-
locity? State your recommendation in terms of the percent of total 
depth d measured from the fluid surface. For example, measuring at 
the top would be 0%d, whereas at the very bottom would be 100%d.
24.9 Soft tissue follows an exponential deformation behavior in 
uniaxial tension while it is in the physiologic or normal range of 
elongation. This can be expressed as

σ =
Eo

a
 (eaε − 1)

where σ = stress, ε = strain, and Eo and a are material constants that 
are determined experimentally. To evaluate the two material con-
stants, the above equation is differentiated with respect to ε, which 
gives a fundamental relationship for soft tissue:

dσ

dε
= Eo + aσ

To evaluate Eo and a, stress-strain data are used to plot dσ∕dε versus 
σ and the slope and intercept of this plot are the two material con-
stants, respectively. The table contains stress-strain data for heart 
chordae tendineae (small tendons that hold heart valves closed dur-
ing contraction of the heart muscle). These are data from loading the 
tissue; different curves are produced on unloading.
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24.10 The standard technique for determining cardiac output is the 
indicator dilution method developed by Hamilton. One end of a 
small catheter is inserted into the radial artery and the other end is 
connected to a densitometer, which can automatically record the con-
centration of the dye in the blood. A known amount of dye, 5.6 mg, 
is injected rapidly, and the following data are obtained:

 Time,  Concentration,  Time, Concentration, 
 s  mg/L  s mg/L

 5 0 21 2.3
 7 0.1 23 1.1
 9 0.11 25 0.9
 11 0.4 27 1.75
 13 4.1 29 2.06
 15 9.1 31 2.25
 17 8 33 2.32
 19 4.2 35 2.43

Plotting the above data results in the dye dilution curve in 
Fig. P24.10a. The concentration reaches a maximum value at about 
15 seconds and then falls off, followed by a rise due to the recircula-
tion of dye. The curve is replotted on a semilog graph in Fig. P24.10b. 
Notice that a straight line approximates the descending limb of the 

(a) Calculate the derivative dσ∕dε using finite differences that are 
second-order accurate. Plot the data and eliminate the data 
points near the zero points that appear not to follow the straight-
line relationship. The error in these data comes from the in-
ability of the instrumentation to read the small values in this 
region. Perform a regression analysis of the remaining data 
points to determine the values of Eo and a. Plot the stress versus 
strain data points along with the analytic curve expressed by 
the first equation. This will indicate how well the analytic 
curve matches these data.

(b) Often the previous analysis does not work well because the 
value of Eo is difficult to evaluate. To solve this problem, Eo is 
not used. A data point is selected, (σ, ε), that is in the middle of 
the range used for the regression analysis. These values are 
substituted into the first equation, and a value for Eo∕a is deter-
mined and substituted into the first equation:

σ = (
σ

eaε − 1)(eaε − 1)

Using this approach, experimental data that are well defined 
will produce a good match of the data points and the analytic 
curve. Use this new relationship and again plot the stress versus 
strain data points and the new analytic curve.

σ × 103 N/m2 87.8 96.6 176 263 350 569 833 1227 1623 2105 2677 3378 4257

ε × 10−3 m/m 153 198 270 320 355 410 460 512 562 614 664 716 766
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FIGURE P24.10

cha32077_ch24_685-707.indd   697 10/1/19   2:12 PM



698 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

collected the following data on the mass flux of insulin being deliv-
ered through the patch (and skin) as a function of time:

 Flux, mg/cm2/h Time, h Flux, mg/cm2/h Time, h

 15 0 8 5
 14 1 5 10
 12 2 2.5 15
 11 3 2 20
 9 4 1 24

Remember that mass flux is flow rate through an area, or (1∕A) 
dm∕dt. Provide your best possible estimate for the amount of 
drug delivered through the skin in 24 hours using a 12 cm2 patch.
24.13 Videoangiography is used to measure blood flow and deter-
mine the status of circulatory function. In order to quantify the 
videoangiograms, blood vessel diameter and blood velocity are 
needed such that total blood flow is determined. Table P24.13 pro-
vides data for the densitometric profile taken from a videoangio-
gram of a blood vessel. One way to determine consistently where 
the edge of the blood vessel is from the angiogram is to determine 
where the first derivative of the profile is an extreme value. Using 

dilution curve. In order to separate out the recirculation effect, ana-
lysts extend the straight-line portion. The cardiac output can then be 
calculated from

C =
M

A
× 60 s/min

where C = cardiac output [L/min], M = amount of injected dye 
(mg), and A = area under the curve with the linear correction. Cal-
culate the cardiac output of this patient using the trapezoidal rule 
with a step size of 2 s.
24.11 Glaucoma is the second leading cause of vision loss world-
wide. High intraocular pressure (pressure inside the eye) almost 
always accompanies vision loss. It is postulated that the high pres-
sure damages a subset of cells in the eye that are responsible for 
vision. One investigator theorizes that the relationship between 
 vision loss and pressure can be described by

VL = A exp(k ∫ t

25
 (P − 13) dt)

where VL is percent vision loss, P is intraocular pressure (mm Hg), 
t is time (years), and k and A are constants. Using the data (Table 
P24.11) from three patients, estimate the constants k and A.

TABLE P24.11  Data for three patients related to glaucoma

Patient A B C

Age at diagnosis 65 43 80
VL 60 40 30

Pressure vs. Age Age, years P, mm Hg Age, years P, mm Hg Age, years P, mm Hg

 25 13 25 11 25 13
 40 15 40 30 40 14
 50 22 41 32 50 15
 60 23 42 33 60 17
 65 24 43 35 80 19

TABLE P24.13  Den sitometric profile data taken from a videoangiogram of a blood vessel.

 Distance Density Distance Density Distance Density Distance Density

 0 26.013 28 38.273 56 39.124 84 37.331
 4 26.955 32 39.103 60 38.813 88 35.980
 8 26.351 36 39.025 64 38.925 92 31.936
 12 28.343 40 39.432 68 38.804 96 28.843
 16 31.100 44 39.163 72 38.806 100 26.309
 20 34.667 48 38.920 76 38.666 104 26.146
 24 37.251 52 38.631 80 38.658

24.12 One of your colleagues has designed a new transdermal 
patch to deliver insulin through the skin to diabetic patients in a 
controlled way, eliminating the need for painful injections. She has 

the data provided, find the boundaries of the blood vessel and esti-
mate the blood vessel diameter. Use both O(h2) and O(h4) centered 
difference formulas and compare the results.
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24.14 The respiratory quotient is a dimensionless number used to 
estimate the basal metabolic rate of microorganisms. It is computed as 
the ratio of carbon dioxide (CO2) produced to the oxygen (O2) con-
sumed by the organisms during the breakdown of organic compounds. 
In addition, the rates can be integrated to determine the total amounts 
of CO2 produced and O2 consumed over the course of the experiment. 
The following cumulative quantities of the two gases were measured 
during an experiment in which bacteria broke down fats.

2010

Water surface

1.8 2 4 4 6 4 3.6 3.4 2.8

6

4

2

D
ep

th
, m

0

Distance from left bank, m

0

FIGURE P24.19
A stream cross section.

Time (hr) 0 1 2 3 4 5 6 7 8 9 10

CO2 generated (g) 0 75 151 225 297 367 436 502 568 634 701

O2 consumed (g) 0 76 149 224 301 381 463 547 631 715 801

Thus, at the end of the experiment, the respiratory quotient was 
701/801.
(a) Use numerical differentiation to determine the instantaneous 
rates at each hour. Develop a plot of these versus time. Use O(h2) 
centered differences for the intermediate times, and forward and 
backward differences of order O(h2) for the initial and final times, 
respectively.  
(b) Numerically integrate the results of (a) using both multiple-
application trapezoidal and Simpson’s 1/3 rule. Compare these re-
sults to the totals at t = 10 hr. 
24.15 The pressure p and volume v of a given mass of gas are con-
nected by the relation 

(p + a∕v2)(v – b)

where a, b, and k are constants. Express p in terms of v, and write a 
script to compute the work done by the gas in expanding from an 
initial volume to a final volume. Test your solution with a = 0.01, 
b = 0.001, initial pressure and volume = 100 kPa and 1 m3, respec-
tively, and final volume = 2 m3. 

Civil/Environmental Engineering
24.16 Perform the same computation as in Sec. 24.2, but use O(h8) 
Romberg integration to evaluate the integral.
24.17 Perform the same computation as in Sec. 24.2, but use Gauss 
quadrature to evaluate the integral.
24.18 As in Sec. 24.2, compute F using the trapezoidal rule and 
Simpson’s 1∕3 and Simpson’s 3∕8 rules but use the following force. 
Divide the mast into 5-ft intervals.

F = ∫30

0
 
250z

6 + z
 e−z∕10 dz

24.19 Stream cross-sectional areas (A) are required for a number of 
tasks in water resources engineering, including flood forecasting and 
reservoir designing. Unless electronic sounding devices are available 
to obtain continuous profiles of the channel bottom, the engineer 
must rely on discrete depth measurements to compute A. An example 
of a typical stream cross section is shown in Fig. P24.19. The data 
points represent locations where a boat was anchored and depth read-
ings taken. Use two trapezoidal rule applications (h = 4 and 2 m) and 
Simpson’s 1∕3 rule (h = 2 m) to estimate the cross-sectional area 
from these data.
24.20 As described in Prob. 24.19, the cross-sectional area of a 
channel can be computed as

Ac = ∫B

0
 H(y) dy
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where B = the total channel width (m), H = the depth (m), and 
y = distance from the bank (m). In a similar fashion, the average 
flow Q (m3/s) can be computed as

Q = ∫B

0
 U(y)H(y) dy

x, m 0 0.375 0.75 1.125 1.5 1.875 2.25 2.625 3

y, cm 0 −0.2571 −0.9484 −1.9689 −3.2262 −4.6414 −6.1503 −7.7051 −9.275

Table P24.23, to estimate the total number of cars that pass through 
the intersection per day. (Be careful of units.)
24.24 A wind force distributed against the side of a skyscraper is 
measured as

where U = water velocity (m/s). Use these relationships and a 
 numerical method to determine Ac and Q for the following data:

y, m 0 2 4 5 6 9

H, m 0.5 1.3 1.25 1.7 1 0.25

U, m/s 0.03 0.06 0.05 0.12 0.11 0.02

24.21 The following relationships can be used to analyze uniform 
beams subject to distributed loads,

dy

dx
= θ(x) 

dθ

dx
=

M(x)
EI
 

dM

dx
= V(x) 

dV

dx
= −w(x)

where x = distance along beam (m), y = deflection (m), θ(x) = 
slope (m/m), E = modulus of elasticity (Pa = N/m2), I =  moment of 
inertia (m4), M(x) = moment (N m), V(x) = shear (N), and w(x) = 
distributed load (N/m). For the case of a linearly increasing load 
(recall Fig. P8.21), the slope can be computed analytically as

θ(x) =
w0

120EIL
 (−5x4 + 6L2x2 − L4) (P24.21.1)

Employ (a) numerical integration to compute the deflection (in m) 
and (b) numerical differentiation to compute the moment (in N m) 
and shear (in N). Base your numerical calculations on values of the 
slope computed with Eq. P24.21.1 at equally spaced intervals of 
Δx = 0.125 m along a 3-m beam. Use the following parameter val-
ues in your computation: E = 200 GPa, I = 0.0003 m4, and w0 =  
2.5 kN/cm. In addition, the deflections at the ends of the beam are 
set at y(0) = y(L) = 0. Be careful of units.
24.22 You measure the following deflections along the length of a 
simply supported uniform beam (see Prob. 24.21)

Height, l, m 0 30 60 90 120 150 180 210 240

Force, F (l ), N/m 0 340 1200 1600 2700 3100 3200 3500 3800

Compute the net force and the line of action due to this distributed 
wind force.
24.25 Water exerts pressure on the upstream face of a dam as 
shown in Fig. P24.25. The pressure can be characterized by

p(z) = ρg(D − z) (P24.25.1)

where p(z) = pressure in pascals (or N/m2) exerted at an elevation z 
meters above the reservoir bottom; ρ = density of water, which for 
this problem is assumed to be a constant 103 kg/m3; g = acceleration 
due to gravity (9.8 m/s2); and D = elevation (in m) of the water sur-
face above the reservoir bottom. According to Eq. (P24.25.1), pres-
sure increases linearly with depth, as depicted in Fig. P24.25a. 
Omitting atmospheric pressure (because it works against both sides 
of the dam face and essentially cancels out), the total force ft can be 
determined by multiplying pressure times the area of the dam face 
(as shown in Fig. P24.25b). Because both pressure and area vary 
with elevation, the total force is obtained by evaluating

ft = ∫D

0
 ρgw(z) (D − z) dz

where w(z) = width of the dam face (m) at elevation z (Fig. P24.25b). 
The line of action can also be obtained by evaluating

d =
∫D

0
 ρgzw(z) (D − z) dz

∫D

0
 ρgw(z) (D − z) dz

Employ numerical differentiation to compute the slope, the  moment 
(in N m), the shear (in N) and the distributed load (in N/m). Use the 
following parameter values in your computation: E = 200 GPa, and 
I = 0.0003 m4.
24.23 A transportation engineering study requires the calculation 
of the total number of cars that pass through an intersection over a 
24-h period. An individual visits the intersection at various times 
during the course of a day and counts the number of cars that pass 
through the intersection in a minute. Utilize the data summarized in 

Use Simpson’s rule to compute ft and d. Check the results with your 
computer program for the trapezoidal rule.
24.26 To estimate the size of a new dam, you have to determine the 
total volume of water (m3) that flows down a river in a year’s time. 
You have available the following long-term average data for the river:

 
Date

Mid- 
Jan.

Mid- 
Feb.

Mid- 
Mar.

Mid- 
Apr.

Mid- 
June

Mid- 
Sept.

Mid- 
Oct.

Mid- 
Nov.

Mid- 
Dec.

Flow, m3/s 30 38 82 125 95 20 22 24   35
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the material and has units of W∕(°C m); T = temperature (°C); and 
x = distance (m) along the path of heat flow. Fourier’s law is used 
routinely by architectural engineers to determine heat flow through 
walls. The following temperatures are measured from the surface 
(x = 0) into a stone wall:

x, cm 0 0.08 0.16

T, °C 20 17 15

If the flux at x = 0 is 60 W/m2, compute k.
24.29 The horizontal surface area As (m2) of a lake at a particular 
depth can be computed from volume by differentiation,

As(z) = −
dV

dz
 (z)

where V = volume (m3) and z = depth (m) as measured from the 
surface down to the bottom. The average concentration c (g/m3) of a 
substance that varies with depth can be computed by integration

c =
∫Z

0
 c(z)As(z) dz

∫Z

0
 As(z) dz

Determine the total volume. Be careful of units, and take care to 
make a proper estimate of flow at the end points.
24.27 The data listed in the following table give hourly measure-
ments of heat flux q (cal/cm2/h) at the surface of a solar collector. 
As an architectural engineer, you must estimate the total heat ab-
sorbed by a 150,000-cm2 collector panel during a 14-h period. The 
panel has an absorption efficiency eab of 45%. The total heat ab-
sorbed is given by

h = eab ∫ t

0
 q A dt

where A = area and q = heat flux.

t 0 2 4 6 8 10 12 14

q 0.10 5.32 7.80 8.00 8.03 6.27 3.54 0.20

24.28 The heat flux q is the quantity of heat flowing through a unit 
area of a material per unit time. It can be computed with Fourier’s law,

J = −k 
dT

dx

where J has units of J/m2/s or W/m2; k is a coefficient of thermal 
conductivity that parameterizes the heat-conducting properties of 

TABLE P24.23  Traffic flow rate (cars/min) for an intersection measured at various times  
within a 24-h period.

 Time Rate Time Rate Time Rate

 12:00 midnight 2  9:00 A.M. 11  6:00 P.M. 20
 2:00 A.M. 2 10:30 A.M. 4  7:00 P.M. 10
 4:00 A.M. 0 11:30 A.M. 11  8:00 P.M. 8
 5:00 A.M. 2 12:30 P.M. 12  9:00 P.M. 10
 6:00 A.M. 6  2:00 P.M. 8 10:00 P.M. 8
 7:00 A.M. 7  4:00 P.M. 7 11:00 P.M. 7
 8:00 A.M. 23  5:00 P.M. 26 12:00 midnight 3

FIGURE P24.25
Water exerting pressure on the upstream face of a dam: (a) side view showing force increasing  
linearly with depth; (b) front view showing width of dam in meters.
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rules) to determine (a) the force on the building in newtons and  
(b) the line of force in meters.
24.31 A useful application of integration is to find the arc length of 
a curve. If a curve in Cartesian (x-y) coordinates is given by the 
function y = f(x), the length of the curve between x = a and b can 
be computed as

L = ∫b
a

√1 + [ f′(x) ]2 dx

As depicted in Fig. P24.31, a two-dimensional roller coaster track’s 
x-y coordinates are defined by the following function: 

f(x) =
1

(0.0025x − 0.3)2 + 0.01
+

1
(0.0025x − 0.9)2 + 0.04

   − 1.14

After differentiating this equation, use numerical integration to es-
timate the length of track from a = 0 to b = 600
24.32 A catenary cable is one that is hung between two points not 
in the same vertical line. As depicted in Fig. P24.32, it is subject to 
no loads other than its own weight. Thus, its weight (N/m) acts as a 
uniform load per unit length along the cable. The following formula 
provides a way to calculate its x-y trajectory,

y =
TH

w
 cosh (

w

TH

x) + y0 −
TH

w

where TH = the horizontal tension force at the lowest point (N), w = 
the downward force of the cable due to its weight expressed as a 
uniform load per unit length (N/m), and y0 = height above the x axis 
of the lowest point (m). Given the following parameter values: w = 
10 N/m, y0 = 5 m, and TH = 1.266 × 10−2 N,
(a) Develop a plot of y from x = −50 to 100 m.
(b) As described in Prob. 24.31, employ integration to determine 

the length of the cable. Do this by generating y values at inter-
vals of Δx = 2.5 m. Then use numerical differentiation and in-
tegration to determine the length.

where Z = the total depth (m). Determine the average concentration 
based on the following data:

z, m 0 4 8 12 16

V, 106 m3 9.8175 5.1051 1.9635 0.3927 0.0000

c, g/m3 10.2 8.5 7.4 5.2 4.1

24.30 During a storm, a high wind blows along one side of a rect-
angular skyscraper as depicted in Fig. P24.30. Use the best lower-
order Newton-Cotes formulas (trapezoidal, Simpsons 1/3 and 3/8 
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24.38 Suppose that the current through a resistor is described by 
the function

i(t) = (60 − t)2 + (60 − t) sin (√t)

and the resistance is a function of the current,

R = 10i + 2i2∕3

Compute the average voltage over t = 0 to 60 s using the multiple-
segment Simpson’s 1∕3 rule.
24.39 If a capacitor initially holds no charge, the voltage across it 
as a function of time can be computed as

V(t) =
1
C ∫ t

0
 i(t) dt

If C = 10−5 farad, use the following current data to develop a plot 
of voltage versus time:

t, s 0 0.2 0.4 0.6 0.8 1 1.2

i, 10−3 A 0.2 0.3683 0.3819 0.2282 0.0486 0.0082 0.1441

Mechanical/Aerospace Engineering
24.40 Perform the same computation as in Sec. 24.4, but use the 
following equations:

F(x) = 1.6x − 0.045x2

θ(x) = 0.8 + 0.125x − 0.009x2 + 0.0002x3

Use 4-, 8-, and 16-segment trapezoidal rules to compute the 
 integral.
24.41 Repeat Prob. 24.40, but use (a) Simpson’s 1∕3 rule, (b) Rom-
berg integration to εs = 0.5%, and (c) Gauss quadrature.
24.42 Compute work as described in Sec. 24.4, but use the follow-
ing equations for F(x) and θ(x):

F(x) = 1.6x − 0.045x2

θ(x) = −0.00055x3 + 0.0123x2 + 0.13x

The force is in newtons and the angle is in radians. Perform the 
 integration from x = 0 to 30 m.
24.43 As was done in Sec. 24.4, determine the work performed if 
a constant force of 1 N applied at an angle θ results in the following 
displacements. Use the MATLAB function cumtrapz to deter-
mine the cumulative work and plot the result versus θ.

x, m 0 1 2.7 3.8 3.7 3 1.4

θ, deg 0 30 60 90 120 150 180

24.44 The work done on an object is equal to the force times the 
distance moved in the direction of the force. The velocity of an 
object in the direction of a force is given by

υ = 4t  0 ≤ t ≤ 4
υ = 16 + (4 − t)2  4 ≤ t ≤ 14

Electrical Engineering
24.33 Perform the same computation as in Sec. 24.3, but for the 
current as specified by

i(t) = 5e−1.25t sin 2πt  for 0 ≤ t ≤ T∕2
i(t) = 0  for T∕2 < t ≤ T

where T = 1 s. Use five-point Gauss quadrature to estimate the 
 integral.
24.34 Repeat Prob. 24.33, but use five applications of Simpson’s 
1∕3 rule.
24.35 Repeat Prob. 24.33, but use Romberg integration to εs = 1%.
24.36 Faraday’s law characterizes the voltage drop across an in-
ductor as

VL = L  

di

dt

where VL = voltage drop (V), L = inductance (in henrys; 1 H =  
1 V s/A), i = current (A), and t = time (s). Determine the voltage drop 
as a function of time from the following data for an inductance of 4 H.

t 0 0.1 0.2 0.3 0.5 0.7

i 0 0.16 0.32 0.56 0.84 2.0

24.37 Based on Faraday’s law (Prob. 24.36), use the following 
voltage data to estimate the inductance in henrys if a current of 2 A 
is passed through the inductor over 400 milliseconds.

t, ms 0 10 20 40 60 80 120 180 280 400

V, volts 0 18 29 44 49 46 35 26 15 7

x

y

A

B

w
y0

FIGURE P24.32
A catenary cable.

cha32077_ch24_685-707.indd   703 1/3/20   7:16 PM



704 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

where r is the radial distance measured outward from the center of 
the pipe. If the velocity distribution is given by

υ = 2(1 −
r

r0)
1∕6

where r0 is the total radius (in this case, 3 cm), compute Q using the 
multiple-application trapezoidal rule. Discuss the results.
24.48 Using the following data, calculate the work done by stretch-
ing a spring that has a spring constant of k = 300 N/m to x = 0.35 m:

F, 103 N 0 0.01 0.028 0.046 0.063 0.082 0.11 0.13

x, m 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

24.49 A jet fighter’s position on an aircraft carrier’s runway was 
timed during landing:

t, s 0 0.52 1.04 1.75 2.37 3.25 3.83

x, m 153 185 208 249 261 271 273

where x is the distance from the end of the carrier. Estimate  
(a) velocity (dx∕dt) and (b) acceleration (dυ∕dt) using numerical 
differentiation.
24.50 Employ the multiple-application Simpson’s rule to evaluate 
the vertical distance traveled by a rocket if the vertical velocity is 
given by

υ = 11t2 − 5t  0 ≤ t ≤ 10
υ = 1100 − 5t  10 ≤ t ≤ 20
υ = 50t + 2(t − 20)2  20 ≤ t ≤ 30

In addition, use numerical differentiation to develop graphs of the 
acceleration (dv∕dt) and the jerk (d2v∕dt2) versus time for t = 0 to 
30 s. Note that the jerk is very important because it is highly cor-
related with injuries such as whiplash.
24.51 The upward velocity of a rocket can be computed by the 
 following formula:

υ = u ln(
m0

m0 − qt) − gt

where υ = upward velocity, u = velocity at which fuel is expelled 
relative to the rocket, m0 = initial mass of the rocket at time t = 0, 
q = fuel consumption rate, and g = downward acceleration due to 
gravity (assumed constant = 9.8 m/s2). If u = 1800 m/s, m0 = 
160,000 kg, and q = 2500 kg/s, use six-segment trapezoidal and 
Simpson’s 1∕3 rule, six-point Gauss quadrature, and O(h8) Romberg 
integration to determine how high the rocket will fly in 30 s. In addi-
tion, use numerical differentiation to generate a graph of acceleration 
as a function of time.
24.52 Referring to the data from Problem 20.61, find the strain 
rate using finite-difference methods. Use second-order accurate 
derivative approximations and plot your results. Looking at the 

where υ = m∕s. Employ the multiple-application Simpson’s rule to 
determine the work if a constant force of 200 N is applied for all t.
24.45 The rate of cooling of a body (Fig. P24.45) can be expressed as

dT

dt
= −k(T − Ta)

where T = temperature of the body (°C), Ta = temperature of the 
surrounding medium (°C), and k = a proportionality constant 
(per minute). Thus, this equation (called Newton’s law of cool-
ing) specifies that the rate of cooling is proportional to the differ-
ence in the temperatures of the body and of the surrounding 
medium. If a metal ball heated to 80°C is dropped into water that 
is held constant at Ta = 20°C, the temperature of the ball changes, 
as in

Time, min 0 5 10 15 20 25

T, °C 80 44.5 30.0 24.1 21.7 20.7

Utilize numerical differentiation to determine dT∕dt at each value 
of time. Plot dT∕dt versus T − Ta and employ linear regression to 
evaluate k.

T

Ta

FIGURE P24.45

24.46 A rod subject to an axial load (Fig. P24.46a) will be de-
formed, as shown in the stress-strain curve in Fig. P24.46b. The 
area under the curve from zero stress out to the point of rupture is 
called the modulus of toughness of the material. It provides a 
measure of the energy per unit volume required to cause the mate-
rial to rupture. As such, it is representative of the material’s abil-
ity to withstand an impact load. Use numerical integration to 
compute the modulus of toughness for the stress-strain curve seen 
in Fig. P24.46b.
24.47 If the velocity distribution of a fluid flowing through a pipe 
is known (Fig. P24.47), the flow rate Q (that is, the volume of water 
passing through the pipe per unit time) can be computed by 
Q = ∫υ dA, where υ is the velocity and A is the pipe’s cross- 
sectional area. (To grasp the meaning of this relationship physically, 
recall the close connection between summation and integration.) For 
a circular pipe, A = πr2 and dA = 2πr dr. Therefore,

Q = ∫ r

0
 υ(2πr) dr
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 PROBLEMS 705

graph, it is apparent that there is some experimental startup 
 error. Find the mean and standard deviation of the strain rate 
after eliminating the data points representing the experimental 
startup error.
24.53 Fully developed flow moving through a 40-cm-diameter 
pipe has the following velocity profile:

FIGURE P24.46
(a) A rod under axial loading and (b) the resulting stress-strain curve where stress is in kips  
per square inch (103 lb/in2) and strain is dimensionless.
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FIGURE P24.47

r
A

Radius, r, cm 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Velocity, v, m/s 0.914 0.890 0.847 0.795 0.719 0.543 0.427 0.204 0

Find the volume flow rate Q using the relationship Q = ∫R
0  2πrυ dr, 

where r is the radial axis of the pipe, R is the radius of the pipe, 
and υ is the velocity. Solve the problem using two different 
 approaches.
(a) Fit a polynomial curve to the velocity data and integrate 

 analytically.
(b) Use multiple-application Simpson’s 1∕3 rule to integrate.

(c) Find the percent error using the integral of the polynomial fit as 
the more correct value.

24.54 Fully developed flow of a Bingham plastic fluid moving 
through a 12-in diameter pipe has the given velocity profile. The 
flow of a Bingham fluid does not shear the center core, producing 
plug flow in the region around the centerline.

Radius, r, in 0 1 2 3 4 5    6

Velocity, v, ft/s 5.00 5.00 4.62 4.01 3.42 1.69 0.00

Find the total volume flow rate Q using the relationship 
Q = ∫ r2

r1   
2πr υ dr + υc 

Ac, where r is the radial axis of the pipe, υ is 

the velocity, υc is the velocity at the core, and Ac is the cross- 
sectional area of the plug. Solve the problem using two different 
approaches.
(a) Fit a polynomial curve to the noncore data and integrate.
(b) Use multiple-application Simpson’s rule to integrate.
(c) Find the percent error using the integral of the polynomial fit as 

the more correct value.
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706 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

The equation is valid only for spherical particles. Assume a density 
ρ = 1 g cm−3 and a minimum diameter of dust included in the dis-
tribution dmin of 1 μm.
24.58 For fluid flow over a surface, the heat flux to the surface can 
be computed as

J = −k  

dT

dy

where J = heat flux (W/m2), k = thermal conductivity (W/m K), 
T = temperature (K), and y = distance normal to the surface (m). 
The following measurements are made for air flowing over a flat 
plate that is 200 cm long and 50 cm wide:

y, cm 0 1 3     5

T, K 900 480 270 200

If k = 0.028 J/s m K, (a) determine the flux at the surface and  
(b) the heat transfer in watts. Note that 1 J = 1 W s.
24.59 The pressure gradient for laminar flow through a constant 
radius tube is given by

dp

dx
= −

8μ Q
πr4

where p = pressure (N/m2), x = distance along the tube’s centerline 
(m), μ = dynamic viscosity (N s/m2), Q = flow (m3/s), and r = ra-
dius (m).
(a) Determine the pressure drop for a 10-cm length tube for a vis-

cous liquid (μ = 0.005 N s/m2, density = ρ = 1 × 103 kg/m3) 
with a flow of 10 × 10−6 m3/s and the following varying radii 
along the tube’s length:

x, cm 0 2 4 5 6 7 10

r, mm 2 1.35 1.34 1.6 1.58 1.42 2

(b) Compare your result with the pressure drop that would have 
occurred if the tube had a constant radius equal to the average 
radius.

(c) Determine the average Reynolds number for the tube to verify 
that flow is truly laminar (Re = ρυD∕μ < 2100, where υ = ve-
locity).

24.60 Velocity data for air are collected at different radii from the 
centerline of a circular 16-cm-diameter pipe as tabulated below:

r, cm 0 1.60 3.20 4.80 6.40 7.47 7.87 7.95 8

v, m/s 10 9.69 9.30 8.77 7.95 6.79 5.57 4.89 0

Use numerical integration to determine the mass flow rate, which 
can be computed as

∫R

0
 ρυ2πr dr

where ρ = density (= 1.2 kg/m3). Express your results in kg/s.

24.55 The enthalpy of a real gas is a function of pressure as 
 described in Eq. (P24.55.1). These data were taken for a real fluid. 
Estimate the enthalpy of the fluid at 400 K and 50 atm (evaluate the 
integral from 0.1 atm to 50 atm).

H = ∫P

0
 (V − T (

∂V

∂T)
P
)d P (P24.55.1)

 V, L

P, atm T = 350 K T = 400 K T = 450 K

 0.1 220 250 282.5
 5 4.1 4.7 5.23
 10 2.2 2.5 2.7
 20 1.35 1.49 1.55
 25 1.1 1.2 1.24
 30 0.90 0.99 1.03
 40 0.68 0.75 0.78
 45 0.61 0.675 0.7
 50 0.54 0.6 0.62

24.56 Given the data below, find the isothermal work done on the 
gas as it is compressed from 23 L to 3 L (remember that 
W = −∫V2

V1  P dV ).

V, L 3 8 13 18 23

P, atm 12.5 3.5 1.8 1.4 1.2

(a) Find the work performed on the gas numerically, using the 1-, 
2-, and 4-segment trapezoidal rule.

(b) Compute the ratios of the errors in these estimates and relate 
them to the error analysis of the multiple-application trapezoidal 
rule discussed in Chap. 21.

24.57 The Rosin-Rammler-Bennet (RRB) equation is used to de-
scribe size distribution in fine dust. F(x) represents the cumulative 
mass of dust particles of diameter x and smaller; x′ and n′ are con-
stants equal to 30 μm and 1.44, respectively. The mass density dis-
tribution f(x), or the mass of dust particles of a diameter x, is found 
by taking the derivative of the cumulative distribution:

F(x) = 1 − e−(x∕x′)n′

 
 

f (x) =
dF(x)

dx

(a) Numerically calculate the mass density distribution f(x) and 
graph both f(x) and the cumulative distribution F(x).

(b) Using your results from part (a), calculate the mode size of the 
mass density distribution—that is, the size at which the deriva-
tive of f(x) is equal to zero.

(c) Find the surface area per mass of the dust Sm (cm2/g) using

Sm =
6
ρ

 ∫ ∞

dmin

 
 f (x)

x
 dx
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x (m) 0 2 3 4 6 8 10

ρ (g/cm3) 4.00 3.95 3.89 3.80 3.60 3.41 3.30

Ac (cm2) 100 103 106 110 120 133 150

Determine the mass in grams to the best possible accuracy limiting 
yourself to the trapezoidal rule and Simpson’s 1/3 and 3/8 rules.
24.63 A gas that is expanding in an engine cylinder follows the law

PV1.3 = c

where c is a constant. The initial pressure is 2550 kPa, and the final 
pressure is 210 kPa. If the volume at the end of expansion is 
0.75 m3, compute the work done by the gas.

24.61 The following data are provided for the velocity of an object 
as a function of time,

t, s 0 4 8 12 16 20 24 28 30

v, m/s 0 18 31 42 50 56 61 65 70

(a) Limiting yourself to the trapezoidal rule and Simpson’s 1/3 and 
3/8 rules, make the best estimate of how far the object travels 
from t = 0 to 30 s.

(b) Employ the results of (a) to compute the average velocity.
24.62 The total mass of a variable-density rod is given by

m = ∫L

0
 ρ(x)Ac(x) dx

where m = mass, ρ(x) = density, Ac(x) = cross-sectional area, and 
x = distance along the rod. The following data have been measured 
for a 10-m length rod:

 PROBLEMS 707
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EPILOGUE: PART SIX

 PT6.4 TRADE-OFFS
Table PT6.4 provides a summary of the trade-offs involved in numerical integration or 
quadrature. Most of these methods are based on the simple physical interpretation of an 
integral as the area under a curve. These techniques are designed to evaluate the integral 
of two different cases: (1) a mathematical function and (2) discrete data in tabular form.
 The Newton-Cotes formulas are the primary methods discussed in Chap. 21. They 
are applicable to both continuous and discrete functions. Both closed and open versions 
of these formulas are available. The open forms, which have integration limits that extend 
beyond the range of the data, are rarely used for the evaluation of definite integrals. 
However, they have utility for the solution of ordinary differential equations and for 
evaluating improper integrals.
 The closed Newton-Cotes formulas are based on replacing a mathematical function 
or tabulated data by an interpolating polynomial that is easy to integrate. The simplest 
version is the trapezoidal rule, which is based on taking the area below a straight line 
joining adjacent values of the function. One way to improve the accuracy of the trapezoi-
dal rule is to divide the integration interval from a to b into a number of segments and 
apply the method to each segment.
 Aside from applying the trapezoidal rule with finer segmentation, another way to 
obtain a more accurate estimate of the integral is to use higher-order polynomials to 

TABLE PT6.4  Comparison of the characteristics of alternative methods for numerical integration.  
The comparisons are based on general experience and do not account for the  
behavior of special functions.

 Data Points Data Points   
 Required for  Required for Truncation  Programming  
Method One Application n Applications Error Application Effort Comments

Trapezoidal rule 2 n + 1 ≅h3f ″(ξ) Wide Easy
Simpson’s 1/3 rule 3 2n + 1 ≅h5f (4)(ξ) Wide Easy
Simpson’s rule 3 or 4 ≥3 ≅h5f (4)(ξ) Wide Easy
 (1/3 and 3/8)
Higher-order ≥5 N/A ≅h7f (6)(ξ) Rare Easy
 Newton-Cotes
Romberg integration 3   Requires f (x)  Moderate Inappropriate for 
    be known  tabular data
Gauss quadrature ≥2 N/A  Requires f (x)  Easy Inappropriate for 
    be known  tabular data
Monte Carlo Integration N/A N/A N/A Requires f (x) be known Moderate Inappropriate for  
      tabular data

cha32077_ep06_708-710.indd   708 10/1/19   4:48 PM



 PT6.6 ADVANCED METHODS AND ADDITIONAL REFERENCES 709

connect the points. If a quadratic equation is employed, the result is Simpson’s 1∕3 rule. 
If a cubic equation is used, the result is Simpson’s 3∕8 rule. Because they are much more 
accurate than the trapezoidal rule, these formulas are usually preferred and multiple-
application versions are available. For situations with an even number of segments, the 
multiple application of the 1∕3 rule is recommended. For an odd number of segments, 
the 3∕8 rule can be applied to the last three segments and the 1∕3 rule to the remaining 
segments.
 Higher-order Newton-Cotes formulas are also available. However, they are rarely used 
in practice. Where high accuracy is required, Romberg integration, adaptive quadrature, 
and Gauss quadrature methods may be applied. It should be noted that these approaches 
are usually of practical value only in cases where the function is available. Finally, Monte 
Carlo integration provides a means to estimate integrals using large numbers of random 
samples of function values. These techniques are ill-suited for tabulated data.

 PT6.5 IMPORTANT RELATIONSHIPS AND FORMULAS
Table PT6.5 summarizes important formulas presented in Part Six. This table can be 
consulted to quickly access important relationships and formulas.

 PT6.6 ADVANCED METHODS AND ADDITIONAL REFERENCES
Although we have reviewed a number of numerical integration techniques, there are other 
methods that have utility in engineering practice. For example, adaptive schemes for 
solving ordinary differential equations can be used to evaluate complicated integrals, as 
will be discussed in Chap. 25.
 Another method for obtaining integrals is to fit cubic splines to the data. The result-
ing cubic equations can be integrated easily (Forsythe et al. 1977). A similar approach 
is also sometimes used for differentiation. Finally, aside from the Gauss-Legendre for-
mulas discussed in Sec. 22.4, there are a variety of other quadrature formulas. Carnahan, 
Luther, and Wilkes (1969) and Ralston and Rabinowitz (1978) summarize many of these 
approaches.
 In summary, the foregoing is intended to provide you with avenues for deeper ex-
ploration of the subject. Additionally, all the above references describe basic techniques 
covered in Part Six. We urge you to consult these alternative sources to broaden your 
understanding of numerical methods for integration.
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−
(b − a)3

12
 f ″(ξ)

−
(b − a)3

12n2  f″

−
(b − a)5

2880
 f  

(4)(ξ)

−
(b − a)5

180n4  f  

(4)

−
(b − a)5

6480
 f   

(4)(ξ)

O(h2k)

≅f  
(2n+2)(ξ)

Trapezoidal rule

Multiple-application 
trapezoidal rule

Simpson’s  
1/3 rule

Multiple-application 
Simpson’s 1/3 rule

Simpson’s  
3/8 rule

Romberg  
integration

Gauss  
quadrature

l ≅ (b − a) 
f (a) + f (b)

2

l ≅ (b − a) 
f (x0) + 2∑

n−1

i=1
 f (xi) + f (xn)

2n

l ≅ (b − a) 
f (x0) + 4f (x1) + f (x2)

6

l ≅ (b − a) 

f (x0) + 4∑
n−1

i=1, 3
 f (xi) + 2∑

n−2

j=2, 4
 f (xj) + f (xn)

3n

l ≅ (b − a) 
f (x0) + 3f (x1) + 3f (x2) + f (x3)

8

lj,k =
4k−1 lj+1, k−1 − lj, k−1

4k−1 − 1

l ≅ c0f (x0) + c1f (x1) + … + cn−1f  (xn− 1)

TABLE PT6.5 Summary of important formulas presented in Part Six.

Method Formulation Graphic Interpretations Error

f (x)

xa b

f (x)

xa = x0 b = xn

f (x)

xa = x0 b = x2

f (x)

xa = x0 b = xn

f (x)

xa = x0 b = x3

f (x)

xx0 x1

lj, k− 1           lj, k

lj+ 1, k− 1
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PA R T  S E V E N

 PT7.1 MOTIVATION
In the first chapter of this book, we derived the following equation based on Newton’s 
second law to compute the velocity υ of a falling parachutist as a function of time t 
[recall Eq. (1.9)]:

dυ

dt
= g −

c

m
 υ (PT7.1)

where g is the gravitational constant, m is the mass, and c is a drag coefficient. Such 
equations, which are composed of an unknown function and its derivatives, are called 
differential equations. Equation (PT7.1) is sometimes referred to as a rate equation 
 because it expresses the rate of change of a variable as a function of variables and 
parameters. Such equations play a fundamental role in engineering because many 
physical phenomena are best formulated mathematically in terms of their rate of 
change.
 In Eq. (PT7.1), the quantity being differentiated, υ, is called the dependent variable. 
The quantity with respect to which υ is differentiated, t, is called the independent vari-
able. When the function involves one independent variable, the equation is called an 
ordinary differential equation (or ODE). This is in contrast to a partial differential equa-
tion (or PDE) that involves two or more independent variables.
 Differential equations are also classified as to their order. For example, Eq. (PT7.1) 
is called a first-order equation because the highest derivative is a first derivative. A 
second-order equation would include a second derivative. For example, the equation 
describing the position x of a mass-spring system with damping is the second-order 
equation,

m 

d 
2x

dt 
2 + c 

dx

dt
+ kx = 0 (PT7.2)

where c is a damping coefficient and k is a spring constant. Similarly, an nth-order equa-
tion would include an nth derivative.

ORDINARY DIFFERENTIAL 
EQUATIONS
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712 ORDINARY DIFFERENTIAL EQUATIONS

 Higher-order equations can be reduced to a system of first-order equations. For Eq. 
(PT7.2), this is done by defining a new variable y, where

y =
dx

dt
 (PT7.3)

which itself can be differentiated to yield

dy

dt
=

d 
2x

dt2  (PT7.4)

Equations (PT7.3) and (PT7.4) can then be substituted into Eq. (PT7.2) to give

m 
dy

dt
+ cy + kx = 0 (PT7.5)

or

dy

dt
= −

cy + kx

m
 (PT7.6)

Thus, Eqs. (PT7.3) and (PT7.6) are a pair of first-order equations that are equivalent to 
the original second-order equation. Because other nth-order differential equations can be 
similarly reduced, this part of the book focuses on the solution of first-order equations. 
Some of the engineering applications in Chap. 28 deal with the solution of second-order 
ODEs by reduction to a pair of first-order equations.

PT7.1.1 Noncomputer Methods for Solving ODEs
Without computers, ODEs are usually solved with analytical integration techniques. For 
example, Eq. (PT7.1) could be multiplied by dt and integrated to yield

υ = ∫(g −
c

m
  υ)dt (PT7.7)

The right-hand side of this equation is called an indefinite integral because the limits of 
integration are unspecified. This is in contrast to the definite integrals discussed previously 
in Part Six [compare Eq. (PT7.7) with Eq. (PT6.6)].
 An analytical solution for Eq. (PT7.7) is obtained if the indefinite integral can be 
evaluated exactly in equation form. For example, recall that for the falling parachutist 
problem, Eq. (PT7.7) was solved analytically by Eq. (1.10) (assuming υ = 0 at t = 0):

υ(t) =
gm

c
 (1 − e−(c∕m)t) (1.10)

The mechanics of deriving such analytical solutions will be discussed in Sec. PT7.2. For 
the time being, the important fact is that exact solutions for many ODEs of practical 
importance are not available. As is true for most situations discussed in other parts of 
this book, numerical methods offer the only viable alternative for these cases. Because 
these numerical methods usually require computers, engineers in the precomputer era 
were somewhat limited in the scope of their investigations.
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 PT7.1 MOTIVATION 713

 One very important method that engineers and applied mathematicians developed to 
overcome this dilemma was linearization. A linear ordinary differential equation is one 
that fits the general form

an(x)y(n) + … + a1(x)y′ + a0(x)y = f(x) (PT7.8)

where y(n) is the nth derivative of y with respect to x and the a’s and f ’s are specified 
functions of x. This equation is called linear because there are no products or nonlinear 
functions of the dependent variable y and its derivatives. The practical importance of 
linear ODEs is that they can be solved analytically. In contrast, most nonlinear equations 
cannot be solved exactly. Thus, in the precomputer era, one tactic for solving nonlinear 
equations was to linearize them.
 A simple example is the application of ODEs to predict the motion of a swinging 
pendulum (Fig. PT7.1). In a manner similar to the derivation of the falling parachutist 
problem, Newton’s second law can be used to develop the following differential equation 
(see Sec. 28.4 for the complete derivation):

d 
2θ

dt 
2 +

g

l
 sin θ = 0 (PT7.9)

where θ is the angle of displacement of the pendulum, g is the gravitational constant, 
and l is the pendulum length. This equation is nonlinear because of the term sin θ. One 
way to obtain an analytical solution is to realize that for small displacements of the 
pendulum from equilibrium (that is, for small values of θ),

sin θ ≅ θ (PT7.10)

Thus, if it is assumed that we are interested only in cases where θ is small, Eq. (PT7.10) 
can be substituted into Eq. (PT7.9) to give

d 
2θ

dt 
2 +

g

l
  θ = 0 (PT7.11)

We have, therefore, transformed Eq. (PT7.9) into a linear form that is easy to solve 
analytically.
 Although linearization remains a very valuable tool for engineering problem solving, 
there are cases where it cannot be invoked. For example, suppose that we were interested 
in studying the behavior of the pendulum for large displacements from equilibrium. In 
such instances, numerical methods offer a viable option for obtaining solutions. Today, 
the widespread availability of computers places this option within reach of all practicing 
engineers.

PT7.1.2 ODEs and Engineering Practice
The fundamental laws of physics, mechanics, electricity, and thermodynamics are usually 
based on empirical observations that explain variations in physical properties and states 
of systems. Rather than describing the states of physical systems directly, the laws are 
usually couched in terms of spatial and temporal changes.
 Several examples are listed in Table PT7.1. These laws define mechanisms of change. 
When combined with continuity laws for energy, mass, or momentum, differential equations 

FIGURE PT7.1
The swinging pedulum.

θ

l
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714 ORDINARY DIFFERENTIAL EQUATIONS

result. Subsequent integration of these differential equations results in mathematical func-
tions that describe the spatial and temporal state of a system in terms of energy, mass, or 
velocity variations.
 The falling parachutist problem introduced in Chap. 1 is an example of the derivation 
of an ordinary differential equation from a fundamental law. Recall that Newton’s second 
law was used to develop an ODE describing the rate of change of velocity of a falling 
parachutist. By integrating this relationship, we obtained an equation to predict fall veloc-
ity as a function of time (Fig. PT7.2). This equation could be utilized in a number of 
different ways, including design purposes.

TABLE PT7.1  Examples of fundamental laws that are written in terms of the rate of 
change of variables (t = time and x = position).

Law Mathematical Expression Variables and Parameters

Newton’s second law  Velocity (v), force (F ), and 
of motion   mass (m)

Fourier’s heat law   Heat flux (q), thermal conductivity 
(k′) and temperature (T )

Fick’s law of diffusion   Mass flux (J ), diffusion coefficient 
(D), and concentration (c)

Faraday’s law  Voltage drop (ΔVL), inductance (L),  
(voltage drop across  and current (i) 
an inductor)

dv
dt

=
F
m

q = −k′ 

dT
dx

J = −D  
dc
dx

ΔVL = L 
di
dt

F = ma

Analytical Numerical

v = (1 – e– (c/m)t)gm
c vi + 1 = vi + (g – vi)cm

= g – vdv
dt

c
m

Physical law

Solution

ODE

Δt

FIGURE PT7.2
The sequence of events in the application of ODEs for engineering problem solving. The ex-
ample shown is the velocity of a falling parachutist.
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 In fact, such mathematical relationships are the basis of the solution for a great 
number of engineering problems. However, as described in the previous section, many 
of the differential equations of practical significance cannot be solved using the analyti-
cal methods of calculus. Thus, the methods discussed in the following chapters are 
 extremely important in all fields of engineering.

 PT7.2 MATHEMATICAL BACKGROUND
A solution of an ordinary differential equation is a specific function of the independent 
variable and parameters that satisfies the original differential equation. To illustrate this 
concept, let us start with a given function,

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1 (PT7.12)

which is a fourth-order polynomial (Fig. PT7.3a). Now, if we differentiate Eq. (PT7.12), 
we obtain an ODE:

dy

dx
= −2x3 + 12x2 − 20x + 8.5 (PT7.13)

This equation also describes the behavior of the polynomial, but in a manner different 
from Eq. (PT7.12). Rather than explicitly representing the values of y for each value of 
x, Eq. (PT7.13) gives the rate of change of y with respect to x (that is, the slope) at every 
value of x. Figure PT7.3 shows both the function and the derivative plotted versus x. Notice 
how the zero values of the derivatives correspond to the point at which the original func-
tion is flat—that is, has a zero slope. Also, the maximum absolute values of the derivatives 
are at the ends of the interval where the slopes of the function are greatest.
 Although, as just demonstrated, we can determine a differential equation given the 
original function, the object here is to determine the original function given the differ-
ential equation. The original function then represents the solution. For the present case, 
we can determine this solution analytically by integrating Eq. (PT7.13):

y = ∫ (−2x3 + 12x2 − 20x + 8.5) dx

 Applying the integration rule (recall Table PT6.2),

∫un du =
un+1

n + 1
+ C    n ≠ −1

to each term of the equation gives the solution,

y = −0.5x4 + 4x3 − 10x2 + 8.5x + C (PT7.14)

which is identical to the original function with one notable exception. In the course of 
differentiating and then integrating, we lost the constant value of 1 in the original equa-
tion and gained the value C. This C is called a constant of integration. The fact that such 
an arbitrary constant appears indicates that the solution is not unique. In fact, it is but 
one of an infinite number of possible functions (corresponding to an infinite number of 
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716 ORDINARY DIFFERENTIAL EQUATIONS

FIGURE PT7.3
Plots of (a) y versus x and (b) dy/dx versus x for the function  
y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1.
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possible values of C) that satisfy the differential equation. For example, Fig. PT7.4 shows 
six possible functions that satisfy Eq. (PT7.14).
 Therefore, to specify the solution completely, a differential equation is usually 
accompanied by auxiliary conditions. For first-order ODEs, a type of auxiliary condition 
called an initial value is required to determine the constant and obtain a unique solution. 
For example, Eq. (PT7.13) could be accompanied by the initial condition that at x = 0, 
y = 1. These values could be substituted into Eq. (PT7.14):

1 = −0.5(0)4 + 4(0)3 − 10(0)2 + 8.5(0) + C (PT7.15)

to determine C = 1. Therefore, the unique solution that satisfies both the differential 
equation and the specified initial condition is obtained by substituting C = 1 into Eq. 
(PT7.14) to yield

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1 (PT7.16)

Thus, we have “pinned down’’ Eq. (PT7.14) by forcing it to pass through the initial 
condition, and in so doing, we have developed a unique solution to the ODE and have 
come full circle to the original function [Eq. (PT7.12)].
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 Initial conditions usually have very tangible interpretations for differential equations 
derived from physical problem settings. For example, in the falling parachutist problem, 
the initial condition was reflective of the physical fact that at time zero the vertical 
velocity was zero. If the parachutist had already been in vertical motion at time zero, the 
solution would have been modified to account for this initial velocity.
 When dealing with an nth-order differential equation, n conditions are required to 
obtain a unique solution. If all conditions are specified at the same value of the inde-
pendent variable (for example, at x or t = 0), then the problem is called an initial-value 
problem. This is in contrast to boundary-value problems where specification of condi-
tions occurs at different values of the independent variable. Chapters 25 and 26 will focus 
on initial-value problems. Boundary-value problems are covered in Chap. 27 along with 
eigenvalues.

 PT7.3 ORIENTATION
Before proceeding to numerical methods for solving ordinary differential equations, some 
orientation might be helpful. The following material is intended to provide you with an 
overview of the material discussed in Part Seven. In addition, we have formulated objec-
tives to focus your studies of the subject area.

PT7.3.1 Scope and Preview
Figure PT7.5 provides an overview of Part Seven. Two broad categories of numerical 
methods for initial-value problems will be discussed in this part of this book. One-step 
methods, which are covered in Chap. 25, permit the calculation of yi+1, given the 

FIGURE PT7.4
Six possible solutions for the integral of −2x3 + 12x2 − 20x + 8.5. Each conforms to a  different 
value of the constant of integration C.
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x
C = 0

C = – 1

C = – 2

C = 3

C = 2

C = 1
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718 ORDINARY DIFFERENTIAL EQUATIONS

FIGURE PT7.5
Schematic representation of the organization of Part Seven: Ordinary Differential Equations.
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 differential equation and yi. Multistep methods, which are covered in Chap. 26, require 
additional values of y other than at i.
 With all but a minor exception, the one-step methods in Chap. 25 belong to what 
are called Runge-Kutta techniques. Although the chapter might have been organized 
around this theoretical notion, we have opted for a more graphical, intuitive approach to 
introduce the methods. Thus, we begin the chapter with Euler’s method, which has a 
very straightforward graphical interpretation. Then, we use visually oriented arguments 
to develop two improved versions of Euler’s method—the Heun and the midpoint tech-
niques. After this introduction, we formally develop the concept of Runge-Kutta (or RK) 
approaches and demonstrate how the foregoing techniques are actually first- and second-
order RK methods. This is followed by a discussion of the higher-order RK formulations 
that are frequently used for engineering problem solving. In addition, we cover the appli-
cation of one-step methods to systems of ODEs. Finally, the chapter ends with a discus-
sion of adaptive RK methods that automatically adjust the step size in response to the 
truncation error of the computation.
 Chapter 26 starts with a description of stiff ODEs. These are both individual and 
systems of ODEs that have both fast and slow components to their solution. We intro-
duce the idea of an implicit solution technique as one commonly used remedy for this 
problem.
 Next, we discuss multistep methods. These algorithms retain information of previous 
steps to more effectively capture the trajectory of the solution. They also yield the trunca-
tion error estimates that can be used to implement step-size control. In this section, we 
initially take a visual, intuitive approach by using a simple method—the non-self-starting 
Heun—to introduce all the essential features of the multistep approaches.
 In Chap. 27 we turn to boundary-value and eigenvalue problems. For the former, 
we introduce both shooting and finite-difference methods. For the latter, we discuss sev-
eral approaches, including the polynomial and the power methods. Finally, the chapter 
concludes with a description of the application of several software packages and librar-
ies for solution of ODEs and eigenvalues.
 Chapter 28 is devoted to applications from all the fields of engineering. Finally, a 
short review section is included at the end of Part Seven. This epilogue summarizes and 
compares the important formulas and concepts related to ODEs. The comparison includes 
a discussion of trade-offs that are relevant to their implementation in engineering prac-
tice. The epilogue also summarizes important formulas and includes references for 
 advanced topics.

PT7.3.2 Goals and Objectives
Study Objectives. After completing Part Seven, you should have greatly enhanced 
your capability to confront and solve ordinary differential equations and eigenvalue prob-
lems. General study goals should include mastering the techniques, having the capability 
to assess the reliability of the answers, and being able to choose the “best’’ method (or 
methods) for any particular problem. In addition to these general objectives, the specific 
study objectives in Table PT7.2 should be mastered.

Computer Objectives. Algorithms are provided for many of the methods in Part 
Seven. This information will allow you to expand your software library. For example, 
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720 ORDINARY DIFFERENTIAL EQUATIONS

TABLE PT7.2 Specific study objectives for Part Seven.

 1. Understand the visual representations of Euler’s, Heun’s, and the midpoint methods.
 2. Know the relationship of Euler’s method to the Taylor series expansion and the insight it provides 

regarding the error of the method.
 3. Understand the difference between local and global truncation errors and how they relate to the 

choice of a numerical method for a particular problem.
 4. Know the order and the step-size dependency of the global truncation errors for all the methods 

described in Part Seven; understand how these errors bear on the accuracy of the techniques.
 5. Understand the basis of predictor-corrector methods; in particular, realize that the efficiency of 

the corrector is highly dependent on the accuracy of the predictor.
 6. Know the general form of the Runge-Kutta methods; understand the derivation of the second-

order RK method and how it relates to the Taylor series expansion; realize that there are an 
infinite number of possible versions for second- and higher-order RK methods.

 7. Know how to apply any of the RK methods to systems of equations; be able to reduce an nth-
order ODE to a system of n first-order ODEs.

 8. Recognize the type of problem context where step-size adjustment is important.
 9. Understand how adaptive step-size control is integrated into a fourth-order RK method.
 10. Recognize how the combination of slow and fast components makes an equation or a system of 

equations stiff.
 11. Understand the distinction between explicit and implicit solution schemes for ODEs; in particular, 

recognize how the latter (1) ameliorates the stiffness problem and (2) complicates the solution 
mechanics.

 12. Understand the difference between initial-value and boundary-value problems.
 13. Know the difference between multistep and one-step methods; realize that all multistep methods 

are predictor-correctors but that not all predictor-correctors are multistep methods.
 14. Understand the connection between integration formulas and predictor-corrector methods.
 15. Recognize the fundamental difference between Newton-Cotes and Adams integration formulas.
 16. Know the rationale behind the polynomial and the power methods for determining eigenvalues; 

in particular, recognize their strengths and limitations.
 17. Understand how Hoteller’s deflation allows the power method to be used to compute 

intermediate eigenvalues.
 18. Know how to use software packages and/or libraries to integrate ODEs and evaluate 

eigenvalues.

you may find it useful from a professional viewpoint to have software that employs the 
fourth-order Runge-Kutta method for more than five equations and to solve ODEs with 
an adaptive step-size approach.
 In addition, one of your most important goals should be to master several of the 
general-purpose software packages that are widely available. In particular, you should 
become adept at using these tools to implement numerical methods for engineering 
problem solving.
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C H A P T E R

25
Runge-Kutta Methods

This chapter is devoted to solving ordinary differential equations of the form

dy

dx
= f(x, y)

In Chap. 1, we used a numerical method to solve such an equation for the velocity of 
the falling parachutist. Recall that the method was of the general form

New value = old value + slope × step size

or, in mathematical terms,

yi+1 = yi + ϕh (25.1)

According to this equation, the slope estimate of ϕ is used to extrapolate from an old value 
yi to a new value yi + 1 over a distance h (Fig. 25.1). This formula can be applied step by 
step to compute out into the future and, hence, trace out the trajectory of the solution.

FIGURE 25.1
Graphical depiction of a one-
step method.

y

x

Step size = h

Slope = ϕ

xi xi + 1

yi + 1 = yi + ϕh
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722 RUNGE-KUTTA METHODS

 All one-step methods can be expressed in this general form, with the only difference 
being the manner in which the slope is estimated. As in the falling parachutist problem, 
the simplest approach is to use the differential equation to estimate the slope in the form 
of the first derivative at xi. In other words, the slope at the beginning of the interval is 
taken as an approximation of the average slope over the whole interval. This approach, 
called Euler’s method, is discussed in the first part of this chapter. This is followed by 
other one-step methods that employ alternative slope estimates that result in more ac-
curate predictions. All these techniques are generally called Runge-Kutta methods.

 25.1 EULER’S METHOD
The first derivative provides a direct estimate of the slope at xi (Fig. 25.2):

ϕ = f(xi, yi)

where f(xi, yi) is the differential equation evaluated at xi and yi. This estimate can be 
substituted into Eq. (25.1):

yi+1 = yi + f(xi, yi)h (25.2)

 This formula is referred to as Euler’s (or the Euler-Cauchy or the point-slope) 
method. A new value of y is predicted using the slope (equal to the first derivative at 
the original value of x) to extrapolate linearly over the step size h (Fig. 25.2).

 EXAMPLE 25.1 Euler’s Method
Problem Statement. Use Euler’s method to numerically integrate Eq. (PT7.13):

dy

dx
= −2x3 + 12x2 − 20x + 8.5

y

xxi + 1

error

Predicted

True

xi

h

FIGURE 25.2
Euler’s method.
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 25.1 EULER’S METHOD 723

from x = 0 to x = 4 with a step size of 0.5. The initial condition at x = 0 is y = 1. 
Recall that the exact solution is given by Eq. (PT7.16):

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1

Solution. Equation (25.2) can be used to implement Euler’s method:

y(0.5) = y(0) + f(0, 1)0.5

where y(0) = 1 and the slope estimate at x = 0 is

f(0, 1) = −2(0)3 + 12(0)2 − 20(0) + 8.5 = 8.5

Therefore,

y(0.5) = 1.0 + 8.5(0.5) = 5.25

The true solution at x = 0.5 is

y = −0.5(0.5)4 + 4(0.5)3 − 10(0.5)2 + 8.5(0.5) + 1 = 3.21875

Thus, the error is

Et = true − approximate = 3.21875 − 5.25 = −2.03125

or, expressed as percent relative error, εt = −63.1%. For the second step,

 y(1) = y(0.5) + f(0.5, 5.25)0.5
 = 5.25 + [−2(0.5)3 + 12(0.5)2 − 20(0.5) + 8.5]0.5
 = 5.875

The true solution at x = 1.0 is 3.0, and therefore, the percent relative error is −95.8%. 
The computation is repeated, and the results are compiled in Table 25.1 and Fig. 25.3. 

TABLE 25.1  Comparison of true and approximate values of the integral of  
y′ = −2x3 + 12x2 − 20x + 8.5, with the initial condition that y = 1 at  
x = 0. The approximate values were computed using Euler’s method with a 
step size of 0.5. The local error refers to the error incurred over a single 
step. It is calculated with a Taylor series expansion as in Example 25.2.  
The global error is the total discrepancy due to past as well as present steps.

 Percent Relative Error

 x ytrue yEuler Global Local

 0.0 1.00000 1.00000
 0.5 3.21875 5.25000 −63.1 −63.1
 1.0 3.00000 5.87500 −95.8 −28.1
 1.5 2.21875 5.12500 −131.0 −1.4
 2.0 2.00000 4.50000 −125.0 20.3
 2.5 2.71875 4.75000 −74.7 17.2
 3.0 4.00000 5.87500 −46.9 3.9
 3.5 4.71875 7.12500 −51.0 −11.3
 4.0 3.00000 7.00000 −133.3 −53.1
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724 RUNGE-KUTTA METHODS

Note that, although the computation captures the general trend of the true solution, the 
error is considerable. As discussed in the next section, this error can be reduced by using 
a smaller step size.

 The preceding example uses a simple polynomial for the differential equation to 
facilitate the error analyses that follow. Thus,

dy

dx
= f(x)

Obviously, a more general (and more common) case involves ODEs that depend on both 
x and y,

dy

dx
= f(x, y)

As we progress through this part of the text, our examples will increasingly involve ODEs 
that depend on both the independent and the dependent variables.

25.1.1 Error Analysis for Euler’s Method
The numerical solution of ODEs involves two types of error (recall Chaps. 3 and 4):

1. Truncation, or discretization, errors caused by the nature of the techniques employed 
to approximate values of y.

FIGURE 25.3
Comparison of the true solution with a numerical solution using Euler’s method for the inte-
gral of y′ = −2x3 + 12x2 − 20x + 8.5 from x = 0 to x = 4 with a step size of 0.5. The initial 
 condition at x = 0 is y = 1.

y

4

0
x4

True solution

h = 0.5

20
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2. Round-off errors caused by the limited numbers of significant digits that can be 
retained by a computer.

 The truncation errors are composed of two parts. The first is a local truncation error 
that results from an application of the method in question over a single step. The second 
is a propagated truncation error that results from the approximations produced during 
the previous steps. The sum of the two is the total, or global, truncation error.
 Insight into the magnitude and properties of the truncation error can be gained by 
deriving Euler’s method directly from the Taylor series expansion. To do this, realize 
that the differential equation being integrated will be of the general form

y′ = f(x, y) (25.3)

where y′ = dy∕dx and x and y are the independent and the dependent variables, respectively. 
If the solution—that is, the function describing the behavior of y—has continuous deriva-
tives, it can be represented by a Taylor series expansion about a starting value (xi, yi), as in 
[recall Eq. (4.7)]

yi+1 = yi + y′i 
h +

y″i
2!

 h2 + … +
y(n)

i

n!
 hn + Rn (25.4)

where h = xi+1 − xi and Rn = the remainder term, defined as

Rn =
y(n+1)(ξ)
(n + 1)!

 hn+1 (25.5)

where ξ lies somewhere in the interval from xi to xi+1. An alternative form can be de-
veloped by substituting Eq. (25.3) into Eqs. (25.4) and (25.5) to yield

yi+1 = yi + f(xi, yi)h +
f ′(xi, yi)

2!
 h2 + … +

f (n−1)(xi, yi)
n!

 hn + O(hn+1) (25.6)

where O(hn+1) specifies that the local truncation error is proportional to the step size 
raised to the (n + 1)th power.
 By comparing Eqs. (25.2) and (25.6), it can be seen that Euler’s method corresponds 
to the Taylor series up to and including the term f(xi, yi)h. Additionally, the comparison 
indicates that a truncation error occurs because we approximate the true solution using 
a finite number of terms from the Taylor series. We thus truncate, or leave out, a part 
of the true solution. For example, the truncation error in Euler’s method is attributable 
to the remaining terms in the Taylor series expansion that were not included in Eq. (25.2). 
Subtracting Eq. (25.2) from Eq. (25.6) yields

Et =
f ′(xi, yi)

2!
 h2 + … + O(hn+1) (25.7)

where Et = the true local truncation error. For sufficiently small h, the errors in the terms 
in Eq. (25.7) usually decrease as the order increases (recall Example 4.2 and the ac-
companying discussion), and the result is often represented as

Ea =
f ′(xi, yi)

2!
 h2 (25.8)
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726 RUNGE-KUTTA METHODS

or

Ea = O(h2) (25.9)

where Ea = the approximate local truncation error.

 EXAMPLE 25.2 Taylor Series Estimate for the Error of Euler’s Method
Problem Statement. Use Eq. (25.7) to estimate the error of the first step of Example 
25.1. Also use it to determine the error due to each higher-order term of the Taylor 
series expansion.

Solution. Because we are dealing with a polynomial, we can use the Taylor series to 
obtain exact estimates of the errors in Euler’s method. Equation (25.7) can be written as

Et =
f ′(xi, yi)

2!
 h2 +

f ″(xi, yi)
3!

 h3 +
f (3)(xi, yi)

4!
 h4 (E25.2.1)

where f ′(xi, yi) = the first derivative of the differential equation (that is, the second de-
rivative of the solution). For the present case, this is

f ′(xi, yi) = −6x2 + 24x − 20 (E25.2.2)

and f ″(xi, yi) is the second derivative of the ODE,

f ″(xi, yi) = −12x + 24 (E25.2.3)

and f (3)(xi, yi) is the third derivative of the ODE,

f (3)(xi, yi) = −12 (E25.2.4)

We can omit additional terms (that is, fourth derivatives and higher) from Eq. (E25.2.1) 
because for this particular case they equal zero. It should be noted that for other functions 
(for example, transcendental functions such as sinusoids or exponentials) this would not 
necessarily be true, and higher-order terms would have nonzero values. However, for the 
present case, Eqs. (E25.2.1) through (E25.2.4) completely define the truncation error for 
a single application of Euler’s method.
 For example, the error due to truncation of the second-order term can be calculated as

Et, 2 =
−6(0.0)2 + 24(0.0) − 20

2
 (0.5)2 = −2.5 (E25.2.5)

For the third-order term:

Et, 3 =
−12(0.0) + 24

6
 (0.5)3 = 0.5

and for the fourth-order term:

Et, 4 =
−12
24

(0.5)4 = −0.03125

These three results can be added to yield the total truncation error:

Et = Et, 2 + Et, 3 + Et, 4 = −2.5 + 0.5 − 0.03125 = −2.03125
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which is exactly the error that was incurred in the initial step of Example 25.1. Note that 
Et, 2 > Et, 3 > Et, 4, which supports the approximation represented by Eq. (25.8).

 As illustrated in Example 25.2, the Taylor series provides a means of quantifying 
the error in Euler’s method. However, there are limitations associated with its use for 
this purpose:

1. The Taylor series provides only an estimate of the local truncation error—that is, the 
error created during a single step of the method. It does not provide a measure of the 
propagated and, hence, the global, truncation error. In Table 25.1, we have included 
the local and global truncation errors for Example 25.1. The local error was computed 
for each time step with Eq. (25.2) but using the true value of yi (the second column 
of the table) to compute each yi+l rather than the approximate value (the third column), 
as is done in the Euler method. As expected, the average absolute local truncation 
error (25%) is less than the average global error (90%). The only reason that we can 
make these exact error calculations is that we know the true value a priori. Such 
would not be the case in an actual problem. Consequently, as discussed below, you 
must usually apply techniques such as Euler’s method using a number of different 
step sizes to obtain an indirect estimate of the errors involved.

2. As mentioned above, in actual problems we usually deal with functions that are more 
complicated than simple polynomials. Consequently, the derivatives that are needed 
to evaluate the Taylor series expansion would not always be easy to obtain.

 Although these limitations preclude exact error analysis for most practical problems, 
the Taylor series still provides valuable insight into the behavior of Euler’s method. Ac-
cording to Eq. (25.9), we see that the local error is proportional to the square of the step 
size and the first derivative of the differential equation. It can also be demonstrated that 
the global truncation error is O(h); that is, it is proportional to the step size (Carnahan 
et al. 1969). These observations lead to some useful conclusions:

1. The error can be reduced by decreasing the step size.
2. The method will provide error-free predictions if the underlying function (that is, the 

solution of the differential equation) is linear, because for a straight line the second 
derivative would be zero.

This latter conclusion makes intuitive sense because Euler’s method uses straight-line 
segments to approximate the solution. Hence, Euler’s method is referred to as a first-
order method.
 It should also be noted that this general pattern holds for the higher-order one-step 
methods described in the following pages. That is, an nth-order method will yield perfect 
results if the underlying solution is an nth-order polynomial. Further, the local truncation 
error will be O(hn+1) and the global truncation error O(hn).

 EXAMPLE 25.3 Effect of Reduced Step Size on Euler’s Method
Problem Statement. Repeat the computation of Example 25.1 but use a step size of 
0.25.
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Solution. The computation is repeated, and the results are compiled in Fig. 25.4a. 
Halving the step size reduces the absolute value of the average global error to 40% and 
the absolute value of the local error to 6.4%. This is compared to global and local errors 
for Example 25.1 of 90% and 24.8%, respectively. Thus, as expected, the local error is 
quartered and the global error is halved.
 Also, notice how the local error changes sign for intermediate values along the range. 
This is due primarily to the fact that the first derivative of the differential equation is a 
parabola that changes sign [recall Eq. (E25.2.2) and see Fig. 25.4b]. Because the local 
error is proportional to this function, the net effect of the oscillation in sign is to keep 
the global error from continuously growing as the calculation proceeds. Thus, from x = 
0 to x = 1.25, the local errors are all negative, and consequently, the global error increases 

FIGURE 25.4
(a) Comparison of two numerical solutions with Euler’s method using step sizes of 0.5 and 
0.25. (b) Comparison of true and estimated local truncation error for the case where the step 
size is 0.5. Note that the “estimated” error is based on Eq. (E25.2.5).
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 25.1 EULER’S METHOD 729

over this interval. In the intermediate section of the range, positive local errors begin to 
reduce the global error. Near the end, the process is reversed and the global error again 
inflates. If the local error continuously changes sign over the computation interval, the 
net effect is usually to reduce the global error. However, where the local errors are of the 
same sign, the numerical solution may diverge farther and farther from the true solution 
as the computation proceeds. Such results are said to be unstable.

 The effect of further step-size reductions on the global truncation error of Euler’s 
method is illustrated in Fig. 25.5. This plot shows the absolute percent relative error at 
x = 5 as a function of step size for the problem we have been examining in Examples 
25.1 through 25.3. Notice that even when h is reduced to 0.001, the error still exceeds 
0.1%. Because this step size corresponds to 5000 steps to proceed from x = 0 to x = 5, 
the plot suggests that a first-order technique such as Euler’s method demands great 
computational effort to obtain acceptable error levels. Later in this chapter, we present 
higher-order techniques that attain much better accuracy for the same computational ef-
fort. However, it should be noted that, despite its inefficiency, the simplicity of Euler’s 
method makes it an extremely attractive option for many engineering problems. Because 
it is very easy to program, the technique is particularly useful for quick analyses. In the 
next section, a computer algorithm for Euler’s method is developed.

FIGURE 25.5
Effect of step size on the global truncation error of Euler’s method for the integral of  
y′ = −2x3 + 12x2 − 20x + 8.5. The plot shows the absolute percent relative global  
error at x = 5 as a function of step size.
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25.1.2 Algorithm for Euler’s Method
Algorithms for one-step techniques such as Euler’s method are extremely simple to pro-
gram. As specified previously at the beginning of this chapter, all one-step methods have 
the general form

New value = old value + slope × step size (25.10)

The only way in which the methods differ is in the calculation of the slope.
 Suppose that you want to perform the simple calculation outlined in Table 25.1. That 
is, you would like to use Euler’s method to integrate y′ = −2x3 + 12x2 − 20x + 8.5, 
with the initial condition that y = 1 at x = 0. You would like to integrate out to x = 4 
using a step size of 0.5, and display all the results. A simple pseudocode to accomplish 
this task could be written as in Fig. 25.6.
 Although this program will “do the job” of duplicating the results of Table 25.1, it 
is not very well designed. First, and foremost, it is not very modular. Although this is 
not very important for such a small program, it would be critical if we desired to mod-
ify and improve the algorithm.
 Further, there are a number of issues related to the way we have set up the iterations. 
For example, suppose that the step size were to be made very small to obtain better ac-
curacy. In such cases, because every computed value is displayed, the number of output 
values might be very large. Further, the algorithm is predicated on the assumption that 
the calculation interval is evenly divisible by the step size. Finally, the accumulation of 
x in the line x = x + dx can be subject to quantizing errors of the sort previously discussed 

FIGURE 25.6
Pseudocode for a “dumb” version of Euler’s method.

‘set integration range
xi = 0
xf = 4
‘initialize variables
x = xi
y = 1
‘set step size and determine
‘number of calculation steps
dx = 0.5
nc = (xf − xi)/dx
‘output initial condition
PRINT x, y
‘loop to implement Euler’s method
‘and display results
DOFOR i = 1, nc
  dydx = −2x3 + 12x2 − 20x + 8.5
  y = y + dydx · dx
  x = x + dx
  PRINT x, y
END DO
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in Sec. 3.4.1. For example, if dx were changed to 0.01 and standard IEEE floating point 
representation were used (about seven significant digits), the result at the end of the 
calculation would be 3.999997 rather than 4. For dx = 0.001, it would be 3.999892!
 A much more modular algorithm that avoids these difficulties is displayed in Fig. 25.7. 
The algorithm does not output all calculated values. Rather, the user specifies an output 
interval, xout, that dictates the interval at which calculated results are stored in arrays, 
xpm and ypm. These values are stored in arrays so that they can be output in a variety of 
ways after the computation is completed (for example, printed, graphed, or written to a file).
 The Driver Program takes big output steps and calls an Integrator routine that takes 
finer calculation steps. Note that the loops controlling both large and small steps exit on 
logical conditions. Thus, the intervals do not have to be evenly divisible by the step sizes.
 The Integrator routine then calls an Euler routine that takes a single step with Euler’s 
method. The Euler routine calls a Derivative routine that calculates the derivative value.
 Whereas such modularization might seem like overkill for the present case, it will 
greatly facilitate modifying the program in later sections. For example, although the 
program in Fig. 25.7 is specifically designed to implement Euler’s method, the Euler 
module is the only part that is method-specific. Thus, all that is required to apply this 
algorithm to the other one-step methods is to modify this routine.

FIGURE 25.7
Pseudocode for an “improved” modular version of Euler’s method.

(a) Main or “Driver” Program

Assign values for
y = initial value dependent variable
xi = initial value independent variable
xf = final value independent variable
dx = calculation step size
xout = output interval

x = xi
m = 0
xpm = x
ypm = y
DO
  xend = x + xout
  IF (xend > xf) THEN xend = xf
  h = dx
  CALL Integrator(x, y, h, xend)
  m = m + 1
  xpm = x
  ypm = y
  IF (x ≥ xf) EXIT
END DO
DISPLAY RESULTS
END

(b) Routine to Take One Output Step

SUB Integrator(x, y, h, xend)
  DO
    IF (xend − x < h) THEN h = xend − x
    CALL Euler(x, y, h, ynew)
    y = ynew
    IF (x ≥ xend) EXIT
  END DO
END SUB

(c) Euler’s Method for a Single ODE

SUB Euler(x, y, h, ynew)
  CALL Derivs(x, y, dydx)
  ynew = y + dydx * h
  x = x + h
END SUB

(d) Routine to Determine Derivative

SUB Derivs(x, y, dydx)
  dydx = . . .
END SUB
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732 RUNGE-KUTTA METHODS

 EXAMPLE 25.4 Solving ODEs with the Computer
Problem Statement. A computer program can be developed from the pseudocode in 
Fig. 25.7. We can use this software to solve another problem associated with the falling 
parachutist. You recall from Part One that our mathematical model for the velocity was 
based on Newton’s second law in the form

dυ

dt
= g −

c

m
 υ (E25.4.1)

This differential equation was solved both analytically (Example 1.1) and numerically 
using Euler’s method (Example 1.2). These solutions were for the case where g = 9.81, 
c = 12.5, m = 68.1, and υ = 0 at t = 0.
 The objective of the present example is to repeat these numerical computations 
employing a more complicated model for the velocity based on a more complete math-
ematical description of the drag force caused by wind resistance. This model is given by

dυ

dt
= g −

c

m[υ + a(
υ

υmax)
b

] (E25.4.2)

where g, m, and c are the same as for Eq. (E25.4.1), and a, b, and υmax are empirical 
constants, which for this case are equal to 8.3, 2.2, and 46, respectively. Note that this 
model is more capable of accurately fitting empirical measurements of drag force versus 
velocity than is the simple linear model of Example 1.1. However, this increased flexibil-
ity is gained at the expense of evaluating three coefficients rather than one. Furthermore, 
the resulting mathematical model is more difficult to solve analytically. In this case, Euler’s 
method provides a convenient alternative to obtain an approximate numerical solution.

Solution. The results for both the linear and nonlinear model are displayed in Fig. 25.8 
with an integration step size of 0.1 s. The plot in Fig. 25.8 also shows an overlay of the 
solution of the linear model for comparison purposes.

FIGURE 25.8
Graphical results for the solution of the nonlinear ODE [Eq. (E25.4.2)]. Notice that the plot also 
shows the solution for the linear model [Eq. (E25.4.1)] for comparative purposes.
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 The results of the two simulations indicate how increasing the complexity of the 
formulation of the drag force affects the velocity of the parachutist. In this case, the 
terminal velocity is lowered because of resistance caused by the higher-order terms in 
Eq. (E25.4.2).
 Alternative models could be tested in a similar fashion. The combination of a 
 computer-generated solution makes this an easy and efficient task. This convenience 
should allow you to devote more of your time to considering creative alternatives and 
holistic aspects of the problem rather than to performing tedious manual computations.

25.1.3 Higher-Order Taylor Series Methods
One way to reduce the error of Euler’s method would be to include higher-order terms 
of the Taylor series expansion in the solution. For example, including the second-order 
term from Eq. (25.6) yields

yi+1 = yi + f(xi, yi)h +
f ′(xi, yi)

2!
 h2 (25.11)

with a local truncation error of

Ea =
f ″(xi, yi)

6
 h3

 Although the incorporation of higher-order terms is simple enough to implement for 
polynomials, their inclusion is not so trivial when the ODE is more complicated. In 
particular, ODEs that are a function of both the dependent and independent variable 
require chain-rule differentiation. For example, the first derivative of f(x, y) is

f ′(xi, yi) =
∂f(x, y)

∂x
+

∂f(x, y)
∂y

 
dy

dx

The second derivative is

f ″(xi, yi) =
∂[∂f∕∂x + (∂f∕∂y) (dy∕dx) ]

∂x
+

∂[∂f∕∂x + (∂f∕∂y) (dy∕dx) ]
∂y

 
dy

dx

Higher-order derivatives become increasingly more complicated.
 Consequently, as described in the following sections, alternative one-step methods 
have been developed. These schemes are comparable in performance to the higher-order 
Taylor-series approaches but require only the calculation of first derivatives.

 25.2 IMPROVEMENTS OF EULER’S METHOD
A fundamental source of error in Euler’s method is that the derivative at the beginning of 
the interval is assumed to apply across the entire interval. Two simple modifications are 
available to help circumvent this shortcoming. As will be demonstrated in Sec. 25.3, both 
modifications actually belong to a larger class of solution techniques called Runge-Kutta 

cha32077_ch25_721-766.indd   733 10/11/19   1:19 PM



734 RUNGE-KUTTA METHODS

methods. However, because they have a very straightforward graphical interpretation, we 
will present them prior to their formal derivation as Runge-Kutta methods.

25.2.1 Heun’s Method
One method to improve the estimate of the slope involves the determination of two 
derivatives for the interval—one at the initial point and another at the end point. The 
two derivatives are then averaged to obtain an improved estimate of the slope for the 
entire interval. This approach, called Heun’s method, is depicted graphically in Fig. 25.9.
 Recall that in Euler’s method, the slope at the beginning of an interval,

y′i = f(xi, yi) (25.12)

is used to extrapolate linearly to yi+1:

y0
i+1 = yi + f(xi, yi)h (25.13)

For the standard Euler method we would stop at this point. However, in Heun’s method 
the y0

i+1 calculated in Eq. (25.13) is not the final answer, but an intermediate prediction. 
This is why we have distinguished it with a superscript 0. Equation (25.13) is called a 

FIGURE 25.9
Graphical depiction of Heun’s method. (a) Predictor and (b) corrector.
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predictor equation. It provides an estimate of yi+1 that allows the calculation of an esti-
mated slope at the end of the interval:

y′i+1 = f(xi+1, y0
i+1) (25.14)

Thus, the two slopes [Eqs. (25.12) and (25.14)] can be combined to obtain an average 
slope for the interval:

y′ =
y′i + y′i+1

2
=

f(xi, yi) + f(xi+1, y0
i+1)

2
 

This average slope is then used to extrapolate linearly from yi to yi + l using Euler’s method:

yi+1 = yi +
f(xi, yi) + f(xi+1, y0

i+1)
2

 h

This is called a corrector equation.
 The Heun method is a predictor-corrector approach. All the multistep methods to 
be discussed subsequently in Chap. 26 are of this type. The Heun method is the only 
one-step predictor-corrector method described in this book. As derived above, it can be 
expressed concisely as

Predictor (Fig. 25.9a):   y0
i+1 = yi + f(xi, yi)h (25.15)

Corrector (Fig. 25.9b):  yi+1 = yi +
f(xi, yi) + f(xi+1, y0

i+1)
2

 h (25.16)

 Note that because Eq. (25.16) has yi+l on both sides of the equal sign, it can be applied 
in an iterative fashion. That is, an old estimate can be used repeatedly to provide an im-
proved estimate of yi+l. The process is depicted in Fig. 25.10. It should be understood that 

FIGURE 25.10
Graphical representation of iterating the corrector of Heun’s method to obtain an improved 
 estimate.
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736 RUNGE-KUTTA METHODS

this iterative process does not necessarily converge on the true answer but will converge 
on an estimate with a finite truncation error, as demonstrated in the following example.
 As with similar iterative methods discussed in previous sections of the book, a ter-
mination criterion for convergence of the corrector is provided by [recall Eq. (3.5)]

∣εa∣ = ∣ y
j
i+1 − y

j−1
i+1

y
j
i+1

∣ 100% (25.17)

where y
j−1
i+1  and y

j
i+1 are the result from the prior and the present iteration of the correc-

tor, respectively.

 EXAMPLE 25.5 Heun’s Method
Problem Statement. Use Heun’s method to integrate y′ = 4e0.8x − 0.5y from x = 0 to 
x = 4 with a step size of 1. The initial condition at x = 0 is y = 2.

Solution. Before solving the problem numerically, we can use calculus to determine 
the following analytical solution:

y =
4

1.3
 (e0.8x − e−0.5x) + 2e−0.5x (E25.5.1)

This formula can be used to generate the true solution values in Table 25.2.
 First, the slope at (x0, y0) is calculated as

y′0 = 4e0 − 0.5(2) = 3

This result is quite different from the actual average slope for the interval from 0 to 1.0, 
which is equal to 4.1946, as calculated from the differential equation using Eq. (PT6.4).
 The numerical solution is obtained by using the predictor [Eq. (25.15)] to obtain an 
estimate of y at 1.0:

y0
1 = 2 + 3(1) = 5

TABLE 25.2  Comparison of true and approximate values of the integral of y′ =  
4e0.8x − 0.5y, with the initial condition that y = 2 at x = 0. The 
approximate values were computed using the Heun method with a step 
size of 1. Two cases, corresponding to different numbers of corrector 
iterations, are shown, along with the absolute percent relative error.

 Iterations of Heun’s Method

 1 15

x ytrue y Heun |εt| (%) y Heun |εt| (%)

0 2.0000000 2.0000000 0.00 2.0000000 0.00
1 6.1946314 6.7010819 8.18 6.3608655 2.68
2 14.8439219 16.3197819 9.94 15.3022367 3.09
3 33.6771718 37.1992489 10.46 34.7432761 3.17
4 75.3389626 83.3377674 10.62 77.7350962 3.18
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Note that this is the result that would be obtained by the standard Euler method. The true 
value in Table 25.2 shows that it corresponds to a percent relative error of 19.3 percent.
 Now, to improve the estimate for yi+1, we use the value y0

1 to predict the slope at 
the end of the interval,

y′1 = f(x1, y0
1) = 4e0.8(1) − 0.5(5) = 6.402164

which can be combined with the initial slope to yield an average slope over the interval 
from x = 0 to 1,

y′ =
3 + 6.402164

2
= 4.701082

which is closer to the true average slope of 4.1946. This result can then be substituted 
into the corrector [Eq. (25.16)] to give the prediction at x = 1,

y1 = 2 + 4.701082(1) = 6.701082

which represents a percent relative error of −8.18 percent. Thus, the Heun method with-
out iteration of the corrector reduces the absolute value of the error by a factor of 2.4 
as compared with Euler’s method.
 Now this estimate can be used to refine or correct the prediction of y1 by substitut-
ing the new result back into the right-hand side of Eq. (25.16):

y1 = 2 +
[3 + 4e0.8(1) − 0.5(6.701082)]

2
 1 = 6.275811

which represents an absolute percent relative error of 1.31 percent. This result, in turn, 
can be substituted back into Eq. (25.16) to further correct:

y1 = 2 +
[3 + 4e0.8(1) − 0.5(6.275811)]

2
 1 = 6.382129

which represents an ∣εt∣ of 3.03%. Notice how the errors can grow as the iterations pro-
ceed. Such increases can occur, especially for large step sizes, and they prevent us from 
drawing the general conclusion that an additional iteration will always improve the result. 
However, for a sufficiently small step size, the iterations should eventually converge on 
a single value. For our case, 6.360865, which represents a relative error of 2.68 percent, 
is attained after 15 iterations. Table 25.2 shows results for the remainder of the compu-
tation using the method with 1 and 15 iterations per step.

 In the previous example, the derivative is a function of both the dependent variable 
y and the independent variable x. For cases such as polynomials, where the ODE is solely 
a function of the independent variable, the predictor step [Eq. (25.16)] is not required 
and the corrector is applied only once for each iteration. For such cases, the technique 
is expressed concisely as

yi+1 = yi +
f(xi) + f(xi+1)

2
 h (25.18)
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Notice the similarity between the right-hand side of Eq. (25.18) and the trapezoidal rule 
[Eq. (21.3)]. The connection between the two methods can be formally demonstrated by 
starting with the ordinary differential equation

dy

dx
= f(x)

This equation can be solved for y by integration:

∫ yi+1

yi

 dy = ∫ xi+1

xi

 f(x) dx (25.19)

which yields

yi+1 − yi = ∫ xi+1

xi

 f(x) dx (25.20)

or

yi+1 = yi + ∫ xi+1

xi

 f(x) dx (25.21)

Now, recall from Chap. 21 that the trapezoidal rule [Eq. (21.3)] is defined as

∫ xi+1

xi

 f(x) dx ≅ 
 f(xi) + f(xi+1)

2
 h (25.22)

where h = xi+1 − xi. Substituting Eq. (25.22) into Eq. (25.21) yields

yi+1 = yi +
f(xi) + f(xi+1)

2
 h (25.23)

which is equivalent to Eq. (25.18).
 Because Eq. (25.23) is a direct expression of the trapezoidal rule, the local truncation 
error is given by [recall Eq. (21.6)]

Et = −
f ″(ξ)

12
 h3 (25.24)

where ξ is between xi and xi+l. Thus, the method is second order because the second de-
rivative of the ODE is zero when the true solution is a quadratic. In addition, the local and 
global errors are O(h3) and O(h2), respectively. Therefore, decreasing the step size decreases  
the error at a faster rate than for Euler’s method. Figure 25.11, which shows the result of 
using Heun’s method to solve the polynomial from Example 25.1, demonstrates this behavior.

25.2.2 The Midpoint (or Improved Polygon) Method
Figure 25.12 illustrates another simple modification of Euler’s method. Called the mid-
point method (or the improved polygon or the modified Euler), this technique uses Euler’s 
method to predict a value of y at the midpoint of the interval (Fig. 25.12a):

yi+1∕2 = yi + f(xi, yi) 

h

2
 (25.25)
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FIGURE 25.11
Comparison of the true solution  
with a numerical solution using  
Euler’s and Heun’s methods for  
the integral of y′ = −2x3 +  
12x2 − 20x + 8.5.
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Euler’s method

Heun’s method
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xxi + 1xi

y Slope = f (xi + 1/2, yi + 1/2)

xxi + 1/2xi
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(a)

Slope = f (xi + 1/2, yi + 1/2)

FIGURE 25.12
Graphical depiction of the  
midpoint method.  
(a) Eq. (25.25) and  
(b) Eq. (25.27).
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740 RUNGE-KUTTA METHODS

Then, this predicted value is used to calculate a slope at the midpoint:

y′i+1∕2 = f(xi+1∕2, yi+1∕2) (25.26)

which is assumed to represent a valid approximation of the average slope for the entire 
interval. This slope is then used to extrapolate linearly from xi to xi+l (Fig. 25.12b):

yi+1 = yi + f(xi+1∕2, yi+1∕2)h (25.27)

Observe that because yi+l is not on both sides, the corrector [Eq. (25.27)] cannot be ap-
plied iteratively to improve the solution.
 As in the previous section, this approach can also be linked to Newton-Cotes inte-
gration formulas. Recall from Table 21.4, that the simplest Newton-Cotes open integra-
tion formula, which is called the midpoint method, can be represented as

∫b

a
 f(x) dx ≅ (b − a) f(x1)

where x1 is the midpoint of the interval (a, b). Using the nomenclature for the present 
case, it can be expressed as

∫ xi+1

xi

 f(x) dx ≅ h f(xi+1∕2)

Substitution of this formula into Eq. (25.21) yields Eq. (25.27). Thus, just as the Heun 
method can be called the trapezoidal rule, the midpoint method gets its name from the 
underlying integration formula upon which it is based.
 The midpoint method is superior to Euler’s method because it utilizes a slope estimate 
at the midpoint of the prediction interval. Recall from our discussion of numerical differ-
entiation in Sec. 4.1.3 that centered finite divided differences are better approximations of 
derivatives than either forward or backward versions. In the same sense, a centered ap-
proximation such as Eq. (25.26) has a local truncation error of O(h2) in comparison with 
the forward approximation of Euler’s method, which has an error of O(h). Consequently, 
the local and global errors of the midpoint method are O(h3) and O(h2), respectively.

25.2.3 Computer Algorithms for Heun and Midpoint Methods
Both the Heun method with a single corrector and the midpoint method can be easily 
programmed using the general structure depicted in Fig. 25.7. As in Fig. 25.13a and b, 
simple routines can be written to take the place of the Euler routine in Fig. 25.7.
 However, when the iterative version of the Heun method is to be implemented, the 
modifications are a bit more involved (although they are still localized within a single 
module). We have developed pseudocode for this purpose in Fig. 25.13c. This algorithm 
can be combined with Fig. 25.7 to develop software for the iterative Heun method.

25.2.4 Summary
By tinkering with Euler’s method, we have derived two new second-order techniques. Even 
though these versions require more computational effort to determine the slope, the accom-
panying reduction in error will allow us to conclude in a subsequent section (Sec. 25.3.4) 
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that the improved accuracy is usually worth the effort. Although there are certain cases 
where easily programmable techniques such as Euler’s method can be applied to advantage, 
the Heun and midpoint methods are generally superior and should be implemented if they 
are consistent with the problem objectives.
 As noted at the beginning of this section, the Heun (without iterations), the midpoint 
method, and in fact, the Euler technique itself are versions of a broader class of one-step 
approaches called Runge-Kutta methods. We now turn to a formal derivation of these 
techniques.

 25.3 RUNGE-KUTTA METHODS
Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without 
requiring the calculation of higher derivatives. Many variations exist but all can be cast 
in the generalized form of Eq. (25.1):

yi+1 = yi + ϕ(xi, yi, h)h (25.28)

where ϕ(xi, yi, h) is called an increment function, which can be interpreted as a represen-
tative slope over the interval. The increment function can be written in general form as

ϕ = a1k1 + a2k2 + … + ankn (25.29)

(a) Simple Heun without Iteration

SUB Heun(x, y, h, ynew)
  CALL Derivs(x, y, dy1dx)
  ye = y + dy1dx · h
  CALL Derivs(x + h, ye, dy2dx)
  Slope = (dy1dx + dy2dx)∕2
  ynew = y + Slope · h
  x = x + h
END SUB

(b) Midpoint Method

SUB Midpoint(x, y, h, ynew)
  CALL Derivs(x, y, dydx)
  ym = y + dydx · h∕2
  CALL Derivs(x + h∕2, ym, dymdx)
  ynew = y + dymdx · h
  x = x + h
END SUB

(c) Heun with Iteration

SUB HeunIter(x, y, h, ynew)
  es = 0.01
  maxit = 20
  CALL Derivs(x, y, dy1dx)
  ye = y + dy1dx · h
  iter = 0
  DO
    yeold = ye
    CALL Derivs(x + h, ye, dy2dx)
    slope = (dy1dx + dy2dx)∕2
    ye = y + slope · h
    iter = iter + 1

    ea = ∣ ye − yeold
ye ∣100%

    IF (ea ≤ es OR iter > maxit) EXIT
  END DO
  ynew = ye
  x = x + h
END SUB

FIGURE 25.13
Pseudocode to implement the (a) simple Heun, (b) midpoint, and (c) iterative Heun methods.

cha32077_ch25_721-766.indd   741 10/11/19   1:20 PM
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where the a’s are constants and the k’s are

k1 = f(xi, yi) (25.29a)

k2 = f(xi + p1h, yi + q11k1h) (25.29b)

k3 = f(xi + p2h, yi + q21k1h + q22k2h) (25.29c)

·
·
·

kn = f(xi + pn−1h, yi + qn−1, 1k1h + qn−1, 2k2h + … + qn−1, n−1kn−1h) (25.29d)

where the p’s and q’s are constants. Notice that the k’s are a series of recurrence 
 relationships. That is, k1 appears in the equation for k2, which appears in the equation 
for k3, and so forth. Because each k is a functional evaluation, this recurrence makes 
RK methods efficient for computer calculations.
 Various types of Runge-Kutta methods can be devised by employing different num-
bers of terms in the increment function as specified by n. Note that the first-order RK 
method with n = 1 is, in fact, Euler’s method. Once n is chosen, values for the a’s, p’s, 
and q’s are evaluated by setting Eq. (25.28) equal to terms in a Taylor series expansion 
(Box 25.1). Thus, at least for the lower-order versions, the number of terms, n, usually 
represents the order of the approach. For example, in the next section, second-order RK 
methods use an increment function with two terms (n = 2). These second-order methods 
will be exact if the solution to the differential equation is quadratic. In addition, because 
terms with h3 and higher are dropped during the derivation, the local truncation error 
is O(h3) and the global error is O(h2). In subsequent sections, the third- and fourth-
order RK methods (n = 3 and 4, respectively) are developed. For these cases, the global 
truncation errors are O(h3) and O(h4), respectively.

25.3.1 Second-Order Runge-Kutta Methods
The second-order version of Eq. (25.28) is

yi+1 = yi + (a1k1 + a2k2)h (25.30)

where

k1 = f(xi, yi)  (25.30a)

k2 = f(xi + p1h, yi + q11k1h) (25.30b)

As described in Box 25.1, values for al, a2, p1, and q11 are evaluated by setting Eq. (25.30) 
equal to a Taylor series expansion to the second-order term. By doing this, we derive 
three equations to evaluate the four unknown constants. The three equations are

a1 + a2 = 1 (25.31)

a2 p1 =
1
2

 (25.32)

a2q11 =
1
2

 (25.33)
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 Because we have three equations with four unknowns, we must assume a value of one 
of the unknowns to determine the other three. Suppose that we specify a value for a2. Then 
Eqs. (25.31) through (25.33) can be solved simultaneously for

a1 = 1 − a2 (25.34)

p1 = q11 =
1

2a2
 (25.35)

  Box 25.1 Derivation of the Second-Order Runge-Kutta Methods

The second-order version of Eq. (25.28) is

yi+1 = yi + (a1k1 + a2k2)h (B25.1.1)

where

k1 = f (xi, yi) (B25.1.2)

and

k2 = f (xi + p1h, yi + q11k1h) (B25.1.3)

 To use Eq. (B25.1.1), we have to determine values for the 
constants a1, a2, p1, and q11. To do this, we recall that the 
second-order Taylor series for yi+1 in terms of yi and f(xi, yi) is 
written as [Eq. (25.11)]

yi+1 = yi + f (xi, yi)h +
f ′(xi, yi)

2!
 h2 (B25.1.4)

where f ′(xi, yi) must be determined by chain-rule differentiation 
(Sec. 25.1.3):

f ′(xi, yi) =
∂f (x, y)

∂x
+

∂f (x, y)
∂y

 
dy

dx
 (B25.1.5)

Substituting Eq. (B25.1.5) into (B25.1.4) gives

yi+1 = yi + f (xi, yi)h + (
∂f

∂x
+

∂f

∂y
 
dy

dx) 
h2

2!
 (B25.1.6)

The basic strategy underlying Runge-Kutta methods is to use 
algebraic manipulations to solve for values of a1, a2, p1, and q11 
that make Eqs. (B25.1.1) and (B25.1.6) equivalent.
 To do this, we first use a Taylor series to expand Eq. 
(B25.1.3). The Taylor series for a two-variable function is de-
fined as [recall Eq. (4.26)]

g(x + r, y + s) = g(x, y) + r 
∂g

∂x
+ s 

∂g

∂y
+ …

Applying this method to expand Eq. (B25.1.3) gives

f (xi + p1h, yi + q11k1h) = f (xi, yi) + p1h 

∂f

∂x

+ q11k1h 

∂f

∂y
+ O(h2)

 This result can be substituted along with Eq. (B25.1.2) into 
Eq. (B25.1.1) to yield

yi+1 = yi + a1h f (xi, yi) + a2h f(xi, yi) + a2 
p1h

2
 
∂f

∂x

+ a2q11h
2 f (xi, yi) 

∂f

∂y
+ O(h3)

or, by collecting terms,

yi+1 = yi + [a1 f (xi, yi) + a2 f (xi, yi) ]h

+ [a2 p1 

∂f

∂x
+ a2q11 f (xi, yi) 

∂f

∂y] h2 + O(h3)
 (B25.1.7)

Now, comparing like terms in Eqs. (B25.1.6) and (B25.1.7), we 
determine that for the two equations to be equivalent, the fol-
lowing must hold:

a1 + a2 = 1

a2 p1 =
1
2

a2q11 =
1
2

These three simultaneous equations contain the four unknown 
constants. Because there is one more unknown than the number 
of equations, there is no unique set of constants that satisfy the 
equations. However, by assuming a value for one of the con-
stants, we can determine the other three. Consequently, there is 
a family of second-order methods rather than a single version.
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744 RUNGE-KUTTA METHODS

 Because we can choose an infinite number of values for a2, there are an infinite 
number of second-order RK methods. Every version would yield exactly the same results 
if the solution to the ODE were quadratic, linear, or a constant. However, they yield 
different results when (as is typically the case) the solution is more complicated. We 
present three of the most commonly used and preferred versions:

Heun Method with a Single Corrector (a2 = 1∕2). If a2 is assumed to be 1∕2,  
Eqs. (25.34) and (25.35) can be solved for a1 = 1∕2 and pl = q11 = 1. These parameters, 
when substituted into Eq. (25.30), yield

yi+1 = yi + (
1
2

 k1 +
1
2

 k2)h (25.36)

where

k1 = f(xi, yi) (25.36a)

k2 = f(xi + h, yi + k1h) (25.36b)

Note that k1 is the slope at the beginning of the interval and k2 is the slope at the end 
of the interval. Consequently, this second-order Runge-Kutta method is actually Heun’s 
technique without iteration.

The Midpoint Method (a2 = 1). If a2 is assumed to be 1, then a1 = 0, p1 = q11 = 1∕2, 
and Eq. (25.30) becomes

yi+1 = yi + k 2h (25.37)

where

k1 = f(xi, yi) (25.37a)

k2 = f(xi +
1
2

 h, yi +
1
2

 k1h) (25.37b)

This is the midpoint method.

Ralston’s Method (a2 = 2∕3). Ralston (1962) and Ralston and Rabinowitz (1978) 
determined that choosing a2 = 2∕3 provides a minimum bound on the truncation error 
for the second-order RK algorithms. For this version, a1 = 1∕3 and p1 = q11 = 3∕4 and 
we have

yi+1 = yi + (
1
3

 k1 +
2
3

 k2)h (25.38)

where

k1 = f(xi, yi) (25.38a)

k2 = f(xi +
3
4

 h, yi +
3
4

 k1h) (25.38b)
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 EXAMPLE 25.6 Comparison of Various Second-Order RK Schemes
Problem Statement. Use the midpoint method [Eq. (25.37)] and Ralston’s method 
[Eq. (25.38)] to numerically integrate Eq. (PT7.13),

f(x, y) = −2x3 + 12x2 − 20x + 8.5

from x = 0 to x = 4 using a step size of 0.5. The initial condition at x = 0 is y = 1. 
Compare the results with the values obtained using another second-order RK algorithm, 
that is, the Heun method without corrector iteration (Table 25.3).

Solution. The first step in the midpoint method is to use Eq. (25.37a) to compute

k1 = −2(0)3 + 12(0)2 − 20(0) + 8.5 = 8.5

However, because the ODE is a function of x only, this result has no bearing on the 
second step—the use of Eq. (25.37b) to compute

k2 = −2(0.25)3 + 12(0.25)2 − 20(0.25) + 8.5 = 4.21875

Notice that this estimate of the slope is much closer to the average value for the interval 
(4.4375) than the slope at the beginning of the interval (8.5) that would have been used 
for Euler’s approach. The slope at the midpoint can then be substituted into Eq. (25.37) 
to predict

y(0.5) = 1 + 4.21875(0.5) = 3.109375  εt = 3.4%

The computation is repeated, and the results are summarized in Fig. 25.14 and Table 25.3.

FIGURE 25.14
Comparison of the true solution with numerical solutions using three second-order RK methods 
and Euler’s method.

y

4

0
x420
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746 RUNGE-KUTTA METHODS

 For Ralston’s method, k1 for the first interval also equals 8.5 and [Eq. (25.38b)]

k2 = −2(0.375)3 + 12(0.375)2 − 20(0.375) + 8.5 = 2.58203125

The average slope is computed by

ϕ =
1
3

 (8.5) +
2
3

 (2.58203125) = 4.5546875

which can be used to predict

y(0.5) = 1 + 4.5546875(0.5) = 3.27734375  εt = −1.82%

The computation is repeated, and the results are summarized in Fig. 25.14 and Table 
25.3. Notice that all the second-order RK methods are superior to Euler’s method.

25.3.2 Third-Order Runge-Kutta Methods
For n = 3, a derivation similar to the one for the second-order method can be performed. 
The result of this derivation is six equations with eight unknowns. Therefore, values for 
two of the unknowns must be specified a priori in order to determine the remaining 
parameters. One common version that results is

yi+1 = yi +
1
6

 (k1 + 4k2 + k3)h (25.39)

where

k1 = f(xi, yi) (25.39a)

TABLE 25.3  Comparison of true and approximate values of the integral of  
y′ = −2x3 + 12x2 − 20x + 8.5, with the initial condition that y = 1 at  
x = 0. The approximate values were computed using three versions of 
second-order RK methods with a step size of 0.5.

   Second-Order  
 Heun Midpoint Ralston RK

  x ytrue y |εt| (%) y |εt| (%) y |εt| (%)

 0.0 1.00000 1.00000 0 1.00000 0 1.00000 0
 0.5 3.21875 3.43750 6.8 3.109375 3.4 3.277344 1.8
 1.0 3.00000 3.37500 12.5 2.81250 6.3 3.101563 3.4
 1.5 2.21875 2.68750 21.1 1.984375 10.6 2.347656 5.8
 2.0 2.00000 2.50000 25.0 1.75 12.5 2.140625 7.0
 2.5 2.71875 3.18750 17.2 2.484375 8.6 2.855469 5.0
 3.0 4.00000 4.37500 9.4 3.81250 4.7 4.117188 2.9
 3.5 4.71875 4.93750 4.6 4.609375 2.3 4.800781 1.7
 4.0 3.00000 3.00000 0 3 0 3.031250 1.0
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k2 = f(xi +
1
2

 h, yi +
1
2

 k1h) (25.39b)

k3 = f(xi + h, yi − k1h + 2k2h) (25.39c)

 Note that if the derivative is a function of x only, this third-order method reduces 
to Simpson’s 1∕3 rule. Ralston (1962) and Ralston and Rabinowitz (1978) have devel-
oped an alternative version that provides a minimum bound on the truncation error. In 
any case, the third-order RK methods have local and global errors of O(h4) and O(h3), 
respectively, and yield exact results when the solution is a cubic. When dealing with 
polynomials, Eq. (25.39) will also be exact when the differential equation is cubic and 
the solution is quartic. This is because Simpson’s 1∕3 rule provides exact integral esti-
mates for cubics (recall Box 21.3).

25.3.3 Fourth-Order Runge-Kutta Methods
The most popular RK methods are fourth order. As with the second-order approaches, 
there are an infinite number of versions. The following is the most commonly used form, 
and we therefore call it the classical fourth-order RK method:

yi+1 = yi +
1
6

 (k1 + 2k2 + 2k3 + k4)h (25.40)

where

k1 = f(xi, yi) (25.40a)

k2 = f(xi +
1
2

 h, yi +
1
2

 k1h) (25.40b)

FIGURE 25.15
Graphical depiction of the slope estimates comprising the fourth-order RK method.
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748 RUNGE-KUTTA METHODS

k3 = f(xi +
1
2

 h, yi +
1
2

 k2h) (25.40c)

k4 = f(xi + h, yi + k3h) (25.40d)

 Notice that for ODEs that are a function of x alone, the classical fourth-order RK 
method is similar to Simpson’s 1∕3 rule. In addition, the fourth-order RK method is 
similar to the Heun approach in that multiple estimates of the slope are developed in order 
to come up with an improved average slope for the interval. As depicted in Fig. 25.15, 
each of the k’s represents a slope. Equation (25.40) then represents a weighted average of 
these to arrive at the improved slope.

 EXAMPLE 25.7 Classical Fourth-Order RK Method
Problem Statement.

(a) Use the classical fourth-order RK method [Eq. (25.40)] to integrate
f(x, y) = −2x3 + 12x2 − 20x + 8.5

 using a step size of h = 0.5 and an initial condition of y = 1 at x = 0.
(b) Similarly, integrate

f(x, y) = 4e0.8x − 0.5y

 using h = 0.5 with y(0) = 2 from x = 0 to 0.5.

Solution.

(a) Equations (25.40a) through (25.40d) are used to compute k1 = 8.5, k2 = 4.21875, 
k3 = 4.21875 and k4 = 1.25, which are substituted into Eq. (25.40) to yield

 y(0.5) = 1 + {
1
6

 [8.5 + 2(4.21875) + 2(4.21875) + 1.25]} 0.5

 = 3.21875

  which is exact. Thus, because the true solution is a quartic [Eq. (PT7.16)], the fourth-
order method gives an exact result.

(b) For this case, the slope at the beginning of the interval is computed as

k1 = f(0, 2) = 4e0.8(0) − 0.5(2) = 3

 This value is used to compute a value of y and a slope at the midpoint,

y(0.25) = 2 + 3(0.25) = 2.75
k2 = f(0.25, 2.75) = 4e0.8(0.25) − 0.5(2.75) = 3.510611

 This slope in turn is used to compute another value of y and another slope at the midpoint,

y(0.25) = 2 + 3.510611(0.25) = 2.877653
k3 = f(0.25, 2.877653) = 4e0.8(0.25) − 0.5(2.877653) = 3.446785

 Next, this slope is used to compute a value of y and a slope at the end of the interval,

y(0.5) = 2 + 3.071785(0.5) = 3.723392
k4 = f(0.5, 3.723392) = 4e0.8(0.5) − 0.5(3.723392) = 4.105603
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  Finally, the four slope estimates are combined to yield an average slope. This average 
slope is then used to make the final prediction at the end of the interval.

ϕ =
1
6

 [3 + 2(3.510611) + 2(3.446785) + 4.105603] = 3.503399

y(0.5) = 2 + 3.503399(0.5) = 3.751699

 which compares favorably with the true solution of 3.751521.

25.3.4 Higher-Order Runge-Kutta Methods
Where more accurate results are required, Butcher’s (1964) fifth-order RK method is 
recommended:

yi+1 = yi +
1
90

 (7k1 + 32k3 + 12k4 + 32k5 + 7k6)h (25.41)

where

k1 = f(xi, yi)  (25.41a)

k2 = f(xi +
1
4

 h, yi +
1
4

 k1h) (25.41b)

k3 = f(xi +
1
4

 h, yi +
1
8

 k1h +
1
8

 k2h) (25.41c)

k4 = f(xi +
1
2

 h, yi −
1
2

 k2h + k3h) (25.41d)

k5 = f(xi +
3
4

 h, yi +
3
16

 k1h +
9
16

 k4h) (25.41e)

k6 = f(xi + h, yi −
3
7

 k1h +
2
7

 k2h +
12
7

 k3h −
12
7

 k4h +
8
7

 k5h) (25.41f)

Note the similarity between Butcher’s method and Boole’s rule in Table 21.2. Higher-order 
RK formulas such as Butcher’s method are available, but in general, beyond fourth-order 
methods the gain in accuracy is offset by the added computational effort and complexity.

 EXAMPLE 25.8 Comparison of Runge-Kutta Methods
Problem Statement. Use first- through fifth-order RK methods to solve

f(x, y) = 4e0.8x − 0.5y

with y(0) = 2 from x = 0 to x = 4 with various step sizes. Compare the accuracy of the 
various methods for the result at x = 4 based on the exact answer of y(4) = 75.33896.

Solution. The computation is performed using Euler’s, the noniterative Heun, the third-
order RK [Eq. (25.39)], the classical fourth-order RK, and Butcher’s fifth-order RK 
methods. The results are presented in Fig. 25.16, where we have plotted the absolute 
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750 RUNGE-KUTTA METHODS

value of the percent relative error versus the computational effort. This latter quantity is 
equivalent to the number of function evaluations required to attain the result, as in

Effort = nf 
b − a

h
 (E25.8.1)

where nf = the number of function evaluations involved in the particular RK computation. 
For orders ≤ 4, nf is equal to the order of the method. However, note that Butcher’s 
fifth-order technique requires six function evaluations [Eq. (25.41a) through (25.41f )]. 
The quantity (b − a)∕h is the total integration interval divided by the step size—that is, 
it is the number of applications of the RK technique required to obtain the result. Thus, 
because the function evaluations are usually the primary time-consuming steps, Eq. (E25.8.1) 
provides a rough measure of the run time required to attain the answer.
 Inspection of Fig. 25.16 leads to a number of conclusions: first, that the higher-order 
methods attain better accuracy for the same computational effort and, second, that the 
gain in accuracy for the additional effort tends to diminish after a point. (Notice that the 
curves drop rapidly at first and then tend to level off.)

 Example 25.8 and Fig. 25.16 might lead one to conclude that higher-order RK tech-
niques are always the preferred methods. However, other factors such as programming 

FIGURE 25.16
Comparison of percent relative error versus computational effort for first- through fifth-order  
RK methods.
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 25.4 SYSTEMS OF EQUATIONS 751

costs and the accuracy requirements of the problem also must be considered when choos-
ing a solution technique. Such trade-offs will be explored in detail in the engineering 
applications in Chap. 28 and in the epilogue for Part Seven.

25.3.5 Computer Algorithms for Runge-Kutta Methods
As with all the methods covered in this chapter, the RK techniques fit nicely into the 
general algorithm embodied in Fig. 25.7. Figure 25.17 presents pseudocode to determine 
the slope for the classic fourth-order RK method [Eq. (25.40)]. Subroutines to compute 
slopes for all the other versions can be easily programmed in a similar fashion.

 25.4 SYSTEMS OF EQUATIONS
Many practical problems in engineering and science require the solution of a system of 
simultaneous ordinary differential equations rather than a single equation. Such systems 
may be represented generally as

dy1

dx
= f1(x, y1, y2, … , yn)

dy2

dx
= f2(x, y1, y2, … , yn)

·
·
·

dyn

dx
= fn(x, y1, y2, … , yn) (25.42)

The solution of such a system requires that n initial conditions be known at the starting 
value of x.

SUB RK4(x, y, h, ynew)
  CALL Derivs(x, y, k1)
  ym = y + k1 · h∕2
  CALL Derivs(x + h∕2, ym, k2)
  ym = y + k2 · h∕2
  CALL Derivs(x + h∕2, ym, k3)
  ye = y + k3 · h
  CALL Derivs(x + h, ye, k4)
  slope = (k1 + 2(k2 + k3) + k4)∕6
  ynew = y + slope · h
  x = x + h
END SUB

FIGURE 25.17
Pseudocode to determine a single step of the fourth-order RK method.
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25.4.1 Euler’s Method
All the methods discussed in this chapter for single equations can be extended to the 
system shown above. Engineering applications can involve thousands of simultaneous 
equations. In each case, the procedure for solving a system of equations simply involves 
applying the one-step technique for every equation at each step before proceeding to the 
next step. This is best illustrated by the following example for the simple Euler’s method.

 EXAMPLE 25.9 Solving Systems of ODEs Using Euler’s Method
Problem Statement. Solve the following set of differential equations using Euler’s 
method, assuming that at x = 0, y1 = 4 and y2 = 6. Integrate to x = 2 with a step size 
of 0.5.

dy1

dx
= −0.5y1  

dy2

dx
= 4 − 0.3y2 − 0.1y1

Solution. Euler’s method is implemented for each variable as in Eq. (25.2):

y1(0.5) = 4 + [−0.5(4)]0.5 = 3
y2(0.5) = 6 + [4 − 0.3(6) − 0.1(4)]0.5 = 6.9

Note that y1(0) = 4 is used in the second equation rather than y1(0.5) = 3 computed with 
the first equation. Proceeding in a like manner gives

x y1 y2

 0 4 6
 0.5 3 6.9
 1.0 2.25 7.715
 1.5 1.6875 8.44525
 2.0 1.265625 9.094087

25.4.2 Runge-Kutta Methods
Note that any of the higher-order RK methods in this chapter can be applied to systems of 
equations. However, care must be taken in determining the slopes. Figure 25.15 is helpful 
in visualizing the proper way to do this for the fourth-order method. That is, we first de-
velop slopes for all variables at the initial value. These slopes (a set of k1’s) are then used 
to make predictions of the dependent variable at the midpoint of the interval. These mid-
point values are in turn used to compute a set of slopes at the midpoint (the k2’s). These 
new slopes are then taken back to the starting point to make another set of midpoint 
predictions that lead to new slope predictions at the midpoint (the k3’s). These are then 
employed to make predictions at the end of the interval that are used to develop slopes at 
the end of the interval (the k4’s). Finally, the k’s are combined into a set of increment 
functions [as in Eq. (25.40)] and brought back to the beginning to make the final predic-
tion. The following example illustrates the approach.
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 EXAMPLE 25.10 Solving Systems of ODEs Using the Fourth-Order RK Method
Problem Statement. Use the fourth-order RK method to solve the ODEs from 
 Example 25.9.

Solution. First, we must solve for all the slopes at the beginning of the interval:

k1,1 = f1(0, 4, 6) = −0.5(4) = −2
k1, 2 = f2(0, 4, 6) = 4 − 0.3(6) − 0.1(4) = 1.8

where ki, j is the ith value of k for the jth dependent variable. Next, we must calculate 
the first values of y1 and y2 at the midpoint:

y1 + k1,1 

h

2
= 4 + (−2) 

0.5
2

= 3.5

y2 + k1, 2 

h

2
= 6 + (1.8) 

0.5
2

= 6.45

which can be used to compute the first set of midpoint slopes,

k2, 1 = f1(0.25, 3.5, 6.45) = −1.75
k2, 2 = f2(0.25, 3.5, 6.45) = 1.715

These are used to determine the second set of midpoint predictions,

y1 + k2,1 
h

2
= 4 + (−1.75) 

0.5
2

= 3.5625

y2 + k2, 2 
h

2
= 6 + (1.715) 

0.5
2

= 6.42875

which can be used to compute the second set of midpoint slopes,

k3, 1 = f1(0.25, 3.5625, 6.42875) = −1.78125
k3, 2 = f2(0.25, 3.5625, 6.42875) = 1.715125

These are used to determine the predictions at the end of the interval,

y1 + k3,1h = 4 + (−1.78125)(0.5) = 3.109375
y2 + k3, 2h = 6 + (1.715125)(0.5) = 6.857563

which can be used to compute the endpoint slopes,

k4,1 = f1(0.5, 3.109375, 6.857563) = −1.554688
k4, 2 = f2(0.5, 3.109375, 6.857563) = 1.631794

The values of k can then be used to compute [Eq. (25.40)]:

y1(0.5) = 4 +
1
6

 [−2 + 2(−1.75 − 1.78125) − 1.554688]0.5 = 3.115234

y2(0.5) = 6 +
1
6

 [1.8 + 2(1.715 + 1.715125) + 1.631794]0.5 = 6.857670
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Proceeding in a like manner for the remaining steps yields

x y1 y2

 0 4 6
 0.5 3.115234 6.857670
 1.0 2.426171 7.632106
 1.5 1.889523 8.326886
 2.0 1.471577 8.946865

25.4.3 Computer Algorithm for Solving Systems of ODEs
The computer code for solving a single ODE with Euler’s method (Fig. 25.7) can be 
easily extended to systems of equations. The modifications include the following:

1. Inputting the number of equations, n.
2. Inputting the initial values for each of the n dependent variables.
3. Modifying the algorithm so that it computes slopes for each of the dependent 

variables.
4. Including additional equations to compute derivative values for each of the ODEs.
5. Including loops to compute a new value for each dependent variable.

 Such an algorithm is outlined in Fig. 25.18 for the fourth-order RK method. Notice 
how similar it is in structure and organization to Fig. 25.7. Most of the differences 
relate to

1. The fact that there are n equations.
2. The added detail of the fourth-order RK method.

 EXAMPLE 25.11 Solving Systems of ODEs with the Computer
Problem Statement. A computer program to implement the fourth-order RK method 
for systems can be easily developed based on Fig. 25.18. Such software makes it conve-
nient to compare different models of a physical system. For example, a linear model for 
a swinging pendulum is given by [recall Eq. (PT7.11)]

dy1

dx
= y2  

dy2

dx
= −16.1y1

where y1 and y2 = angular displacement and velocity, respectively. A nonlinear model of 
the same system is [recall Eq. (PT7.9)]

dy3

dx
= y4  

dy4

dx
= −16.1 sin(y3)

where y3 and y4 = angular displacement and velocity for the nonlinear case. Solve these 
systems for two cases: (a) a small initial displacement (y1 = y3 = 0.1 radian; y2 = y4 = 0) 
and (b) a large displacement (y1 = y3 = π∕4 = 0.785398 radian; y2 = y4 = 0).
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(a) Main or “Driver” Program

Assign values for
n = number of equations
yi =  initial values of n dependent 

variables
xi =  initial value independent  

variable
xf = final value independent variable
dx = calculation step size
xout = output interval

x = xi
m = 0
xpm = x
DOFOR i = 1, n
  ypi,m = yii
  yi = yii
END DO
DO
  xend = x + xout
  IF (xend > xf) THEN xend = xf
  h = dx
  CALL Integrator(x, y, n, h, xend)
  m = m + 1
  xpm = x
  DOFOR i = 1, n
    ypi,m = yi
  END DO
  IF (x ≥ xf) EXIT
END DO
DISPLAY RESULTS
END

(b) Routine to Take One Output Step

SUB Integrator(x, y, n, h, xend)
  DO
    IF (xend − x < h) THEN h = xend − x
    CALL RK4(x, y, n, h)
    IF (x ≥ xend) EXIT
  END DO
END SUB

(c)  Fourth-Order RK Method for a System of 
ODEs

SUB RK4(x, y, n, h)
  CALL Derivs(x, y, k1)
  DOFOR i = 1, n
    ymi = yi + k1i * h / 2
  END DO
  CALL Derivs(x + h / 2, ym, k2)
  DOFOR i = 1, n
    ymi = yi + k2i * h / 2
  END DO
  CALL Derivs(x + h / 2, ym, k3)
  DOFOR i = 1, n
    yei = yi + k3i * h
  END DO
  CALL Derivs(x + h, ye, k4)
  DOFOR i = 1, n
    slopei = (k1i + 2*(k2i+k3i)+k4i)/6
    yi = yi + slopei * h
  END DO
  x = x + h
END SUB

(d ) Routine to Determine Derivatives

SUB Derivs(x, y, dy)
  dy1 = ...
  dy2 = ...
END SUB

FIGURE 25.18
Pseudocode for the fourth-order RK method for systems.
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Solution.

(a) The calculated results for the linear and nonlinear models are almost identical 
(Fig. 25.19a). This is as expected because when the initial displacement is small, 
sin θ ≅ θ.

(b) When the initial displacement is π∕4 = 0.785398, the solutions are much different 
and the difference is magnified as time becomes larger and larger (Fig. 25.19b). This 
is expected because the assumption that sin θ = θ is poor when theta is large.

 25.5 ADAPTIVE RUNGE-KUTTA METHODS
To this point, we have presented methods for solving ODEs that employ a constant step 
size. For a significant number of problems, this can represent a serious limitation. For 
example, suppose that we are integrating an ODE with a solution of the type depicted 
in Fig. 25.20. For most of the range, the solution changes gradually. Such behavior sug-
gests that a fairly large step size could be employed to obtain adequate results. However, 
for a localized region from x = 1.75 to x = 2.25, the solution undergoes an abrupt change. 
The practical consequence of dealing with such functions is that a very small step size 
would be required to accurately capture the impulsive behavior. If a constant step-size al-
gorithm were employed, the smaller step size required for the region of abrupt change would 
have to be applied to the entire computation. As a consequence, a much smaller step size 
than necessary—and, therefore, many more calculations—would be wasted on the regions 
of gradual change.

4

2

0y

0 321
x

– 4

– 2

4

y1, y3

y2, y4

(a)

4

2

0y

0 2 31
x

– 4

– 2

4

y2 y4

y3

y1

(b)

FIGURE 25.19
Solutions obtained with a computer program for the fourth-order RK method. The plots represent  
solutions for both linear and nonlinear pendulums with (a) small and (b) large initial  
displacements.
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 Algorithms that automatically adjust the step size can avoid such overkill and hence 
be of great advantage. Because they “adapt” to the solution’s trajectory, they are said to 
have adaptive step-size control. Implementation of such approaches requires that an es-
timate of the local truncation error be obtained at each step. This error estimate can then 
serve as a basis for either lengthening or decreasing the step size.
 Before proceeding, we should mention that aside from solving ODEs, the methods 
described in this chapter can also be used to evaluate definite integrals. As mentioned 
previously in the introduction to Part Six, the evaluation of the integral

I = ∫b

a
 f(x) dx

is equivalent to solving the differential equation

dy

dx
= f(x)

for y(b) given the initial condition y(a) = 0. Thus, the following techniques can be em-
ployed to efficiently evaluate definite integrals involving functions that are generally 
smooth but exhibit regions of abrupt change.
 There are two primary approaches to incorporate adaptive step-size control into one-
step methods. In the first, the error is estimated as the difference between two predictions 
using the same-order RK method but with different step sizes. In the second, the local 

FIGURE 25.20
An example of a solution of an ODE that exhibits an abrupt change. Automatic step-size 
 adjustment has great advantages for such cases.

1

0 1 2 3

y

x
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758 RUNGE-KUTTA METHODS

truncation error is estimated as the difference between two predictions using different-
order RK methods.

25.5.1 Adaptive RK or Step-Halving Method
Step halving (also called adaptive RK) involves taking each step twice, once as a full 
step and independently as two half steps. The difference in the two results represents an 
estimate of the local truncation error. If y1 designates the single-step prediction and y2 
designates the prediction using the two half steps, the error Δ can be represented as

Δ = y2 − y1 (25.43)

In addition to providing a criterion for step-size control, Eq. (25.43) can also be used to 
correct the y2 prediction. For the fourth-order RK version, the correction is

y2 ←  y2 +
Δ
15

 (25.44)

This estimate is fifth-order accurate.

 EXAMPLE 25.12 Adaptive Fourth-Order RK Method
Problem Statement. Use the adaptive fourth-order RK method to integrate y′ = 4e0.8x − 
0.5y from x = 0 to 2 using h = 2 and an initial condition of y(0) = 2. This is the same 
differential equation that was solved previously in Example 25.5. Recall that the true 
solutions is y(2) = 14.84392.

Solution. The single prediction with a step of h is computed as

y(2) = 2 +
1
6

 [3 + 2(6.40216 + 4.70108) + 14.11105]2 = 15.10584

The two half-step predictions are

y(1) = 2 +
1
6

 [3 + 2(4.21730 + 3.91297) + 5.945681]1 = 6.20104

and

y(2) = 6.20104 +
1
6

 [5.80164 + 2(8.72954 + 7.99756) + 12.71283]1 = 14.86249

Therefore, the approximate error is

Ea =
14.86249 − 15.10584

15
= −0.01622

which compares favorably with the true error of

Et = 14.84392 − 14.86249 = −0.01857

 The error estimate can also be used to correct the prediction:

y(2) = 14.86249 − 0.01622 = 14.84627

which has an Et = −0.00235.
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25.5.2 Runge-Kutta Fehlberg
Aside from step halving as a strategy to adjust step size, an alternative approach for 
obtaining an error estimate involves computing two RK predictions of different order. 
The results can then be subtracted to obtain an estimate of the local truncation error. 
One shortcoming of this approach is that it greatly increases the computational overhead. 
For example, computing fourth- and fifth-order predictions amounts to a total of 10 
function evaluations per step. The Runge-Kutta Fehlberg, or embedded RK, method 
 cleverly circumvents this problem by using a fifth-order RK method that employs the 
function evaluations from the accompanying fourth-order RK method. Thus, the approach 
yields the error estimate on the basis of only six function evaluations!
 For the present case, we use the following fourth-order estimate:

yi+1 = yi + (
37
378

 k1 +
250
621

 k3 +
125
594

 k4 +
512
1771

 k6)h (25.45)

along with the fifth-order formula:

yi+1 = yi + (
2825

27,648
 k1 +

18,575
48,384

 k3 +
13,525
55,296

 k4 +
277

14,336
 k5 +

1
4

 k6)h (25.46)

where

k1 = f(xi, yi)

k2 = f(xi +
1
5

 h, yi +
1
5

 k1h)

k3 = f(xi +
3
10

 h, yi +
3
40

 k1h +
9
40

 k2h)

k4 = f(xi +
3
5

 h, yi +
3
10

 k1h −
9
10

 k2h +
6
5

 k3h)

k5 = f(xi + h, yi −
11
54

 k1h +
5
2

 k2h −
70
27

 k3h +
35
27

 k4h)

k6 = f(xi +
7
8

 h, yi +
1631

55,296
 k1h +

175
512

 k2h +
575

13,824
 k3h +

44,275
110,592

 k4h

+
253
4096

 k5h)

Thus, the ODE can be solved with Eq. (25.46) and the error estimated as the difference 
of the fifth- and fourth-order estimates. It should be noted that the particular coefficients 
used above were developed by Cash and Karp (1990). Therefore, it is sometimes called 
the Cash-Karp RK method.

 EXAMPLE 25.13 Runge-Kutta Fehlberg Method
Problem Statement. Use the Cash-Karp version of the Runge-Kutta Fehlberg approach 
to perform the same calculation as in Example 25.12 from x = 0 to 2 using h = 2.
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Solution. The calculation of the k’s can be summarized in the following table:

 x y f (x, y)

k1 0 2 3
k2 0.4 3.2 3.908511
k3 0.6 4.20883 4.359883
k4 1.2 7.228398 6.832587
k5 2 15.42765 12.09831
k6 1.75 12.17686 10.13237

These can then be used to compute the fourth-order prediction:

y1 = 2 + (
37
378

 3 +
250
621

 4.359883 +
125
594

 6.832587 +
512
1771

 10.13237)2 = 14.83192

along with a fifth-order formula:

y1 = 2 + (
2825

27,648
 3 +

18,575
48,384

 4.359883 +
13,525
55,296

 6.832587

+
227

14,336
 12.09831 +

1
4

 10.13237)2 = 14.83677

The error estimate is obtained by subtracting these two equations to give

Ea = 14.83677 − 14.83192 = 0.004842

25.5.3 Step-Size Control
Now that we have developed ways to estimate the local truncation error, it can be used 
to adjust the step size. In general, the strategy is to increase the step size if the error is 
too small and decrease it if the error is too large. Press et al. (2007) have suggested the 
following criterion to accomplish this:

hnew = hpresent ∣ Δnew

Δpresent
∣α (25.47)

where hpresent and hnew = the present and the new step sizes, respectively, Δpresent = the 
computed present accuracy, Δnew = the desired accuracy, and α = a constant power that 
is equal to 0.2 when the step size is increased (that is, when Δpresent ≤ Δnew) and 0.25 
when the step size is decreased (Δpresent > Δnew).
 The key parameter in Eq. (25.47) is obviously Δnew because it is your vehicle for 
specifying the desired accuracy. One way to do this would be to relate Δnew to a rela-
tive error level. Although this works well when only positive values occur, it can cause 
problems for solutions that pass through zero. For example, you might be simulating 
an oscillating function that repeatedly passes through zero but is bounded by maximum 
absolute values. For such a case, you might want these maximum values to figure in 
the desired accuracy.
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 A more general way to handle such cases is to determine Δnew as

Δnew = εyscale

where ε = an overall tolerance level. Your choice of yscale will then determine how the error 
is scaled. For example, if yscale = y, the accuracy will be couched in terms of  fractional 
relative errors. If you are dealing with a case where you desire constant  errors relative to 
a prescribed maximum bound, set yscale equal to that bound. A trick suggested by Press 
et al. (2007) to obtain the constant relative errors except very near zero crossings is

yscale = ∣y∣ + ∣ h 
dy

dx ∣
This is the version we will use in our algorithm.

25.5.4 Computer Algorithm
Figures 25.21 and 25.22 outline pseudocode to implement the Cash-Karp version of the 
Runge-Kutta Fehlberg algorithm. This algorithm is patterned after a more detailed imple-
mentation by Press et al. (2007) for systems of ODEs.
 Figure 25.21 implements a single step of the Cash-Karp routine [that is, Eqs. (25.45) 
and (25.46)]. Figure 25.22 outlines a general driver program along with a subroutine that 
actually adapts the step size.

SUBROUTINE RKkc(y,dy,x,h,yout,yerr)
PARAMETER (a2=0.2,a3=0.3,a4=0.6,a5=1.,a6=0.875,
  b21=0.2,b31=3.∕40.,b32=9.∕40.,b41=0.3,b42=−0.9,
  b43=1.2,b51=−11.∕54.,b52=2.5,b53=−70.∕27.,
  b54=35.∕27.,b61=1631.∕55296.,b62=175.∕512.,
  b63=575.∕13824.,b64=44275.∕110592.,b65=253.∕4096.,
  c1=37.∕378.,c3=250.∕621.,c4=125.∕594.,
  c6=512.∕1771.,dc1=c1−2825.∕27648.,
  dc3=c3−18575.∕48384.,dc4=c4−13525.∕55296.,
  dc5=−277.∕14336.,dc6=c6−0.25)
ytemp=y+b21*h*dy
CALL Derivs(x+a2*h,ytemp,k2)
ytemp=y+h*(b31*dy+b32*k2)
CALL Derivs(x+a3*h,ytemp,k3)
ytemp=y+h*(b41*dy+b42*k2+b43*k3)
CALL Derivs(x+a4*h,ytemp,k4)
ytemp=y+h*(b51*dy+b52*k2+b53*k3+b54*k4)
CALL Derivs(x+a5*h,ytemp,k5)
ytemp=y+h*(b61*dy+b62*k2+b63*k3+b64*k4+b65*k5)
CALL Derivs(x+a6*h,ytemp,k6)
yout=y+h*(c1*dy+c3*k3+c4*k4+c6*k6)
yerr=h*(dc1*dy+dc3*k3+dc4*k4+dc5*k5+dc6*k6)
END RKkc

FIGURE 25.21
Pseudocode for a single step of the Cash-Karp RK method.
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 EXAMPLE 25.14 Computer Application of an Adaptive Fourth-Order RK Scheme
Problem Statement. The adaptive RK method is well-suited for the following ordinary 
differential equation:

dy

dx
+ 0.6y = 10e−(x−2)2∕[2(0.075)2] (E25.14.1)

Notice for the initial condition, y(0) = 0.5, the general solution is

y = 0.5e−0.6x (E25.14.2)

which is a smooth curve that gradually approaches zero as x increases. In contrast, the 
particular solution undergoes an abrupt transition in the vicinity of x = 2 due to the nature 
of the forcing function (Fig. 25.23a). Use a standard fourth-order RK scheme to solve Eq. 
(E25.14.1) from x = 0 to 4. Then employ the adaptive scheme described in this section 
to perform the same computation.

Solution. First, the classical fourth-order scheme is used to compute the solid curve in 
Fig. 25.23b. For this computation, a step size of 0.1 is used so that 4∕(0.1) = 40 applica-
tions of the technique are made. Then, the calculation is repeated with a step size of 0.05 
for a total of 80 applications. The major discrepancy between the two results occurs in the 
region from 1.8 to 2.0. The magnitude of the discrepancy is about 0.1 to 0.2 percent.

(a) Driver Program

INPUT xi, xf, yi
maxstep=100
hi=.5; tiny = 1. × 10−30

eps=0.00005
print *, xi,yi
x=xi
y=yi
h=hi
istep=0
DO
  IF (istep > maxstep AND x ≤ xf) EXIT
  istep=istep+1
  CALL Derivs(x,y,dy)
  yscal=ABS(y)+ABS(h*dy)+tiny
  IF (x+h>xf) THEN h=xf−x
  CALL Adapt(x,y,dy,h,yscal,eps,hnxt)
  PRINT x,y
  h=hnxt
END DO
END

(b) Adaptive Step Routine

SUB Adapt(x,y,dy,htry,yscal,eps,hnxt)
PARAMETER (safety=0.9, econ=1.89e−4)
h=htry
DO
  CALL RKkc(y,dy,x,h,ytemp,yerr)
  emax=abs(yerr/yscal/eps)
  IF emax ≤ 1 EXIT
  htemp=safety*h*emax

−0.25

  h=max(abs(htemp),0.25*abs(h))
  xnew=x+h
  IF xnew=x THEN pause
END DO
IF emax > econ THEN
  hnxt=safety*emax

−.2
*h

ELSE
  hnxt=4.*h
END IF
x=x+h
y=ytemp
END Adapt

FIGURE 25.22
Pseudocode for a (a) driver program and an (b) adaptive step routine to solve a single ODE.
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 Next, the algorithm in Figs. 25.21 and 25.22 is developed into a computer program 
and used to solve the same problem. An initial step size of 0.5 and an ε = 0.00005 were 
chosen. The results were superimposed on Fig. 25.23b. Notice how large steps are taken 
in the regions of gradual change. Then, in the vicinity of x = 2, the steps are decreased 
to accommodate the abrupt nature of the forcing function.

FIGURE 25.23
(a) A bell-shaped forcing function that induces an abrupt change in the solution of an ODE  
[Eq. (E25.14.1)]. (b) The solution. The points indicate the predictions of an adaptive  
step-size routine.
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 The utility of an adaptive integration scheme obviously depends on the nature of the 
functions being modeled. It is particularly advantageous for those solutions with long 
smooth stretches and short regions of abrupt change. In addition, it has utility in those 
situations where the correct step size is not known a priori. For these cases, an adaptive 
routine will “feel” its way through the solution while keeping the results within the desired 
tolerance. Thus, it will tiptoe through the regions of abrupt change and step out briskly 
when the variations become more gradual.
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PROBLEMS

25.1 Solve the following initial-value problem over the interval from 
t = 0 to 2 where y(0) = 1. Display all your results on the same graph.

dy

dt
= yt 

3 − 1.5y

(a) Analytically.
(b) Euler’s method with h = 0.5 and 0.25.
(c) Midpoint method with h = 0.5.
(d) Fourth-order RK method with h = 0.5.
25.2 Solve the following problem over the interval from x = 0 to 1 
using a step size of 0.25, where y(0) = 1. Display all your results on 
the same graph.

dy

dx
= (1 + 2t) √x

(a) Analytically.
(b) Euler’s method.
(c) Heun’s method without iteration.
(d) Ralston’s method.
(e) Fourth-order RK method.
25.3 Use the (a) Euler and (b) Heun (without iteration) methods to 
solve

d 
2y

dt 
2 − t + y = 0

where y(0) = 2 and y′(0) = 0. Solve from x = 0 to 4 using h = 0.1. 
Compare the methods by plotting the solutions.
25.4 Solve the following problem with the fourth-order RK method:

d 
2y

dx 
2 + 0.5 

dy

dx
+ 7y = 0

where y(0) = 4 and y′(0) = 0. Solve from x = 0 to 5 with h = 0.5. 
Plot your results.
25.5 Solve from t = 0 to 3 with h = 0.1 using (a) Heun (without 
corrector) and (b) Ralston’s second-order RK method:

dy

dt
= y sin3(t)  y(0) = 1

25.6 Solve the following problem numerically from t = 0 to 3:
dy

dt
= −y + t2

  
  y(0) = 1

Use the third-order RK method with a step size of 0.5.
25.7 Use (a) Euler’s and (b) the fourth-order RK method to solve

dy

dt
= −2y + 4e−t

dz

dt
= −

yz2

3

over the range t = 0 to 1 using a step size of 0.2 with y(0) = 2 and 
z(0) = 4.
25.8 Compute the first step of Example 25.14 using the adaptive 
fourth-order RK method with h = 0.5. Verify whether step-size 
adjustment is in order.
25.9 If ε = 0.001, determine whether step-size adjustment is re-
quired for Example 25.12.
25.10 Use the RK Fehlberg approach to perform the same calcula-
tion as in Example 25.12 from x = 0 to 1 with h = 1.
25.11 Write a computer program based on Fig. 25.7. Among other 
things, place documentation statements throughout the program to 
identify what each section is intended to accomplish.
25.12 Test the program you developed in Prob. 25.11 by duplicat-
ing the computations from Examples 25.1 and 25.4.
25.13 Develop a user-friendly program for the Heun method with 
an iterative corrector. Test the program by duplicating the results in 
Table 25.2.
25.14 Develop a user-friendly computer program for the classical 
fourth-order RK method. Test the program by duplicating Exam-
ple 25.7.
25.15 Develop a user-friendly computer program for systems of 
equations using the fourth-order RK method. Use this program to 
duplicate the computation in Example 25.10.
25.16 The motion of a damped spring-mass system (Fig. P25.16) 
is described by the following ordinary differential equation:

m 

d 
2x

dt2 + c 

dx

dt
+ kx = 0

where x = displacement from equilibrium position (m), t = time (s), 
m = 20-kg mass, and c = the damping coefficient (N s/m). The 
damping coefficient c takes on three values: 5 (underdamped), 40 
(critically damped), and 200 (overdamped). The spring constant 
k = 20 N/m. The initial velocity is zero, and the initial displacement 
x = 1 m. Solve this equation using a numerical method over the 
time period 0 ≤ t ≤ 15 s. Plot the displacement versus time for each 
of the three values of the damping coefficient on the same curve.

FIGURE P25.16
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25.21 The logistic model is used to simulate population, as in

dp

dt
= kgm(1 − p∕pmax)p

where p = population, kgm = the maximum growth rate under un-
limited conditions, and pmax = the carrying capacity. Simulate the 
world’s population from 1950 to 2000 using one of the numerical 
methods described in this chapter. Employ the following initial 
conditions and parameter values for your simulation: p0 (in 1950) = 
2555 million people, kgm = 0.026/yr, and pmax = 12,000 million 
people. Have the function generate output corresponding to the 
dates for the following measured population data. Develop a plot of 
your simulation along with these data.
t 1950 1960 1970 1980 1990 2000

p 2555 3040 3710 4455 5275 6080

25.22 Suppose that a projectile is launched upward from the earth’s 
surface. Assume that the only force acting on the object is the 
downward force of gravity. Under these conditions, a force  balance 
can be used to derive

dυ

dt
= −g(0) 

R2

(R + x)2

where υ = upward velocity (m/s), t = time (s), x = altitude (m) 
measured upward from the earth’s surface, g(0) = the gravitational 
acceleration at the earth’s surface (≅ 9.81 m/s2), and R = the earth’s 
radius (≅ 6.37 × 106 m). Recognizing that dx/dt = υ, use Euler’s 
method to determine the maximum height that would be obtained if 
υ(t = 0) = 1400 m/s.
25.23 The humps function exhibits both flat and steep regions over 
a relatively short x region:

f (x) =
1

(x − 0.3)2 + 0.01
+

1
(x − 0.9)2 + 0.04

− 6

Determine the value of the definite integral of this function between 
x = 0 and 1 using an adaptive RK method.

25.17 If water is drained from a vertical cylindrical tank by open-
ing a valve at the base, the water will flow fast when the tank is full 
and slow down as it continues to drain. As it turns out, the rate at 
which the water level drops is

dy

dt
= −k√y

where k is a constant depending on the shape of the hole and the 
cross-sectional area of the tank and drain hole. The depth of the 
water y is measured in meters and the time t in minutes. If k = 0.05, 
determine how long it takes the tank to drain if the fluid level is 
initially 3 m. Solve by applying Euler’s equation and writing a com-
puter program or using Excel. Use a step of 0.5 minute.
25.18 The following is an initial-value, second-order differential 
equation:

d 
2x

dt 
2 + (5x) 

dx

dt
+ (x + 7) sin (ωt) = 0

where

dx

dt
 (0) = 1.5 and x(0) = 6

Note that ω = 1. Decompose the equation into two first-order dif-
ferential equations. After the decomposition, solve the system from 
t = 0 to 15 and plot the results.
25.19 Assuming that drag is proportional to the square of velocity, 
we can model the velocity of a falling object like a parachutist with 
the following differential equation:

dυ

dt
= g −

cd

m
 υ2

where υ is velocity (m/s), t = time (s), g is the acceleration due to 
gravity (9.81 m/s2), cd = a second-order drag coefficient (kg/m), and 
m = mass (kg). Solve for the velocity and distance fallen by a 90-kg 
object with a drag coefficient of 0.25 kg/m. If the initial height is 
1 km, determine when the object hits the ground. Obtain your solu-
tion with (a) Euler’s method and (b) the fourth-order RK method.
25.20 A spherical tank has a circular orifice in its bottom through 
which liquid flows out (Fig. P25.20). The flow rate through the 
hole can be estimated as

Qout = CA√2gH

where Qout = outflow (m3/s), C = an empirically derived coeffi-
cient, A = the area of the orifice (m2), g = the gravitational constant 
(= 9.81 m/s2), and H = the depth of liquid in the tank. Use one of 
the numerical methods described in this chapter to determine how 
long it will take for water to flow out of a 3-m-diameter tank if the 
water’s initial depth is 2.8 m. Note that the orifice has a diameter of 
3 cm and C = 0.6.

FIGURE P25.20
A spherical tank.

H

r
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from the jumper’s equilibrium position (m), and g = gravitational 
acceleration (9.81 m/s2). Solve these equations for the positions and 
velocities of the three jumpers given the initial conditions that 
all positions and velocities are zero at t = 0. Use the following pa-
rameters for your calculations: m1 = 60 kg, m2 = 72 kg, m3 = 84 kg, 
k1 = k3 = 60, and k2 = 120 (N/m).

25.24 Given the initial conditions y(0) = 1 and y′(0) = 0, solve the 
following initial-value problem from t = 0 to 4:

d 
2y

dt 
2 + 4y = 0

Obtain your solutions with (a) Euler’s method and (b) the fourth-
order RK method. In both cases, use a step size of 0.125. Plot both 
solutions on the same graph along with the exact solution y = cos 2t.
25.25 Use the following differential equations to compute the 
 velocity and position of a soccer ball that is kicked straight up in the 
air with an initial velocity of 40 m/s:

dy

dt
= υ

dv

dt
= −g −

cd

m
 υ ∣υ∣

where y = upward distance (m), t = time (s), υ = upward velocity 
(m/s), g = gravitational constant (= 9.81 m/s2), cd = drag coeffi-
cient (kg/m), and m = mass (kg). Note that the drag coefficient is 
related to more fundamental parameters by

cd =
1
2

 ρACd

where ρ = air density (kg/m3), A = area (m2), and Cd = the dimen-
sionless drag coefficient. Use the following parameter values for 
your calculation: d = 22 cm, m = 0.4 kg, ρ = 1.3 kg/m3, and Cd = 
0.52.
25.26 Three linked bungee jumpers are depicted in Fig. P25.26. If 
the bungee cords are idealized as linear springs (i.e., governed by 
Hooke’s law), the following differential equations based on force 
balances can be developed:

m1
d 

2x1

dt 
2 = m1g + k2(x2 − x1) − k1x1

m2
d 

2x2

dt 
2 = m2g + k3(x3 − x2) + k2(x1 − x2)

m3
d 

2x3

dt 
2 = m3g + k3(x2 − x3)

where mi = the mass of jumper i (kg), kj = the spring constant for 
cord j (N/m), xi = the displacement of jumper i measured downward 

FIGURE P25.26
Three individuals connected by bungee cords.

x1 = 0

(a) Unstretched (b) Stretched

x2 = 0

x3 = 0
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C H A P T E R

26
Stiffness and Multistep Methods

This chapter covers two areas. First, we describe stiff ODEs. These are both indi-
vidual and systems of ODEs that have both fast and slow components to their solution. 
We introduce the idea of an implicit solution technique as one commonly used remedy 
for this problem. Then we discuss multistep methods. These algorithms retain informa-
tion from previous steps to more effectively capture the trajectory of the solution. 
They also yield the truncation error estimates that can be used to implement adaptive 
step-size control.

 26.1 STIFFNESS
Stiffness is a special problem that can arise in the solution of ordinary differential equa-
tions. A stiff system is one involving rapidly changing components together with slowly 
changing ones. In many cases, the rapidly varying components are ephemeral transients 
that die away quickly, after which the solution becomes dominated by the slowly varying 
components. Although the transient phenomena exist for only a short part of the integra-
tion interval, they can dictate the time step for the entire solution.
 Both individual and systems of ODEs can be stiff. An example of a single stiff 
ODE is

dy

dt
= −1000y + 3000 − 2000e−t (26.1)

If y(0) = 0, the analytical solution can be developed as

y = 3 − 0.998e−1000t − 2.002e−t (26.2)

 As in Fig. 26.1, the solution is initially dominated by the fast exponential term 
(e−1000t). After a short period (t < 0.005), this transient dies out and the solution becomes 
dictated by the slow exponential (e−t).
 Insight into the step size required for stability of such a solution can be gained by 
examining the homogeneous part of Eq. (26.1),

dy

dt
= −ay (26.3)
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768 STIFFNESS AND MULTISTEP METHODS

If y(0) = y0, calculus can be used to determine the solution as

y = y0e
−at

Thus, the solution starts at y0 and asymptotically approaches zero.
 Euler’s method can be used to solve the same problem numerically:

yi+1 = yi +
dyi

dt
 h

Substituting Eq. (26.3) gives

yi+1 = yi − ayih

or

yi+1 = yi(1 − ah) (26.4)

The stability of this formula clearly depends on the step size h. That is, ∣1 − ah ∣ must 
be less than 1. Thus, if h > 2∕a, ∣yi ∣ → ∞ as i → ∞.
 For the fast transient part of Eq. (26.2), this criterion can be used to show that the step 
size to maintain stability must be < 2∕1000 = 0.002. In addition, it should be noted that, 
whereas this criterion maintains stability (that is, a bounded solution), an even smaller step 
size would be required to obtain an accurate solution. Thus, although the transient occurs for 
only a small fraction of the integration interval, it controls the maximum allowable step size.
 Superficially, you might suppose that the adaptive step-size routines described at the 
end of the last chapter might offer a solution for this dilemma. You might think that they 
would use small steps during the rapid transients and large steps otherwise. However, 
this is not the case, because the stability requirement will necessitate using very small 
steps throughout the entire solution.

FIGURE 26.1
Plot of a stiff solution of a single ODE. Although the solution appears to start at 1, there is 
 actually a fast transient from y = 0 to 1 that occurs in less than 0.005 time unit. This transient 
is perceptible only when the response is viewed on the finer timescale in the inset.

3

y
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1

0
42 t0

1

0
0.020.010
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 26.1 STIFFNESS 769

 Rather than using explicit approaches, implicit methods offer an alternative remedy. 
Such representations are called implicit because the unknown appears on both sides of 
the equation. An implicit form of Euler’s method can be developed by evaluating the 
derivative at the future time,

yi+1 = yi +
dyi+1

dt
 h

This is called the backward, or implicit, Euler’s method. Substituting Eq. (26.3) yields
yi+1 = yi − ayi+1 

h

which can be solved for

yi+1 =
yi

1 + ah
 (26.5)

For this case, regardless of the size of the step, ∣yi ∣ → 0 as i → ∞. Hence, the approach 
is called unconditionally stable.

 EXAMPLE 26.1 Explicit and Implicit Euler
Problem Statement. Use both the explicit and implicit Euler methods to solve

dy

dt
= −1000y + 3000 − 2000e−t

where y(0) = 0. (a) Use the explicit Euler with step sizes of 0.0005 and 0.0015 to solve 
for y between t = 0 and 0.006. (b) Use the implicit Euler with a step size of 0.05 to 
solve for y between 0 and 0.4.

Solution.

(a) For this problem, the explicit Euler’s method is
yi+1 = yi + (−1000yi + 3000 − 2000e−ti)h

  The result for h = 0.0005 is displayed in Fig. 26.2a along with the analytical solu-
tion. Although it exhibits some truncation error, the result captures the general shape 
of the analytical solution. In contrast, when the step size is increased to a value just 
below the stability limit (h = 0.0015), the solution manifests oscillations. Using 
h > 0.002 would result in a totally unstable solution; that is, it would go to infinity 
as the solution progressed.

(b) The implicit Euler’s method is

yi+1 = yi + (−1000yi+1 + 3000 − 2000e−ti+1)h

  Now because the ODE is linear, we can rearrange this equation so that yi+1 is isolated 
on the left-hand side,

yi+1 =
yi + 3000h − 2000he−ti+1

1 + 1000h

  The result for h = 0.05 is displayed in Fig. 26.2b along with the analytical solution. 
Notice that even though we have used a much bigger step size than the one that 
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770 STIFFNESS AND MULTISTEP METHODS

 induced instability for the explicit Euler, the numerical solution tracks nicely on 
the analytical result.

FIGURE 26.2
Solution of a “stiff” ODE with (a) the explicit and (b) implicit Euler methods.

1.5

y

1

0.5

0
0.0060.004

h = 0.0015

h = 0.0005
Exact

(a)
t0 0.002

2

y

1

0
0.40.3

Exact

h = 0.05

(b)
t0 0.20.1

 Systems of ODEs can also be stiff. An example is

dy1

dt
= −5y1 + 3y2 (26.6a)

dy2

dt
= 100y1 − 301y2 (26.6b)

For the initial conditions y1(0) = 52.29 and y2(0) = 83.82, the exact solution is

y1 = 52.96e−3.9899t − 0.67e−302.0101t (26.7a)

y2 = 17.83e−3.9899t + 65.99e−302.0101t (26.7b)

Note that the exponents are negative and differ by about two orders of magnitude. As 
with the single equation, it is the large exponents that respond rapidly and are at the 
heart of the system’s stiffness.
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 An implicit Euler’s method for the example system can be formulated as

y1, i+1 = y1, i + (−5y1, i+1 + 3y2, i+1)h (26.8a)

y2, i+1 = y2, i + (100y1, i+1 − 301y2, i+1)h (26.8b)

Collecting terms gives

(1 + 5h)y1, i+1 − 3hy2, i+1 = y1, i (26.9a)

−100hy1, i+1 + (1 + 301h)y2, i+1 = y2, i (26.9b)

Thus, we can see that the problem consists of solving a set of simultaneous equations 
for each time step.
 For nonlinear ODEs, the solution becomes even more difficult since it involves 
 solving a system of nonlinear simultaneous equations (recall Sec. 6.6). Thus, although 
stability is gained through implicit approaches, a price is paid in the form of added solu-
tion complexity.
 The implicit Euler method is unconditionally stable and only first-order accurate. It 
is also possible to develop in a similar manner a second-order accurate implicit trapezoi-
dal rule integration scheme for stiff systems. It is usually desirable to have higher-order 
methods. The Adams-Moulton formulas described later in this chapter can also be used 
to devise higher-order implicit methods. However, the stability limits of such approaches 
are very stringent when applied to stiff systems. Gear (1971) developed a special series 
of implicit schemes that have much larger stability limits based on backward difference 
formulas. Extensive efforts have been made to develop software to efficiently implement 
Gear’s method. As a result, this is probably the most widely used method to solve stiff 
systems. In addition, Rosenbrock and others (see Press et al. 2007) have proposed  implicit 
Runge-Kutta algorithms where the k terms appear implicitly. These methods have good 
stability characteristics and are quite suitable for solving systems of stiff ordinary dif-
ferential equations.

 26.2 MULTISTEP METHODS
The one-step methods described in the previous sections utilize information at a single 
point xi to predict a value of the dependent variable yi+1 at a future point xi+1 (Fig. 26.3a). 
Alternative approaches, called multistep methods (Fig. 26.3b), are based on the insight 
that, once the computation has begun, valuable information from previous points is at 
our command. The curvature of the lines connecting these previous values provides 
 information regarding the trajectory of the solution. The multistep methods explored in 
this chapter exploit this information to solve ODEs. Before describing the higher-order 
versions, we will present a simple second-order method that serves to demonstrate the 
general characteristics of multistep approaches.

26.2.1 The Non-Self-Starting Heun Method
Recall that the Heun approach uses Euler’s method as a predictor [Eq. (25.15)]:

y0
i+1 = yi + f(xi, yi)h (26.10)
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and the trapezoidal rule as a corrector [Eq. (25.16)]:

yi+1 = yi +
f(xi, yi) + f(xi+1, y0

i+1)
2

 h (26.11)

Thus, the predictor and the corrector have local truncation errors of O(h2) and O(h3), 
respectively. This suggests that the predictor is the weak link in the method because it 
has the greatest error. This weakness is significant because the efficiency of the iterative 
corrector step depends on the accuracy of the initial prediction. Consequently, one way 
to improve Heun’s method is to develop a predictor that has a local error of O(h3). This 
can be accomplished by using Euler’s method and the slope at yi, and extra information 
from a previous point yi−1, as in

y0
i+1 = yi−1 + f(xi, yi)2h (26.12)

Notice that Eq. (26.12) attains O(h3) at the expense of employing a larger step size, 2h. In 
addition, note that Eq. (26.12) is not self-starting because it involves a previous value of the 
dependent variable yi−1. Such a value would not be available in a typical initial-value problem. 
Because of this fact, Eqs. (26.11) and (26.12) are called the non-self-starting Heun method.
 As depicted in Fig. 26.4, the derivative estimate in Eq. (26.12) is now located at the 
midpoint rather than at the beginning of the interval over which the prediction is made. 
As demonstrated subsequently, this centering improves the error of the predictor to O(h3). 
However, before proceeding to a formal derivation of the non-self-starting Heun, we will 
summarize the method and express it using a slightly modified nomenclature:

Predictor:  y0
i+1 = ym

i−1 + f(xi, ym
i )2h (26.13)

Corrector:  y  
j
i+1 = y 

m
i +

f(xi, y 
m
i ) + f(xi+1, y 

j−1
i+1 )

2
 h

 (for j = 1, 2, … , m) (26.14)

FIGURE 26.3
Graphical depiction of the 
 fundamental difference 
 between (a) one-step and  
(b) multistep methods for 
 solving ODEs.

y

xi

(a)
xxi + 1

y

xi

(b)
xxi + 1xi – 1xi – 2
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where the superscripts have been added to denote that the corrector is applied iteratively 
from j = 1 to m to obtain refined solutions. Note that ym

i  and ym
i−1 are the final results 

of the corrector iterations at the previous time steps. The iterations are terminated at any 
time step on the basis of the stopping criterion,

∣εa∣ = ∣ y 
j
i+1 − y 

j−1
i+1

y 
j
i+1

∣ 100% (26.15)

When εa is less than a prespecified error tolerance εs, the iterations are terminated. At 
this point, j = m. The use of Eqs. (26.13) through (26.15) to solve an ODE is demonstrated 
in the following example.

 EXAMPLE 26.2 Non-Self-Starting Heun Method
Problem Statement. Use the non-self-starting Heun method to perform the same com-
putations as were performed previously in Example 25.5 using Heun’s method. That is, 

FIGURE 26.4
A graphical depiction of the non-self-starting Heun method. (a) The midpoint method that is 
used as a predictor. (b) The trapezoidal rule that is employed as a corrector.

y

xxi+1

xi–1

xi
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(b)

Slope = f (xi+1, yi+1)0
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xxi+1xi

Slope =
f (xi, yi) + f (xi+1, yi+1)

          2

0
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integrate y′ = 4e0.8x − 0.5y from x = 0 to x = 4 using a step size of 1.0. As with Example 
25.5, the initial condition at x = 0 is y = 2. However, because we are now dealing with a 
multistep method, we require the additional information that y is equal to −0.3929953 at  
x = −1.

Solution. The predictor [Eq. (26.13)] is used to extrapolate linearly from x = −1 to x = 1:

y0
1 = −0.3929953 + [4e0.8(0) − 0.5(2)] 2 = 5.607005

The corrector [Eq. (26.14)] is then used to compute the value:

y1
1 = 2 +

4e0.8(0) − 0.5(2) + 4e0.8(1) − 0.5(5.607005)
2

 1 = 6.549331

which represents a percent relative error of −5.73% (true value = 6.194631). This error is 
somewhat smaller than the value of −8.18% incurred with the self-starting Heun.
 Now, Eq. (26.14) can be applied iteratively to improve the solution:

y2
1 = 2 +

3 + 4e0.8(1) − 0.5(6.549331)
2

 1 = 6.313749

which represents an εt of −1.92%. An approximate estimate of the error can also be 
determined using Eq. (26.15):

∣εa∣ = ∣ 6.313749 − 6.549331
6.313749 ∣ 100% = 3.7%

Equation (26.14) can be applied iteratively until εa falls below a prespecified value of 
εs. As was the case with the Heun method (recall Example 25.5), the iterations converge 
on a value of 6.360865 (εt = −2.68%). However, because the initial predictor value is 
more accurate, the multistep method converges at a somewhat faster rate.
 For the second step, the predictor is

y0
2 = 2 + [4e0.8(1) − 0.5(6.360865)] 2 = 13.44346  εt = 9.43%

which is superior to the prediction of 12.08260 (εt = 18%) that was computed with the 
original Heun method. The first corrector yields 15.76693 (εt = 6.8%), and subsequent 
iterations converge on the same result as was obtained with the self-starting Heun method: 
15.30224 (εt = −3.1%). As with the previous step, the rate of convergence of the  corrector 
is somewhat improved because of the better initial prediction.

Derivation and Error Analysis of Predictor-Corrector Formulas. We have just em-
ployed graphical concepts to derive the non-self-starting Heun. We will now show how 
the same equations can be derived mathematically. This derivation is particularly interest-
ing because it ties together ideas from curve fitting, numerical integration, and ODEs. 
The exercise is also useful because it provides a simple procedure for developing higher-
order multistep methods and estimating their errors.
 The derivation is based on solving the general ODE,

dy

dx
= f(x, y)
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This equation can be solved by multiplying both sides by dx and integrating between 
limits at i and i + 1:

∫ yi+1

yi

 dy = ∫ xi+1

xi

 f(x, y) dx

The left side can be integrated and evaluated using [recall Eq. (25.21)]

yi+1 = yi + ∫ xi+1

xi

 f(x, y) dx (26.16)

 Equation (26.16) represents a solution to the ODE if the integral can be evaluated. 
That is, it provides a means to compute a new value of the dependent variable yi+1 on 
the basis of a prior value yi and the differential equation.
 Numerical integration formulas such as those developed in Chap. 21 provide one 
way to make this evaluation. For example, the trapezoidal rule [Eq. (21.3)] can be used 
to evaluate the integral, as in

∫ xi+1

xi

 f(x, y) dx =
f(xi, yi) + f(xi+1, yi+1)

2
 h (26.17)

where h = xi+1 − xi is the step size. Substituting Eq. (26.17) into Eq. (26.16) yields

yi+1 = yi +
f(xi, yi) + f(xi+1, yi+1)

2
 h

which is the corrector for the Heun method. Because this equation is based on the trap-
ezoidal rule, the truncation error can be taken directly from Table 21.2,

Ec = −
1
12

 h3y(3)(ξc) = −
1
12

 h3f ″(ξc) (26.18)

where the subscript c designates that this is the error of the corrector.
 A similar approach can be used to derive the predictor. For this case, the integration 
limits are from i − 1 to i + 1:

∫ yi+1

yi−1

 dy = ∫ xi+1

xi−1

 f(x, y) dx

which can be integrated and rearranged to yield

yi+1 = yi−1 + ∫ xi+1

xi−1

 f(x, y) dx (26.19)

Now, rather than using a closed formula from Table 21.2, we can use the first Newton-
Cotes open integration formula (see Table 21.4) to evaluate the integral, as in

∫ xi+1

xi −1

 f(x, y) dx = 2h f(xi, yi) (26.20)

which is called the midpoint method. Substituting Eq. (26.20) into Eq. (26.19) yields

yi+1 = yi−1 + 2h f(xi, yi)
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which is the predictor for the non-self-starting Heun. As with the corrector, the local 
truncation error can be taken directly from Table 21.4:

Ep =
1
3

 h3y(3)(ξp) =
1
3

 h3f ″(ξp) (26.21)

where the subscript p designates that this is the error of the predictor.
 Thus, the predictor and the corrector for the non-self-starting Heun method have 
truncation errors of the same order. Aside from upgrading the accuracy of the predic-
tor, this fact has additional benefits related to error analysis, as elaborated in the next 
section.

Error Estimates. If the predictor and the corrector of a multistep method are of the 
same order, the local truncation error may be estimated during the course of a computa-
tion. This is a tremendous advantage because it establishes a criterion for adjustment of 
the step size.
 The local truncation error for the predictor is estimated by Eq. (26.21). This error 
estimate can be combined with the estimate of yi+l from the predictor step to yield [recall 
our basic definition of Eq. (3.1)]

True value = y0
i+1 +

1
3

 h3y(3)(ξp) (26.22)

Using a similar approach, the error estimate for the corrector [Eq. (26.18)] can be com-
bined with the corrector result yi+l to give

True value = y 
m
i+1 −

1
12

 h3y(3)(ξc) (26.23)

Equation (26.22) can be subtracted from Eq. (26.23) to yield

0 = ym
i+1 − y0

i+1 −
5
12

 h3y(3)(ξ) (26.24)

where ξ is now between xi−l and xi+l. Now, dividing Eq. (26.24) by 5 and rearranging 
the result gives

y0
i+1 − ym

i+1

5
= −

1
12

 h3y(3)(ξ) (26.25)

Notice that the right-hand sides of Eqs. (26.18) and (26.25) are identical, with the excep-
tion of the argument of the third derivative. If the third derivative does not vary appre-
ciably over the interval in question, we can assume that the right-hand sides are equal, 
and therefore, the left-hand sides should also be equivalent, as in

Ec = −
y0

i+1 − ym
i+1

5
 (26.26)

Thus, we have arrived at a relationship that can be used to estimate the per-step truncation 
error on the basis of two quantities—the predictor (y0

i+1) and the corrector (ym
i+1)—that 

are routine by-products of the computation.
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 EXAMPLE 26.3 Estimate of Per-Step Truncation Error
Problem Statement. Use Eq. (26.26) to estimate the per-step truncation error of 
 Example 26.2. Note that the true values at x = 1 and 2 are 6.194631 and 14.84392, 
respectively.

Solution. At xi+l = 1, the predictor gives 5.607005 and the corrector yields 6.360865. 
These values can be substituted into Eq. (26.26) to give

Ec = −
6.360865 − 5.607005

5
= −0.1507722

which compares well with the exact error,

Et = 6.194631 − 6.360865 = −0.1662341

 At xi+l = 2, the predictor gives 13.44346 and the corrector yields 15.30224, which 
can be used to compute

Ec = −
15.30224 − 13.44346

5
= −0.3717550

which also compares favorably with the exact error, Et = 14.84392 − 15.30224 = 
−0.4583148.

 The ease with which the error can be estimated using Eq. (26.26) provides a ratio-
nal basis for step-size adjustment during the course of a computation. For example, if 
Eq. (26.26) indicates that the error is greater than an acceptable level, the step size can 
be decreased.

Modifiers. Before discussing computer algorithms, we must note two other ways in 
which the non-self-starting Heun method can be made more accurate and efficient. First, 
you should realize that besides providing a criterion for step-size adjustment, Eq. (26.26) 
represents a numerical estimate of the discrepancy between the final corrected value at 
each step yi+1 and the true value. Thus, it can be added directly to yi+1 to refine the 
estimate further:

ym
i+1 ← ym

i+1 −
ym

i+1 − y0
i+1

5
 (26.27)

Equation (26.27) is called a corrector modifier. (The symbol ← is read “is replaced by.”) 
The left-hand side is the modified value of ym

i+1.
 A second improvement, one that relates more to program efficiency, is a predictor 
modifier, which is designed to adjust the predictor result so that it is closer to the final 
convergent value of the corrector. This is advantageous because, as noted previously at 
the beginning of this section, the number of iterations of the corrector is highly dependent 
on the accuracy of the initial prediction. Consequently, if the prediction is modified 
properly, we might reduce the number of iterations required to converge on the ultimate 
value of the corrector.
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778 STIFFNESS AND MULTISTEP METHODS

 Such a modifier can be derived simply by assuming that the third derivative is 
relatively constant from step to step. Therefore, using the result of the previous step at 
i, Eq. (26.25) can be solved for

h3y(3)(ξ) = −
12
5

 (y0
i − ym

i ) (26.28)

which, assuming that y(3)(ξ) ≅ y(3)(ξp), can be substituted into Eq. (26.21) to give

Ep =
4
5

 (ym
i − y0

i ) (26.29)

which can then be used to modify the predictor result:

y0
i+1 ← y0

i+1 +
4
5

 (ym
i − y0

i ) (26.30)

 EXAMPLE 26.4 Effect of Modifiers on Predictor-Corrector Results
Problem Statement. Recompute Example 26.3 using both modifiers.

Solution. As in Example 26.3, the initial predictor result is 5.607005. Because the predic-
tor modifier [Eq. (26.30)] requires values from a previous iteration, it cannot be employed 
to improve this initial result. However, Eq. (26.27) can be used to modify the corrected 
value of 6.360865 (εt = −2.684%), as in

ym
1 = 6.360865 −

6.360865 − 5.607005
5

= 6.210093

which represents an εt = −0.25%. Thus, the error is reduced by over an order of magnitude.
 For the next iteration, the predictor [Eq. (26.13)] is used to compute

y0
2 = 2 + [4e0.8(0) − 0.5(6.210093)] 2 = 13.59423  εt = 8.42%

which is about half the error of the predictor for the second iteration of Example 26.3 
(εt = 18.6%). This improvement occurs because we are using a superior estimate 
of y (6.210093 as opposed to 6.360865) in the predictor. In other words, the prop-
agated and global errors are reduced by the inclusion of the corrector modifier.
 Now because we have information from the prior iteration, Eq. (26.30) can be em-
ployed to modify the predictor, as in

y0
2 = 13.59423 +

4
5

 (6.360865 − 5.607005) = 14.19732  εt = −4.36%

which, again, halves the error.
 This modification has no effect on the final outcome of the subsequent corrector 
step. Regardless of whether the unmodified or modified predictors are used, the correc-
tor will ultimately converge on the same answer. However, because the rate or efficiency 
of convergence depends on the accuracy of the initial prediction, the modification can 
reduce the number of iterations required for convergence.
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 Implementing the corrector yields a result of 15.21178 (εt = −2.48%), which repre-
sents an improvement over Example 26.3 because of the reduction of global error. Finally, 
this result can be modified using Eq. (26.27):

ym
2 = 15.21178 −

15.21178 − 13.59423
5

= 14.88827  εt = −0.30%

Again, the error has been reduced by an order of magnitude.

 As in the previous example, the addition of the modifiers increases both the effi-
ciency and accuracy of multistep methods. In particular, the corrector modifier effectively 
increases the order of the technique. Thus, the non-self-starting Heun with modifiers is 
third order rather than second order as is the case for the unmodified version. However, 
it should be noted that there are situations where the corrector modifier will affect the 
stability of the corrector iteration process. As a consequence, the modifier is not included 
in the algorithm for the non-self-starting Heun delineated in Fig. 26.5. Nevertheless, the 
corrector modifier can still have utility for step-size control, as discussed next.

FIGURE 26.5
The sequence of formulas used to implement the non-self-starting Heun method. Note that 
the  corrector error estimates can be used to modify the corrector. However, because this can 
affect the corrector’s stability, the modifier is not included in this algorithm. The corrector er-
ror estimate is included because of its utility for step-size adjustment.

Predictor:
y0

i+1 = yi
m
−1 + f (xi, yi

m)2h

(Save result as y0
i+1,u = y0

i+1 where the subscript u designates that the variable is unmodified.)

Predictor Modifier:

y0
i+1 ← y0

i+1,u +
4
5

 (y 
m
i,u − y0

i,u)

Corrector:

y 
j
i+1 = y 

m
i +

f (xi, y 
m
i ) + f (xi+1, y 

j−1
i+1)

2
 h  (for j = 1 to maximum iterations m)

Error Check:

∣εa∣ = ∣ y 
j
i+1 − y 

j−1
i+1

y 
j
i+1

∣ 100%

(If |εa| > error criterion, set j = j + 1 and repeat corrector; if εa ≤ error criterion, save result as  
yi

m
+1,u = y i

m
+1.)

Corrector Error Estimate:

Ec = −
1
5

 (y 
m
i+1,u − y 

0
i+1,u)

(If computation is to continue, set i = i + 1 and return to predictor.)
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780 STIFFNESS AND MULTISTEP METHODS

26.2.2 Step-Size Control and Computer Programs
Constant Step Size. It is relatively simple to develop a constant step-size version of 
the non-self-starting Heun method. About the only complication is that a one-step method 
is required to generate the extra point to start the computation.
 Additionally, because a constant step size is employed, a value for h must be chosen 
prior to the computation. In general, experience indicates that an optimal step size should 
be small enough to ensure convergence within two iterations of the corrector (Hull and 
Creemer 1963). In addition, it must be small enough to yield a sufficiently small trunca-
tion error. At the same time, the step size should be as large as possible to minimize 
run-time cost and round-off error. As with other methods for ODEs, the only practical 
way to assess the magnitude of the global error is to compare the results for the same 
problem but with a halved step size.

Variable Step Size. Two criteria are typically used to decide whether a change in step 
size is warranted. First, if the value from Eq. (26.26) is greater than some prespecified error 
criterion, the step size is decreased. Second, the step size is chosen so that the convergence 
criterion of the corrector is satisfied in two iterations. This criterion is intended to account 
for the trade-off between the rate of convergence and the total number of steps in the cal-
culation. For smaller values of h, convergence will be more rapid but more steps are re-
quired. For larger h, convergence is slower but fewer steps result. Experience (Hull and 
Creemer 1963) suggests that the total steps will be minimized if h is chosen so that the 
corrector converges within two iterations. Therefore, if over two iterations are required, the 
step size is decreased, and if less than two iterations are required, the step size is increased.
 Although the above strategy specifies when step-size modifications are in order, it 
does not indicate how the step size should be changed. This is a critical question because 
multistep methods by definition require several points to compute a new point. Once the 
step size is changed, a new set of points must be determined. One approach is to restart 
the computation and use the one-step method to generate a new set of starting points.
 A more efficient strategy that makes use of existing information is to increase and 
decrease by doubling and halving the step size. As depicted in Fig. 26.6b, if a sufficient 
number of previous values have been generated, increasing the step size by doubling is 
a relatively straightforward task (Fig. 26.6c). All that is necessary is to keep track of 
subscripts so that old values of x and y become the appropriate new values. Halving the 
step size is somewhat more complicated because some of the new values will be unavail-
able (Fig. 26.6a). However, interpolating polynomials of the type developed in Chap. 18 
can be used to determine these intermediate values.
 In any event, the decision to incorporate step-size control represents a trade-off 
between initial investment in program complexity versus the long-term return because of 
increased efficiency. Obviously, the magnitude and importance of the problem itself will 
have a strong bearing on this trade-off. Fortunately, several software packages and librar-
ies have multistep routines that you can use to obtain solutions without having to program 
them from scratch. We will mention some of these when we review packages and librar-
ies at the end of Chap. 27.

26.2.3 Integration Formulas
The non-self-starting Heun method is characteristic of most multistep methods. It em-
ploys an open integration formula (the midpoint method) to make an initial estimate. 
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This predictor step requires a previous data point. Then, a closed integration formula (the 
trapezoidal rule) is applied iteratively to improve the solution.
 It should be obvious that a strategy for improving multistep methods would be to use 
higher-order integration formulas as predictors and correctors. For example, the higher-
order Newton-Cotes formulas developed in Chap. 21 could be used for this purpose.
 Before describing these higher-order methods, we will review the most common inte-
gration formulas upon which they are based. As mentioned above, the first of these are the 
Newton-Cotes formulas. However, there is a second class called the Adams formulas that 
we will also review and that are often preferred. As depicted in Fig. 26.7, the fundamental 
difference between the Newton-Cotes and Adams formulas relates to the manner in which 
the integral is applied to obtain the solution. As depicted in Fig. 26.7a, the Newton-Cotes 
formulas estimate the integral over an interval spanning several points. This integral is then 
used to project from the beginning of the interval to the end. In contrast, the Adams for-
mulas (Fig. 26.7b) use a set of points from an interval to estimate the integral solely for 
the last segment in the interval. This integral is then used to project across this last segment.

FIGURE 26.6
A plot indicating how a halving-doubling strategy allows the use of (b) previously calculated 
values for a third-order multistep method. (a) Halving; (c) doubling.

y

x

Interpolation

(a)
y

x

(b)
y

x

(c)
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782 STIFFNESS AND MULTISTEP METHODS

Newton-Cotes Formulas. Some of the most common formulas for solving ordinary 
differential equations are based on fitting an nth-degree interpolating polynomial to n + 1 
known values of y and then using this equation to compute the integral. As discussed 
previously in Chap. 21, the Newton-Cotes integration formulas are based on such an 
approach. These formulas are of two types: open and closed forms.

Open Formulas. For n equally spaced data points, the open formulas can be expressed 
in the form of a solution of an ODE, as was done previously for Eq. (26.19). The general 
equation for this purpose is

yi+1 = yi−n + ∫ xi+1

xi−n

 fn(x) dx (26.31)

y

xi + 1 xxixi – 1

(a)
xi – 2

yi + 1 = yi – 2 +
xi + 1

xi – 2

f (x, y) dx

y

xi + 1 xxixi – 1

(b)
xi – 2

yi + 1 = yi +
xi + 1

      xi

f (x, y) dx

FIGURE 26.7
Illustration of the fundamental difference between the Newton-Cotes and Adams integration 
formulas. (a) The Newton-Cotes formulas use a series of points to obtain an integral estimate 
over a number of segments. The estimate is then used to project across the entire range.  
(b) The Adams formulas use a series of points to obtain an integral estimate for a single seg-
ment. The estimate is then used to project across the segment.
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where fn(x) is an nth-order interpolating polynomial. The evaluation of the integral em-
ploys the nth-order Newton-Cotes open integration formula (Table 21.4). For example, 
if n = 1,

yi+1 = yi−1 + 2h fi (26.32)

where fi is an abbreviation for f(xi, yi)—that is, the differential equation evaluated at xi 
and yi. Equation (26.32) is referred to as the midpoint method and was used previously 
as the predictor in the non-self-starting Heun method. For n = 2,

yi+1 = yi−2 +
3h

2
 ( fi + fi−1)

and for n = 3,

yi+1 = yi−3 +
4h

3
 (2 fi − fi−1 + 2 fi−2) (26.33)

Equation (26.33) is depicted graphically in Fig. 26.8a.

Closed Formulas. The closed form can be expressed generally as

yi+1 = yi−n+1 + ∫ xi+1

xi−n+1

 fn(x) dx (26.34)

where the integral is approximated by an nth-order Newton-Cotes closed integration 
formula (Table 21.2). For example, for n = 1,

yi+1 = yi +
h

2
 ( fi + fi+1)

which is equivalent to the trapezoidal rule. For n = 2,

yi+1 = yi−1 +
h

3
 ( fi−1 + 4fi + fi+1) (26.35)

which is equivalent to Simpson’s 1∕3 rule. Equation (26.35) is depicted in Fig. 26.8b.

Adams Formulas. The other types of integration formulas that can be used to solve 
ODEs are the Adams formulas. Many popular computer algorithms for multistep solution 
of ODEs are based on these methods.

Open Formulas (Adams-Bashforth). The Adams formulas can be derived in a variety 
of ways. One technique is to write a forward Taylor series expansion around xi:

yi+1 = yi + fi 
h +

f ′i
2

 h2 +
f ″i
6

 h3 + …

which can also be written as

yi+1 = yi + h(fi +
h

2
  f ′i +

h2

3
 f ″i + …) (26.36)
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784 STIFFNESS AND MULTISTEP METHODS

Recall from Sec. 4.1.3 that a backward difference can be used to approximate the 
 derivative:

f ′i =
fi − fi−1

h
+

f ″i
2

 h + O(h2)

which can be substituted into Eq. (26.36) to yield

yi+1 = yi + h{fi +
h

2
 [

fi − fi−1

h
+

f ″i
2

 h + O(h2)] +
h2

6
 f ″i + …}

or, after collecting terms,

yi+1 = yi + h (
3
2

  fi −
1
2

  fi−1) +
5
12

 h3 f ″i + O(h4) (26.37)

y

xi + 1 xxixi – 1

(a)
xi – 2xi – 3

y

xi + 1 xxixi – 1

(b)

FIGURE 26.8
Graphical depiction of open and closed Newton-Cotes integration formulas. (a) The third 
open formula [Eq. (26.33)] and (b) Simpson’s 1/3 rule [Eq. (26.35)].
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This formula is called the second-order open Adams formula. Open Adams formulas are 
also referred to as Adams-Bashforth formulas. Consequently, Eq. (26.37) is sometimes 
called the second Adams-Bashforth formula.
 Higher-order Adams-Bashforth formulas can be developed by substituting higher-
difference approximations into Eq. (26.36). The nth-order open Adams formula can be 
represented generally as

yi+1 = yi + h ∑
n−1

k=0
 βk   

fi−k + O(hn+1) (26.38)

The coefficients βk are compiled in Table 26.1. The fourth-order version is depicted in 
Fig. 26.9a. Notice that the first-order version is Euler’s method.

Closed Formulas (Adams-Moulton). A backward Taylor series around xi+l can be 
 written as

yi = yi+1 − fi+1h +
f ′i+1

2
 h2 −

f ″i+1

3
 h3 + …

Solving for yi+l yields

yi+1 = yi + h( fi+1 −
h

2
  f ′i+1 +

h2

6
  f ″i+1 + …) (26.39)

A difference can be used to approximate the first derivative:

f ′i+1 =
fi+1 − fi

h
+

f ″i+1

2
h + O(h2)

TABLE 26.1 Coefficients and truncation error for Adams-Bashforth predictors.

        Local Truncation  
Order β0 β1 β2 β3 β4 β5 Error

 1 1      
1
2

 h2f ′(ξ)

 2 3/2 −1/2     
5
12

 h3f ″(ξ)

 3 23/12 −16/12 5/12    
9

24
 h4f  

(3)(ξ)

 4 55/24 −59/24 37/24 −9/24   
251
720

 h5f  
(4)(ξ)

 5 1901/720 −2774/720 2616/720 −1274/720 251/720  
475
1440

 h6f  
(5)(ξ)

 6 4277/720 −7923/720 9982/720 −7298/720 2877/720 −475/720 
19,087
60,480

 h7f  
(6)(ξ)
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which can be substituted into Eq. (26.39), and collecting terms gives

yi+1 = yi + h(
1
2

  fi+1 +
1
2

  fi) −
1
12

 h3f ″i+1 − O(h4)

This formula is called the second-order closed Adams formula, or the second Adams-
Moulton formula. Also, notice that it is the trapezoidal rule.
 The nth-order closed Adams formula can be written generally as

yi+1 = yi + h ∑
n−1

k=0
 βk   

fi+1−k + O(hn+1)

The coefficients βk are listed in Table 26.2. The fourth-order method is depicted in 
Fig. 26.9b.

FIGURE 26.9
Graphical depiction of open and closed Adams integration formulas. (a) The fourth Adams- 
Bashforth open formula and (b) the fourth Adams-Moulton closed formula.

y

xi + 1 xxixi – 1

(a)
xi – 2xi – 3

y

xi + 1 xxixi – 1

(b)
xi – 2
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26.2.4 Higher-Order Multistep Methods
Now that we have formally developed the Newton-Cotes and Adams integration formu-
las, we can use them to derive higher-order multistep methods. As was the case with the 
non-self-starting Heun method, the integration formulas are applied in tandem as predictor-
corrector methods. In addition, if the open and closed formulas have local truncation 

 Box 26.1 Derivation of General Relationships for Modifiers

The relationship between the true value, the approximation, and 
the error of a predictor can be represented generally as

True value = y0
i+1 +

ηp

δp

 hn+1 y(n+1)(ξp) (B26.1.1)

where ηp and δp = the numerator and denominator, respectively, 
of the constant of the truncation error for either an open 
 Newton-Cotes (Table 21.4) or an Adams-Bashforth (Table 26.1) 
predictor, and n is the order.
 A similar relationship can be developed for the corrector:

True value = ym
i+1 −

ηc

δc

 hn+1 y(n+1)(ξc) (B26.1.2)

where ηc and δc = the numerator and denominator, respectively, 
of the constant of the truncation error for either a closed 
 Newton-Cotes (Table 21.2) or an Adams-Moulton (Table 26.2) 
corrector. As was done in the derivation of Eq. (26.24), Eq. 
(B26.1.1) can be subtracted from Eq. (B26.1.2) to yield

0 = ym
i+1 − y0

i+1 −
ηc + ηpδc∕δp

δc

 hn+1 y(n+1)(ξ) (B26.1.3)

Now, dividing the equation by ηc + ηpδc∕δp, multiplying the last 
term by δp∕δp, and rearranging provides an estimate of the local 

truncation error of the corrector:

Ec ≅ −
ηcδp

ηcδp + ηpδc

 (ym
i+1 − y0

i+1) (B26.1.4)

 For the predictor modifier, Eq. (B26.1.3) can be solved at the 
previous step for

hny(n+1)(ξ) = −
δcδp

ηcδp + ηpδc

 (y0
i − ym

i )

which can be substituted into the error term of Eq. (B26.1.1) to 
yield

Ep =
ηpδc

ηcδp + ηpδc

 (ym
i − y0

i ) (B26.1.5)

Equations (B26.1.4) and (B26.1.5) are general versions of mod-
ifiers that can be used to improve multistep algorithms. For ex-
ample, Milne’s method has ηp = 14, δp = 45, ηc = 1, δc = 90. 
Substituting these values into Eqs. (B26.1.4) and (B26.1.5) 
yields Eqs. (26.43) and (26.42), respectively. Similar modifiers 
can be developed for other pairs of open and closed formulas 
that have local truncation errors of the same order.

TABLE 26.2 Coefficients and truncation error for Adams-Moulton correctors.

        Local Truncation  
 Order β0 β1 β2 β3 β4 β5 Error

 2 1/2 1/2     −
1

12
 h3f ″(ξ)

 3 5/12 8/12 −1/12    −
1

24
 h4f  

(3)(ξ)

 4 9/24 19/24 −5/24 1/24   −
19

720
 h5f  

(4)(ξ)

 5 251/720 646/720 −264/720 106/720 −19/720  −
27

1440
 h6f  

(5)(ξ)

 6 475/1440 1427/1440 −798/1440 482/1440 −173/1440 27/1440 −
863

60,480
 h7f  

(6)(ξ)
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errors of the same order, modifiers of the type listed in Fig. 26.5 can be incorporated to 
improve accuracy and allow step-size control. Box 26.1 provides general equations for 
these modifiers. In this section, we present two of the most common higher-order mul-
tistep approaches: Milne’s method and the fourth-order Adams method.

Milne’s Method. Milne’s method is the most common multistep method based on 
Newton-Cotes integration formulas. It uses the three-point Newton-Cotes open formula 
as a predictor:

y0
i+1 = y 

m
i−3 +

4h

3
 (2 f  

m
i − f  

m
i−1 + 2 f  

m
i−2) (26.40)

and the three-point Newton-Cotes closed formula (Simpson’s 1∕3 rule) as a corrector:

y 
j
i+1 = y 

m
i−1 +

h

3
 ( f  

m
i−1 + 4 f  

m
i + f  

j−1
i+1) (26.41)

where j is an index representing the number of iterations of the modifier. The predictor and 
corrector modifiers for Milne’s method can be developed from the formulas in Box 26.1 
and the error coefficients in Tables 21.2 and 21.4:

Ep =
28
29

 (ym
i − y0

i ) (26.42)

Ec ≅ −
1
29

 (ym
i+1 − y0

i+1) (26.43)

 EXAMPLE 26.5 Milne’s Method
Problem Statement. Use Milne’s method to integrate y′ = 4e0.8x − 0.5y from x = 0 
to x = 4 using a step size of 1. The initial condition at x = 0 is y = 2. Because we are 
dealing with a multistep method, previous points are required. In an actual application, 
a one-step method such as a fourth-order RK would be used to compute the required 
points. For the present example, we will use the analytical solution [recall Eq. (E25.5.1) 
from Example 25.5] to compute exact values at xi−3 = −3, xi−2 = −2, and xi−1 = −1: 
yi−3 = −4.547302, yi−2 = −2.306160, and yi−1 = −0.3929953, respectively.

Solution. The predictor [Eq. (26.40)] is used to calculate a value at x = 1:

y0
1 = −4.54730 +

4(1)
3

[2(3) − 1.99381 + 2(1.96067)] = 6.02272  εt = 2.8%

The corrector [Eq. (26.41)] is then employed to compute

y1
1 = −0.3929953 +

1
3

[1.99381 + 4(3) + 5.890802] = 6.235210  εt = −0.66%

This result can be substituted back into Eq. (26.41) to iteratively correct the estimate. 
This process converges on a final corrected value of 6.204855 (εt = −0.17%).
 This value is more accurate than the comparable estimate of 6.360865 (εt = −2.68%) 
obtained previously with the non-self-starting Heun method (Examples 26.2 through 26.4). 
The results for the remaining steps are y(2) = 14.86031 (εt = −0.11%), y(3) = 33.72426 
(εt = −0.14%), and y(4) = 75.43295 (εt = −0.12%).
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 26.2 MULTISTEP METHODS 789

 As in the previous example, Milne’s method usually yields results of high accuracy. 
However, there are certain cases where it performs poorly (see Ralston and Rabinowitz, 
1978). Before elaborating on these cases, we will describe another higher-order multistep 
approach—the fourth-order Adams method.

Fourth-Order Adams Method. A popular multistep method based on the Adams 
 integration formulas uses the fourth-order Adams-Bashforth formula (Table 26.1) as the 
predictor:

y0
i+1 = ym

i + h(
55
24

  f  
m
i −

59
24

  f  
m
i−1 +

37
24

  f  
m
i−2 −

9
24

  f  
m
i−3) (26.44)

and the fourth-order Adams-Moulton formula (Table 26.2) as the corrector:

y 
j
i+1 = ym

i + h(
9
24

 f  
j−1
i+1 +

19
24

 f  
m
i −

5
24

 f  
m
i−1 +

1
24

 f  
m
i−2) (26.45)

 The predictor and corrector modifiers for the fourth-order Adams method can be 
developed from the formulas in Box 26.1 and the error coefficients in Tables 26.1 and 
26.2 as

Ep =
251
270

 (ym
i − y0

i ) (26.46)

Ec = −
19
270

 (ym
i+1 − y0

i+1) (26.47)

 EXAMPLE 26.6 Fourth-Order Adams Method
Problem Statement. Use the fourth-order Adams method to solve the same problem 
as in Example 26.5.

Solution. The predictor [Eq. (26.44)] is used to compute a value at x = 1:

 y0
1 = 2 + 1(

55
24

 3 −
59
24

 1.993814 +
37
24

 1.960667 −
9
24

 2.6365228) = 6.007539

 εt = 3.1%

which is comparable to but somewhat less accurate than the result using the Milne 
method. The corrector [Eq. (26.45)] is then employed to calculate

y1
1 = 2 + 1(

9
24

 5.898394 +
19
24

 3 −
5
24

 1.993814 +
1
24

 1.960666) = 6.253214

εt = −0.96%

which again is comparable to but less accurate than the result using Milne’s method. 
This result can be substituted back into Eq. (26.45) to iteratively correct the estimate. 
The process converges on a final corrected value of 6.214424 (εt = 0.32%), which 
is an accurate result but again somewhat inferior to that obtained with the Milne 
method.
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790 STIFFNESS AND MULTISTEP METHODS

Stability of Multistep Methods. The superior accuracy of the Milne method exhibited 
in Examples 26.5 and 26.6 would be anticipated on the basis of the error terms for the 
predictors [Eqs. (26.42) and (26.46)] and the correctors [Eqs. (26.43) and (26.47)]. The 
coefficients for the Milne method, 14∕45 and 1∕90, are smaller than for the fourth-order 
Adams, 251∕720 and 19∕720. Additionally, the Milne method employs fewer function 
evaluations to attain these higher accuracies. At face value, these results might lead to the 
conclusion that the Milne method is superior and, therefore, preferable to the fourth-order 
Adams. Although this conclusion holds for many cases, there are instances where the Milne 
method performs unacceptably. Such behavior is exhibited in the following example.

 EXAMPLE 26.7 Stability of Milne’s and Fourth-Order Adams Methods
Problem Statement. Employ Milne’s and the fourth-order Adams methods to solve

dy

dx
= −y

with the initial condition that y = 1 at x = 0. Solve this equation from x = 0 to x = 10 
using a step size of h = 0.5. Note that the analytical solution is y = e−x.

Solution. The results, as summarized in Fig. 26.10, indicate problems with Milne’s 
method. Shortly after the onset of the computation, the errors begin to grow and oscillate 

FIGURE 26.10
Graphical depiction of the instability of Milne’s method.

0.005

0
5 10 x

y

Milne’s method

True solution
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in sign. By x = 10, the relative error has inflated to 2831% and the predicted value itself 
has started to oscillate in sign.
 In contrast, the results for the Adams method would be much more acceptable. 
Although the error also grows, it would do so at a slow rate. Additionally, the discrepancies 
would not exhibit the wild swings in sign exhibited by the Milne method.

 The unacceptable behavior manifested in the previous example by the Milne method 
is referred to as instability. Although it does not always occur, its possibility leads to the 
conclusion that Milne’s approach should be avoided. Thus, the fourth-order Adams 
method is normally preferred.
 The instability of Milne’s method is due to the corrector. Consequently, attempts 
have been made to rectify the shortcoming by developing stable correctors. One com-
monly used alternative that employs this approach is Hamming’s method, which uses the 
Milne predictor and a stable corrector:

y 
j
i+1 =

9ym
i − ym

i−2 + 3h(y 
j−1
i+1 + 2 f  

m
i − f  

m
i−1)

8

which has the following local truncation error:

Ec =
1
40

 h5y(4)(ξc)

Hamming’s method also includes modifiers of the form

Ep =
9

121
 (ym

i − y0
i )

Ec = −
112
121

(ym
i+1 − y0

i+1)

The reader can obtain additional information on this and other multistep methods else-
where (Hamming 1973; Lapidus and Seinfield 1971).

PROBLEMS

26.1 Given
dy

dx
= −200,000y + 200,000e−x − e−x

(a) Estimate the step size required to maintain stability using the 
explicit Euler method.

(b) If y(0) = 0, use the implicit Euler to obtain a solution from t = 
0 to 2 using a step size of 0.1.

26.2 Given
dy

dt
= 30(sin t − y) + 3 cos t

If y(0) = 1, use the implicit Euler to obtain a solution from t = 0  
to 4 using a step size of 0.4.
26.3 Given

dx1

dt
= 999x1 + 1999x2

dx2

dt
= −1000x1 − 2000x2

If x1(0) = x2(0) = 1, obtain a solution from t = 0 to 0.2 using a step 
size of 0.05 with the (a) explicit and (b) implicit Euler methods.
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26.13 Consider the thin rod of length l moving in the x-y plane as 
shown in Fig. P26.13. The rod is fixed with a pin on one end and a 
mass at the other. Note that g = 9.81 m/s2 and l = 0.5 m. This sys-
tem can be solved using

θ


−
g

l
  θ = 0

Let θ = 0 and θ·(0) = 0.25 rad/s. Solve using any method studied in 
this chapter. Plot the angle versus time and the angular velocity 
versus time. (Hint: Decompose the second-order ODE.)
26.14 Given the first-order ODE

dx

dt
= −700x − 1000e−t

x(t = 0) = 4

Solve this stiff differential equation using a numerical method over 
the time period 0 ≤ t ≤ 5. Also solve analytically and plot the ana-
lytic and numerical solution for both the fast transient and slow 
transition phase of the timescale.
26.15 The following second-order ODE is considered to be stiff:

d 

2y

dx2 = −1001 

dy

dx
− 1000y

Solve this differential equation (a) analytically and (b) numerically 
for x = 0 to 5. For (b) use an implicit approach with h = 0.5. Note 
that the initial conditions are y(0) = 1 and y′(0) = 0. Display both 
results graphically.
26.16 Solve the following differential equation from t = 0 to 1:

dy

dt
= −10y

with the initial condition y(0) = 1. Use the following techniques to 
obtain your solutions: (a) analytically, (b) the explicit Euler method, 
and (c) the implicit Euler method. For (b) and (c), use h = 0.1 and 
0.2. Plot your results.

26.4 Solve the following initial-value problem over the interval 
from t = 2 to 3:

dy

dt
= −0.5y + e−t

Use the non-self-starting Heun method with a step size of 0.5 and 
initial conditions of y(l.5) = 5.222138 and y(2.0) = 4.143883. Iter-
ate the corrector to εs = 0.1%. Compute the true percent relative 
errors εt for your results based on the analytical solution.
26.5 Repeat Prob. 26.4, but use the fourth-order Adams method. 
[Note: y(0.5) = 8.132548 and y(1.0) = 6.542609.] Iterate the cor-
rector to εs = 0.01%.
26.6 Solve the following initial-value problem from t = 4 to 5:

dy

dt
= −

2y

t

Use a step size of 0.5 and initial values of y(2.5) = 0.48, y(3) = 
0.333333, y(3.5) = 0.244898, and y(4) = 0.1875. Obtain your solu-
tions using the following techniques: (a) the non-self-starting Heun 
method (εs = 1%), and (b) the fourth-order Adams method (εs = 
0.01%). [Note: The exact answers obtained analytically are y(4.5) = 
0.148148 and y(5) = 0.12.] Compute the true percent relative errors 
εt for your results.
26.7 Solve the following initial-value problem from x = 0 to x = 
0.75:

dy

dx
= yx2 − y

Use the non-self-starting Heun method with a step size of 0.25. If 
y(0) = 1, employ the fourth-order RK method with a step size of 
0.25 to predict the starting value at y(0.25).
26.8 Solve the following initial-value problem from t = 1.5 to 
t = 2.5:

dy

dt
=

−2y

1 + t

Use the fourth-order Adams method. Employ a step size of 0.5 
and the fourth-order RK method to predict the start-up values if 
y(0) = 2.
26.9 Develop a program for the implicit Euler method for a single 
linear ODE. Test it by duplicating Prob. 26.1b.
26.10 Develop a program for the implicit Euler method for a pair 
of linear ODEs. Test it by solving Eq. (26.6).
26.11 Develop a user-friendly program for the non-self-starting 
Heun method with a predictor modifier. Employ a fourth-order RK 
method to compute starter values. Test the program by duplicating 
Example 26.4.
26.12 Use the program developed in Prob. 26.11 to solve Prob. 26.7.

FIGURE P26.13

θ

m

l
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C H A P T E R

27
Boundary-Value and  
Eigenvalue Problems

Recall from our discussion at the beginning of Part Seven that an ordinary differential 
equation is accompanied by auxiliary conditions. These conditions are used to evaluate the 
constants of integration that result during the solution of the equation. For an nth-order 
equation, n conditions are required. If all the conditions are specified at the same value of 
the independent variable, then we are dealing with an initial-value problem (Fig. 27.1a). 
To this point, the material in Part Seven has been devoted to this type of problem.

FIGURE 27.1
Initial-value versus boundary-
value problems. (a) An initial-
value problem where all the 
conditions are specified at the 
same value of the indepen-
dent variable. (b) A boundary-
value problem where the 
conditions are specified at dif-
ferent values of the indepen-
dent variable.

y

y1

y2

t
y2,0

y1,0

(a)
0

Initial conditions

Boundary
condition

Boundary
conditiony

yL

x

y0

(b)
0 L

= f1(t, y1, y2)
dy1
dt

= f2(t, y1, y2)
dy2
dt

where at t = 0, y1 = y1,0 and y2 = y2,0

= f (x, y)d2y

dx2

where at x = 0, y = y0
x = L, y = yL
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794 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

 In contrast, there is another application for which the conditions are not known at a 
single point, but rather, are known at different values of the independent variable. Be-
cause these values are often specified at the extreme points or boundaries of a system, 
these applications are customarily referred to as boundary-value problems (Fig. 27.1b). 
A variety of significant engineering applications fall within this class. In this chapter, 
we discuss two general approaches for obtaining their solution: the shooting method and 
the finite- difference approach. Additionally, we present techniques to approach a special 
type of boundary-value problem: the determination of eigenvalues. Of course, eigenval-
ues also have many applications beyond those involving boundary-value problems.

 27.1 GENERAL METHODS FOR BOUNDARY-VALUE PROBLEMS
The conservation of heat can be used to develop a heat balance for a long, thin rod 
(Fig. 27.2). If the rod is not insulated along its length and the system is at a steady 
state, the equation that results is

d 
2T

dx2 + h′(Ta − T ) = 0 (27.1)

where h′ is a heat transfer coefficient (m−2) that parameterizes the rate of heat dissipation 
to the surrounding air and Ta is the temperature of the surrounding air (°C).
 To obtain a solution for Eq. (27.1), there must be appropriate boundary conditions. 
A simple case is where the temperatures at the ends of the rod are held at fixed values. 
These can be expressed mathematically as

T(0) = T1

T(L) = T2

With these conditions, Eq. (27.1) can be solved analytically using calculus. For a 10-m 
rod with Ta = 20, T1 = 40, T2 = 200, and h′ = 0.01, the solution is

T = 73.4523e0.1x − 53.4523e−0.1x + 20 (27.2)

In the following sections, the same problem will be solved using numerical approaches.

FIGURE 27.2
A noninsulated uniform rod positioned between two bodies of constant but different temper-
ature. For this case T1 > T2 and T2 > Ta.

x = Lx = 0

T1 T2

Ta

Ta
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 27.1 GENERAL METHODS FOR BOUNDARY-VALUE PROBLEMS 795

27.1.1 The Shooting Method
The shooting method is based on converting the boundary-value problem into an equiv-
alent initial-value problem. A trial-and-error approach is then implemented to solve the 
initial-value version. The approach can be illustrated by an example.

 EXAMPLE 27.1 The Shooting Method
Problem Statement. Use the shooting method to solve Eq. (27.1) for a 10-m rod with 
h′ = 0.01 m−2, Ta = 20, and the boundary conditions

T(0) = 40  T(10) = 200

Solution. Using the same approach as was employed to transform Eq. (PT7.2) into 
Eqs. (PT7.3) through (PT7.6), the second-order equation can be expressed as two first-
order ODEs:

dT

dx
= z (E27.1.1)

dz

dx
= h′(T − Ta) (E27.1.2)

 To solve these equations, we require an initial value for z. For the shooting method, we 
guess a value—say, z(0) = 10. The solution is then obtained by integrating Eq. (E27.1.1) 
and (E27.1.2) simultaneously. For example, using a fourth-order RK method with a step 
size of 2, we obtain a value at the end of the interval of T(10) = 168.3797 (Fig. 27.3a), 
which differs from the boundary condition of T(10) = 200. Therefore, we make another guess, 
z(0) = 20, and perform the computation again. This time, the result of T(10) = 285.8980 is 
obtained (Fig. 27.3b).
 Now, because the original ODE is linear, the values

z(0) = 10  T(10) = 168.3797

and

z(0) = 20  T(10) = 285.8980

are linearly related. As such, they can be used to compute the value of z(0) that yields 
T(10) = 200. A linear interpolation formula [recall Eq. (18.2)] can be employed for this 
purpose:

z(0) = 10 +
20 − 10

285.8980 − 168.3797
 (200 − 168.3797) = 12.6907

This value can then be used to determine the correct solution, as depicted in Fig. 27.3c.
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796 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

Nonlinear Two-Point Problems. For nonlinear boundary-value problems, linear inter-
polation or extrapolation through two solution points will not necessarily result in an 
accurate estimate of the required boundary condition to attain an exact solution. An al-
ternative is to perform three applications of the shooting method and use a quadratic 
interpolating polynomial to estimate the proper boundary condition. However, it is un-
likely that such an approach would yield the exact answer, and additional iterations would 
be necessary to obtain the solution.
 Another approach for a nonlinear problem involves recasting it as a roots problem. 
Recall that the general form of a roots problem is to find the value of x that makes the 

FIGURE 27.3
The shooting method: (a) the first “shot,” (b) the second “shot,” and (c) the final exact “hit.”
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 27.1 GENERAL METHODS FOR BOUNDARY-VALUE PROBLEMS 797

function f(x) = 0. Now, let us use Example 27.1 to understand how the shooting method 
can be recast in this form.
 First, recognize that the solution of the pair of differential equations is also a “func-
tion” in the sense that we guess a condition at the left-hand end of the rod, z0, and the 
integration yields a prediction of the temperature at the right-hand end, T10. Thus, we 
can think of the integration as

T10 = f(z0)

That is, it represents a process whereby a guess of z0 yields a prediction of T10. Viewed 
in this way, we can see that what we desire is the value of z0 that yields a specific value 
of T10. If, as in the example, we desire T10 = 200, the problem can be posed as

200 = f(z0)

By bringing the goal of 200 over to the right-hand side of the equation, we generate a 
new function, g(z0), that represents the difference between what we have, f(z0), and what 
we want, 200.

g(z0) = f(z0) − 200

If we drive this new function to zero, we will obtain the solution. The next example 
illustrates the approach.

 EXAMPLE 27.2 The Shooting Method for Nonlinear Problems
Problem Statement. Although it served our purposes for proving a simple boundary-
value problem, our model for the rod in Eq. (27.1) was not very realistic. For one thing, 
such a rod would lose heat by mechanisms such as radiation that are nonlinear.
 Suppose that the following nonlinear ODE is used to simulate the temperature of 
the heated rod:

d 
2T

dx2 + h″(Ta − T)4 = 0

where h″ = 5 × 10−8. Now, although it is still not a very good representation of heat 
transfer, this equation is straightforward enough to allow us to illustrate how the shooting 
method can be used to solve a two-point nonlinear boundary-value problem. The remain-
ing problem conditions are as specified in Example 27.1.

Solution. The second-order equation can be expressed as two first-order ODEs:

dT

dx
= z

dz

dx
= h″(T − Ta)4

Now, these equations can be integrated using any of the methods described in Chaps. 25 
and 26. We used the constant step-size version of the fourth-order RK approach described 
in Chap. 25. We implemented this approach as an Excel macro function written in Visual 
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798 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

BASIC. The function integrated the equations based on an initial guess for z(0) and re-
turned the temperature at x = 10. The difference between this value and the goal of 200 
was then placed in a spreadsheet cell. The Excel Solver was then invoked to adjust the 
value of z(0) until the difference was driven to zero.
 The result is shown in Fig. 27.4 along with the original linear case. As might be 
expected, the nonlinear case is curved more than the linear model. This is due to the 
quartic term in the heat transfer relationship.

200

T, °C

100

0
z10

Nonlinear

Linear

50

FIGURE 27.4
The result of using the shooting method to solve a nonlinear problem.

 The shooting method can become arduous for higher-order equations, where the 
necessity to assume two or more conditions makes the approach somewhat more difficult. 
For these reasons, alternative methods are available, as described next.

27.1.2 Finite-Difference Methods
The most common alternatives to the shooting method are finite-difference approaches. 
In these techniques, finite divided differences are substituted for the derivatives in the 
original equation. Thus, a linear differential equation is transformed into a set of simul-
taneous algebraic equations that can be solved using the methods from Part Three.
 For the case of Fig. 27.2, the finite-divided-difference approximation for the second 
derivative is (recall Fig. 23.3)

d 
2T

dx2 =
Ti+1 − 2Ti + Ti−1

Δx2

This approximation can be substituted into Eq. (27.1) to give

Ti+1 − 2Ti + Ti−1

Δx2 − h′ (Ti − Ta) = 0
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Collecting terms gives

−Ti−1 + (2 + h′ Δx2)Ti − Ti+1 = h′Δx2Ta (27.3)

This equation applies for each of the interior nodes of the rod. The first and last interior 
nodes, Ti−1 and Ti+1, respectively, are specified by the boundary conditions. Therefore, 
the resulting set of linear algebraic equations will be tridiagonal. As such, it can be solved 
with the efficient algorithms that are available for such systems (Sec. 11.1).

 EXAMPLE 27.3 Finite-Difference Approximation of Boundary-Value Problems
Problem Statement. Use the finite-difference approach to solve the same problem as 
in Example 27.1.

Solution. Employing the parameters in Example 27.1, we can write Eq. (27.3) for the 
rod from Fig. 27.2. Using four interior nodes with a segment length of Δx = 2 m results 
in the following equations:

[

2.04 −1 0 0
−1 2.04 −1 0
0 −1 2.04 −1
0 0 −1 2.04

]{

T1

T2

T3

T4
}

=
{

40.8
0.8
0.8

200.8
}

which can be solved for

{T}T = ⌊65.9698 93.7785 124.5382 159.4795⌋

 Table 27.1 provides a comparison between the analytical solution [Eq. (27.2)] and 
the numerical solutions obtained in Examples 27.1 and 27.3. Note that there are some 
discrepancies among the approaches. For both numerical methods, these errors can be 
mitigated by decreasing their respective step sizes. Although both techniques perform 
well for the present case, the finite-difference approach is preferred because of the ease 
with which it can be extended to more complex cases.
 The fixed (or Dirichlet) boundary condition used in the previous example is but one of 
several types that are commonly employed in engineering and science. A common alterna-
tive, called the Neumann boundary condition, is the case where the derivative is given.

TABLE 27.1  Comparison of the exact analytical solution with the shooting and finite- 
difference methods.

 x True Shooting Method Finite-Difference Method

 0 40 40 40
 2 65.9518 65.9520 65.9698
 4 93.7478 93.7481 93.7785
 6 124.5036 124.5039 124.5382
 8 159.4534 159.4538 159.4795
 10 200 200 200

cha32077_ch27_793-822.indd   799 10/10/19   12:14 PM



800 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

 We can use the heated rod model to demonstrate how a derivative boundary condi-
tion can be incorporated into the finite-difference approach,

0 =
d 

2T

dx2 + h′ (T∞ − T)

However, in contrast to our previous discussions, we will prescribe a derivative boundary 
condition at one end of the rod,

dT

dx
(0) = T ′a

T(L) = Tb

Thus, we have a derivative boundary condition at one end of the solution domain and a 
fixed boundary condition at the other.
 As was done in Example 27.3, the rod is divided into a series of nodes and a finite-
difference version of the differential equation (Eq. 27.3) is applied to each interior node. 
However, because its temperature is not specified, the node at the left end must also be 
included. Writing Eq. (27.3) for this node gives

−T−1 + (2 + h′Δx2)T0 − T1 = h′Δx2T∞ (27.3a)

 Notice that an imaginary node (−1) lying to the left of the rod’s end is required for 
this equation. Although this exterior point might seem to represent a difficulty, it actually 
serves as the vehicle for incorporating the derivative boundary condition into the prob-
lem. This is done by representing the first derivative in the x dimension at the zero end 
of the rod by the centered difference

dT

dx
=

T1 − T−1

2Δx

which can be solved for

T−1 = T1 − 2Δx 
dT

dx

Now we have a formula for T−1 that actually reflects the impact of the derivative. It can 
be substituted into Eq. (27.3a) to give

(2 + h′Δx2)T0 − 2T1 = h′Δx2T∞ − 2Δx 
dT

dx
 (27.3b)

Consequently, we have incorporated the derivative into the heat balance.
 A common example of a derivative boundary condition is the situation where the 
end of the rod is insulated. In this case, the derivative is set to zero. This conclusion 
follows directly from Fourier’s law, which states that the heat flux is directly proportional 
to the temperature gradient. Thus, insulating a boundary means that the heat flux (and 
consequently the gradient) must be zero.
 Aside from the shooting and finite-difference methods, there are other techniques avail-
able for solving boundary-value problems. Some of these will be described in Part Eight. 
These include steady-state (Chap. 29) and transient (Chap. 30) solution of two-dimensional 
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boundary-value problems using finite differences and steady-state solutions of the one-
dimensional problem with the finite-element approach (Chap. 31).

 27.2 EIGENVALUE PROBLEMS
Eigenvalue, or characteristic-value, problems are a special class of boundary-value prob-
lems that are common in engineering problem contexts involving vibrations, elasticity, 
and other oscillating systems. In addition, they are used in a wide variety of engineering 
contexts beyond boundary-value problems. Before describing numerical methods for solv-
ing these problems, we will present some general background information. This includes 
discussion of both the mathematics and the engineering significance of eigenvalues.

27.2.1 Mathematical Background
Part Three dealt with methods for solving sets of linear algebraic equations of the general 
form

[A]{X} = {B}

Such systems are called nonhomogeneous because of the presence of the vector {B} on 
the right-hand side of the equality. If the equations comprising such a system are linearly 
independent (that is, have a nonzero determinant), they will have a unique solution. In 
other words, there is one set of x values that will make the equations balance.
 In contrast, a homogeneous linear algebraic system has the general form

[A]{X} = 0

Although nontrivial solutions (that is, solutions other than all x’s = 0) of such systems 
are possible, they are generally not unique. Rather, the simultaneous equations establish 
relationships among the x’s that can be satisfied by various combinations of values.
 Eigenvalue problems associated with engineering are typically of the general form

 (a11 − λ)x1 +   a12x2 + … +   a1n 
xn = 0

 a21x1 + (a22 − λ)x2 + … +   a2n 
xn = 0

 . . . .
 . . . .
 . . . .

 an1x1 +   an2x2 + … +  (ann − λ)xn = 0

where λ is an unknown parameter called the eigenvalue, or characteristic value. A solution 
{X} for such a system is referred to as an eigenvector. The above set of equations may 
also be expressed concisely as

[[A] − λ[I]]{X} = 0 (27.4)

 The solution of Eq. (27.4) hinges on determining λ. One way to accomplish this is 
based on the fact that the determinant of the matrix [[A] − λ[I]] must equal zero for 
nontrivial solutions to be possible. Expanding the determinant yields a polynomial in λ. 
The roots of this polynomial are the solutions for the eigenvalues. An example of this 
approach will be provided in the next section.
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802 BOUNDARY-VALUE AND EIGENVALUE PROBLEMS

27.2.2 Physical Background
The mass-spring system in Fig. 27.5a is a simple context to illustrate how eigenvalues 
occur in physical problem settings. It also will help to illustrate some of the mathemat-
ical concepts introduced in the previous section.
 To simplify the analysis, assume that each mass has no external or damping forces 
acting on it. In addition, assume that each spring has the same natural length l and the 
same spring constant k. Finally, assume that the displacement of each spring is measured 
relative to its own local coordinate system with an origin at the spring’s equilibrium 
position (Fig. 27.5a). Under these assumptions, Newton’s second law can be employed 
to develop a force balance for each mass (recall Sec. 12.4),

m1
d 

2x1

dt2 = −kx1 + k(x2 − x1)

and

m2 

d 
2x2

dt2 = −k(x2 − x1) − kx2

where xi is the displacement of mass i away from its equilibrium position (Fig. 27.5b). 
These equations can be expressed as

m1
d 

2x1

dt2 − k(−2x1 + x2) = 0 (27.5a)

m2 

d 
2x2

dt2 − k(x1 − 2x2) = 0 (27.5b)

 From vibration theory, it is known that solutions to Eq. (27.5) can take the form

xi = Ai sin (ωt) (27.6)

x
(a)

0

0

0 x1 0 x2

x
(b)

m1 m2

m1 m2

FIGURE 27.5
Positioning the masses away from equilibrium creates forces in the springs that upon release 
lead to oscillations of the masses. The positions of the masses can be referenced to local 
coordinates with origins at their respective equilibrium positions.
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where Ai = the amplitude of the vibration of mass i and ω = the frequency of the vibra-
tion, which is equal to

ω =
2π

TP

 (27.7)

where Tp is the period. From Eq. (27.6) it follows that

x″i = −Ai ω
2 sin (ωt) (27.8)

Equations (27.6) and (27.8) can be substituted into Eq. (27.5), which, after collection of 
terms, can be expressed as

(
2k

m1
− ω 

2
)A1 −

k

m1
 A2 = 0 (27.9a)

−
k

m2
 A1 + (

2k

m2
− ω2

)A2 = 0 (27.9b)

Comparison of Eq. (27.9) with Eq. (27.4) indicates that at this point, the solution has 
been reduced to an eigenvalue problem.

 EXAMPLE 27.4 Eigenvalues and Eigenvectors for a Mass-Spring System
Problem Statement. Evaluate the eigenvalues and the eigenvectors of Eq. (27.9) for 
the case where ml = m2 = 40 kg and k = 200 N/m.

Solution. Substituting the parameter values into Eq. (27.9) yields

(10 − ω2) A1 − 5A2 = 0
−5A1 + (10 − ω2) A2 = 0

The determinant of this system is [recall Eq. (9.3)]

(ω2)2 − 20ω2 + 75 = 0

which can be solved by the quadratic formula for ω2 = 15 and 5 s−2. Therefore, the fre-
quencies for the vibrations of the masses are ω = 3.873 s−1 and 2.236 s−1, respectively. 
These values can be used to determine the periods for the vibrations with Eq. (27.7). For 
the first mode, Tp = 1.62 s, and for the second, Tp = 2.81 s.
 As stated in Sec. 27.2.1, a unique set of values cannot be obtained for the unknowns. 
However, their ratios can be specified by substituting the eigenvalues back into the equa-
tions. For example, for the first mode (ω2 = 15 s−2), Al = −A2. For the second mode 
(ω2 = 5 s−2), A1 = A2.
 This example provides valuable information regarding the behavior of the system in 
Fig. 27.5. Aside from its period, we know that if the system is vibrating in the first mode, 
the amplitude of the second mass will be equal but of opposite sign to the amplitude of the 
first. As in Fig. 27.6a, this vibration moves the masses apart and then together indefinitely.
 In the second mode, the two masses have equal amplitudes at all times. Thus, as in 
Fig. 27.6b, they vibrate back and forth in unison. It should be noted that the configura-
tion of the amplitudes provides guidance on how to set their initial values to attain pure 
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motion in either of the two modes. Any other configuration will lead to superposition of 
the modes (recall Chap. 19).

27.2.3 A Boundary-Value Problem
Now that you have been introduced to eigenvalues, we turn to the type of problem that 
is the subject of the present chapter: boundary-value problems for ordinary differential 
equations. Figure 27.7 shows a physical system that can serve as a context for examining 
this type of problem.
 The curvature of a slender column subject to an axial load P can be modeled by

d 
2y

dx 

2 =
M

EI
 (27.10)

where d2y∕dx2 specifies the curvature, M = the bending moment, E = the modulus of 
elasticity, and I = the moment of inertia of the cross section about its neutral axis. Con-
sidering the free body in Fig. 27.7b, it is clear that the bending moment at x is M = −Py. 
Substituting this value into Eq. (27.10) gives

d 
2y

dx2 + p2y = 0 (27.11)

TF =
1.625

t

TF =
2.815

(a) First mode (b) Second mode

FIGURE 27.6
The principal modes of vibration of two equal masses connected by three identical springs 
between fixed walls.
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where

p2 =
P

EI
 (27.12)

For the system in Fig. 27.7, subject to the boundary conditions

y(0) = 0 (27.13a)

y(L) = 0 (27.13b)

the general solution for Eq. (27.11) is

y = A sin(px) + B cos(px) (27.14)

where A and B are arbitrary constants that are to be evaluated via the boundary condi-
tions. According to the first condition [Eq. (27.13a)],

0 = A sin(0) + B cos(0)

Therefore, we conclude that B = 0.
 According to the second condition [Eq. (27.13b)],

0 = A sin (pL) + B cos (pL)

But, since B = 0, A sin (pL) = 0. Because A = 0 represents a trivial solution, we conclude 
that sin (pL) = 0. For this equality to hold,

pL = nπ  for n = 1, 2, 3, …  (27.15)

Thus, there are an infinite number of values that meet the boundary condition. Equation 
(27.15) can be solved for

p =
nπ

L
  for n = 1, 2, 3, …  (27.16)

which are the eigenvalues for the column.

FIGURE 27.7
(a) A slender rod. (b) A free- 
body diagram of a rod.

(a)

(0, 0)

P

P′

(L, 0)

x

x

y

y

P′

M

(b)

P
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 Figure 27.8, which shows the solutions for the first four eigenvalues, can provide 
insight into the physical significance of the results. Each eigenvalue corresponds to a 
way in which the column buckles. Combining Eqs. (27.12) and (27.16) gives

P =
n2π2EI

L2   for n = 1, 2, 3, …  (27.17)

These can be thought of as buckling loads because they represent the levels at which the 
column moves into each succeeding buckling configuration. In a practical sense, it is 
usually the first value that is of interest because failure will usually occur when the 
column first buckles. Thus, a critical load can be defined as

P =
π2EI

L2

which is formally known as Euler’s formula.

 EXAMPLE 27.5 Eigenvalue Analysis of an Axially Loaded Column
Problem Statement. An axially loaded wooden column has the following characteris-
tics: E = 10 × 109 Pa, I = 1.25 × 10−5 m4, and L = 3 m. Determine the first eight ei-
genvalues and the corresponding buckling loads.

FIGURE 27.8
The first four eigenvalues for the slender rod from Fig. 27.7.

(a) n = 1

P = π2EI
L2

(b) n = 2

P = 4π2EI
L2 P = 9π2EI

L2 P = 16π2EI
L2

(c) n = 3 (d) n = 4
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Solution. Equations (27.16) and (27.17) can be used to compute

n p, m−2 P, kN

1 1.0472 137.078
2 2.0944 548.311
3 3.1416 1233.701
4 4.1888 2193.245
5 5.2360 3426.946
6 6.2832 4934.802
7 7.3304 6716.814
8 8.3776 8772.982

 The critical buckling load is, therefore, 137.078 kN.

 Although analytical solutions of the sort obtained above are useful, they are often 
difficult or impossible to obtain. This is usually true when dealing with complicated 
systems or those with heterogeneous properties. In such cases, numerical methods of the 
sort described next are the only practical alternative.

27.2.4 The Polynomial Method
Equation (27.11) can be solved numerically by substituting a centered finite-divided-difference 
approximation (Fig. 23.3) for the second derivative to give

yi+1 − 2yi + yi−1

h2 + p2yi = 0

which can be expressed as

yi−1 − (2 − h2 p2)yi + yi+1 = 0 (27.18)

Writing this equation for a series of nodes along the axis of the column yields a homo-
geneous system of equations. For example, if the column is divided into five segments 
(that is, four interior nodes), the result is

[

(2 − h2p2) −1 0 0
−1 (2 − h2p2) −1 0
0 −1 (2 − h2p2) −1
0 0 −1 (2 − h2p2)]{

y1

y2

y3

y4
}

= 0 (27.19)

Expansion of the determinant of the system yields a polynomial, the roots of which are 
the eigenvalues. This approach, called the polynomial method, is performed in the fol-
lowing example.

 EXAMPLE 27.6 The Polynomial Method
Problem Statement. Employ the polynomial method to determine the eigenvalues for 
the axially loaded column from Example 27.5 using (a) one, (b) two, (c) three, and (d) 
four interior nodes.
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Solution.

(a) Writing Eq. (27.18) for one interior node yields (h = 3∕2)

−(2 − 2.25p2)y1 = 0

  Thus, for this simple case, the eigenvalue is analyzed by setting the determinant 
equal to zero

2 − 2.25p2 = 0

  and solving for p = ±0.9428, which is about 10% less than the exact value of 1.0472 
obtained in Example 27.5.

(b) For two interior nodes (h = 3∕3), Eq. (27.18) is written as

[
(2 − p2) −1

−1 (2 − p2)]{
y1

y2}
= 0

 Expansion of the determinant gives

(2 − p2)2 − 1 = 0

  which can be solved for p = ±1 and ±1.73205. Thus, the first eigenvalue is now about 
4.5% low, and a second eigenvalue is obtained that is about 17% low.

(c) For three interior points (h = 3∕4), Eq. (27.18) yields

[
2 − 0.5625p2 −1 0

−1 2 − 0.5625p2 −1
0 −1 2 − 0.5625p2]{

y1

y2

y3
} = 0 (E27.6.1)

 The determinant can be set equal to zero and expanded to give

(2 − 0.5625p2)3 − 2(2 − 0.5625p2) = 0

  For this equation to hold, 2 − 0.5625p2 = 0 and 2 − 0.5625p2 = √2. Therefore, the 
first three eigenvalues can be determined as

p = ±1.0205  ∣εt∣ = 2.5%
p = ±1.8856  ∣εt∣ = 10%
p = ±2.4637  ∣εt∣ = 22%

(d) For four interior points (h = 3∕5), the result is Eq. (27.19) with 2 − 0.36p2 on the 
diagonal. Setting the determinant equal to zero and expanding it gives

(2 − 0.36p2)4 − 3(2 − 0.36p2)2 + 1 = 0

 which can be solved for the first four eigenvalues

p = ±1.0301  ∣εt∣ = 1.6%
p = ±1.9593  ∣εt∣ = 6.5%
p = ±2.6967  ∣εt∣ = 14%
p = ±3.1702  ∣εt∣ = 24%
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 Table 27.2, which summarizes the results of this example, illustrates some funda-
mental aspects of the polynomial method. As the segmentation is made more refined, 
additional eigenvalues are determined and the previously determined values become pro-
gressively more accurate. Thus, the approach is best suited for cases where the lower 
eigenvalues are required.

TABLE 27.2  The results of applying the polynomial method to an axially loaded column. 
The numbers in parentheses represent the absolute value of the true 
percent relative error.

 Polynomial Method

 Eigenvalue True h = 3/2 h = 3/3 h = 3/4 h = 3/5

 1 1.0472 0.9428 1.0000 1.0205 1.0301
   (10%) (4.5%) (2.5%) (1.6%)
 2 2.0944   1.7321 1.8856 1.9593
    (21%) (10%) (65%)
 3 3.1416   2.4637 2.6967
     (22%) (14%)
 4 4.1888    3.1702
      (24%)

27.2.5 The Power Method
The power method is an iterative approach that can be employed to determine the largest 
eigenvalue. With slight modification, it can also be employed to determine the smallest 
and the intermediate values. It has the additional benefit that the corresponding eigenvec-
tor is obtained as a by-product of the method.

Determination of the Largest Eigenvalue. To implement the power method, the 
 system being analyzed must be expressed in the form

[A]{X} = λ{X} (27.20)

As illustrated by the following example, Eq. (27.20) forms the basis for an iterative solu-
tion technique that eventually yields the highest eigenvalue and its associated eigenvector.

 EXAMPLE 27.7 Power Method for Highest Eigenvalue
Problem Statement. Employ the power method to determine the highest eigenvalue 
for part (c) of Example 27.6.

Solution. The system is first written in the form of Eq. (27.20),

 3.556x1 − 1.778x2  = λx1

 −1.778x1 + 3.556x2 − 1.778x3 = λx2

 −1.778x2 + 3.556x3  = λx3
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Then, assuming the x’s on the left-hand side of the equation are equal to 1,

 3.556(1) − 1.778(1)  = 1.778
 −1.778(1) + 3.556(1) − 1.778(1) = 0

 −1.778(1) + 3.556(1)  = 1.778

Next, the right-hand side is normalized by 1.778 to make the largest element equal to

{
1.778

0
1.778} = 1.778 {

1
0
1}

Thus, the first estimate of the eigenvalue is 1.778. This iteration can be expressed con-
cisely in matrix form as

[
3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556 ]{

1
1
1} = {

1.778
0

1.778} = 1.778{
1
0
1}

The next iteration consists of multiplying [A] by ⌊1 0 1⌋T to give

[
3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556 ]{

1
0
1} = {

3.556
−3.556
3.556 } = 3.556{

1
−1
1 }

Therefore, the eigenvalue estimate for the second iteration is 3.556, which can be em-
ployed to determine the error estimate

∣εa∣ = ∣ 3.556 − 1.778
3.556 ∣ 100% = 50%

The process can then be repeated.
 Third iteration:

[
3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556 ]{

1
−1
1 } = {

5.334
−7.112
5.334 } = −7.112{

−0.75
1

−0.75}
where ∣εa ∣ = 150% (which is high because of the sign change).
 Fourth iteration:

[
3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556 ]{

−0.75
1

−0.75} = {
−4.445
6.223

−4.445} = 6.223{
−0.714

1
−0.714}

where ∣εa ∣ = 214% (again inflated because of sign change).
 Fifth iteration:

[
3.556 −1.778 0

−1.778 3.556 −1.778
0 −1.778 3.556 ]{

−0.714
1

−0.714} = {
−4.317
6.095

−4.317} = 6.095{
−0.708

1
−0.708}
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 Thus, the normalizing factor is converging on the value of 6.070 (= 2.46372)  obtained 
in part (c) of Example 27.6.

 Note that there are some instances where the power method will converge to the second-
largest eigenvalue instead of to the largest. James, Smith, and Wolford (1985) provide an 
illustration of such a case. Other special cases are discussed in Fadeev and Fadeeva (1963).

Determination of the Smallest Eigenvalue. There are often cases in engineering 
where we are interested in determining the smallest eigenvalue. Such was the case for 
the rod in Fig. 27.7, where the smallest eigenvalue could be used to identify a critical 
buckling load. This can be done by applying the power method to the matrix inverse of 
[A]. For this case, the power method will converge on the largest value of 1∕λ—in other 
words, the smallest value of λ.

 EXAMPLE 27.8 Power Method for Lowest Eigenvalue
Problem Statement. Employ the power method to determine the lowest eigenvalue for 
part (c) of Example 27.6.

Solution. After dividing Eq. E27.6.1 by h2 (= 0.5625), its matrix inverse can be evaluated as

[A]−1 = [
0.422 0.281 0.141
0.281 0.562 0.281
0.141 0.281 0.422]

Using the same format as in Example 27.7, the power method can be applied to this matrix.
 First iteration:

[
0.422 0.281 0.141
0.281 0.562 0.281
0.141 0.281 0.422]{

1
1
1} = {

0.884
1.124
0.884} = 1.124 {

0.751
1

0.751}
 Second iteration:

[
0.422 0.281 0.141
0.281 0.562 0.281
0.141 0.281 0.422]{

0.751
1

0.751} = {
0.704
0.984
0.704} = 0.984 {

0.715
1

0.715}
where ∣εa ∣ = 14.6%.
 Third iteration:

[
0.422 0.281 0.141
0.281 0.562 0.281
0.141 0.281 0.422]{

0.715
1

0.715} = {
0.684
0.964
0.684} = 0.964 {

0.709
1

0.709}
where ∣εa ∣ = 4%.
 Thus, after only three iterations, the result is converging on the value of 0.9602, which is 
the reciprocal of the smallest eigenvalue, 1.0205 (=√1∕0.9602), obtained in Example 27.6c.
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Determination of Intermediate Eigenvalues. After finding the largest eigenvalue, it 
is possible to determine the next highest by replacing the original matrix by one that 
includes only the remaining eigenvalues. The process of removing the largest known 
eigenvalue is called deflation. The technique outlined here, Hotelling’s method, is de-
signed for symmetric matrices. This is because it exploits the orthogonality of the eigen-
vectors of such matrices, which can be expressed as

{X}T
i {X}j = {

0 for i ≠ j

1 for i = j
 (27.21)

where the components of the eigenvector {X} have been normalized so that {X}T{X} = 1, 
that is, so that the sum of the squares of the components equals 1. This can be accom-
plished by dividing each of the elements by the normalizing factor

√∑
n

k=1
x2

k

Now, a new matrix [A]2 can be computed as

[A]2 = [A]1 − λ1{X}1{X}T
1 (27.22)

where [A]1 = the original matrix and λ1 = the largest eigenvalue. If the power method 
is applied to this matrix, the iteration process will converge to the second largest eigen-
value, λ2. To show this, first postmultiply Eq. (27.22) by {X}1,

[A]2{X}1 = [A]1{X}1 − λ1{X}1{X}T
1{X}1

Invoking the orthogonality principle converts this equation to

[A]2{X}1 = [A]1{X}1 − λ1{X}1

where the right-hand side is equal to zero according to Eq. (27.20). Thus, [A]2{X}1 = 0. 
Consequently, λ = 0 and {X} = {X}1 is a solution to [A]2{X} = λ{X}. In other words, 
matrix [A]2 has eigenvalues of 0, λ2, λ3, . . . , λn. The largest eigenvalue, λ1, has been 
 replaced by a 0 and, therefore, the power method will converge on the next biggest, λ2.
 The above process can be repeated by generating a new matrix [A]3, etc. Although 
in theory this process could be continued to determine the remaining eigenvalues, it is 
limited by the fact that errors in the eigenvectors are passed along at each step. Thus, it 
is only of value in determining several of the highest eigenvalues. Although this is some-
what of a shortcoming, such information is precisely what is required in many engineer-
ing problems.

27.2.6 Other Methods
A wide variety of additional methods are available for solving eigenvalue problems. Most 
are based on a two-step process. The first step involves transforming the original matrix 
to a simpler form (for example, tridiagonal) that retains all the original eigenvalues. Then, 
iterative methods are used to determine these eigenvalues.
 Many of these approaches are designed for special types of matrices. In particular, 
a variety of techniques are devoted to symmetric systems. For example, Jacobi’s 
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method transforms a symmetric matrix to a diagonal matrix by eliminating off-diagonal 
terms in a systematic fashion. Unfortunately, the method requires an infinite number 
of operations because the removal of each nonzero element often creates a new nonzero 
value at a previous zero element. Although an infinite time is required to create all 
nonzero off-diagonal elements, the matrix will eventually tend toward a diagonal form. 
Thus, the approach is iterative in that it is repeated until the off-diagonal terms are 
“sufficiently” small.
 Given’s method also involves transforming a symmetric matrix into a simpler form. 
However, in contrast to the Jacobi method, the simpler form is tridiagonal. In addition, 
it differs in that the zeros that are created in off-diagonal positions are retained. Conse-
quently, it is finite and, thus, more efficient than Jacobi’s method.
 Householder’s method also transforms a symmetric matrix into a tridiagonal form. 
It is a finite method and is more efficient than Given’s approach in that it reduces whole 
rows and columns of off-diagonal elements to zero.
 Once a tridiagonal system is obtained from Given’s or Householder’s method, the 
remaining step involves finding the eigenvalues. A direct way to do this is to expand the 
determinant. The result is a sequence of polynomials that can be evaluated iteratively for 
the eigenvalues.
 Aside from symmetric matrices, there are also techniques that are available when all 
eigenvalues of a general matrix are required. These include the LR method of Rutishauser 
and the QR method of Francis. Although the QR method is less efficient, it is usually the 
preferred approach because it is more stable. As such, it is considered to be the best 
general-purpose solution method.
 Finally, it should be mentioned that the aforementioned techniques are often used in 
tandem to capitalize on their respective strengths. For example, Given’s and Householder’s 
methods can also be applied to nonsymmetric systems. The result will not be tridiagonal 
but rather a special type of matrix called the Hessenberg form. One approach is to exploit 
the speed of Householder’s approach by employing it to transform the matrix to this form 
and then use the stable QR algorithm to find the eigenvalues. Additional information on 
these and other issues related to eigenvalues can be found in Ralston and Rabinowitz 
(1978), Wilkinson (1965), Fadeev and Fadeeva (1963), and Householder (1953, 1964). 
Computer codes can be found in a number of sources including Press et al. (2007). Rice 
(1983) discusses available software packages.

 27.3 ODES AND EIGENVALUES WITH SOFTWARE PACKAGES
Software packages have great capabilities for solving ODEs and determining eigenvalues. 
This section outlines some of the ways in which they can be applied for this purpose.

27.3.1 Excel
Excel’s direct capabilities for solving eigenvalue problems and ODEs are limited. How-
ever, if some programming is done (for example, macros), they can be combined with 
Excel’s visualization and optimization tools to implement some interesting applications. 
Section 28.1 provides an example of how the Excel Solver can be used for parameter 
estimation of an ODE.

 27.3 ODES AND EIGENVALUES WITH SOFTWARE PACKAGES 813
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27.3.2 MATLAB
As might be expected, the standard MATLAB software package has excellent capa-
bilities for determining eigenvalues and eigenvectors. However, it also has built-in 
functions for solving ODEs. The standard ODE solvers include two functions to im-
plement the adaptive step-size Runge-Kutta Fehlberg method (recall Sec. 25.5.2). 
These are ode23, which uses second- and third-order formulas to attain medium 
accuracy, and ode45, which uses fourth- and fifth-order formulas to attain higher 
accuracy. The following example illustrates how they can be used to solve a system 
of ODEs.

 EXAMPLE 27.9 Using MATLAB for Eigenvalues and ODEs
Problem Statement. Explore how MATLAB can be used to solve the following set 
of nonlinear ODEs from t = 0 to 20:

dx

dt
= 1.2x − 0.6x y  

dy

dt
= −0.8y + 0.3xy

where x = 2 and y = 1 at t = 0. As we will see in the next chapter (Sec. 28.2), such 
equations are referred to as predator-prey equations.

Solution. Before obtaining a solution with MATLAB, you must use a text processor 
to create an M-file containing the right-hand side of the ODEs. This M-file will then be 
accessed by the ODE solver [where x = y(1) and y = y(2)]:

function yp = predprey(t,y)
yp = [1.2*y(1) –0.6*y(1)*y(2); –0.8*y(2)+0.3*y(1)*y(2)];

We store this M-file under the name: predprey.m.
 Next, start up MATLAB, and enter the following commands to specify the integra-
tion range and the initial conditions:

>> tspan = [0,20];
>> y0 = [2,1];

The solver can then be invoked by

>> [t,y] =ode23('predprey',tspan,y0);

This command will then solve the differential equations in predprey.m over the range 
defined by tspan using the initial conditions found in y0. The results can be displayed 
by simply typing

>> plot(t,y)

which yields Fig. 27.9.
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 In addition, it is also instructive to generate a state-space plot, that is, a plot of the 
dependent variables versus each other, by typing

>> plot(y(:,1),y(:,2))

which yields Fig. 27.10.

FIGURE 27.9
Solution of predator-prey model with MATLAB.

FIGURE 27.10
State-space plot of predator-prey model with MATLAB.

 MATLAB also has a range of functions designed for stiff systems. These include 
ode15s and ode23s. As in the following example, they succeed where the standard 
functions fail.
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 EXAMPLE 27.10 MATLAB for Stiff ODEs
Problem Statement. Van der Pol’s equation can be written as

dy1

dt
= y2

dy2

dt
= μ(1 − y2

1)y2 − y1

 As the parameter μ gets large, the system becomes progressively stiffer. Given the 
initial conditions y1(0) = y2(0) = 1, use MATLAB to solve the following two cases:

(a) For μ = 1, use ode45 to solve from t = 0 to 20.
(b) For μ = 1000, use ode23s to solve from t = 0 to 3000.

Solution.

(a) An M-file can be created to hold the differential equations,
function yp = vanderpol(t,y)
yp= [y(2);1*(1–y(1)^2)*y(2)–y(1)];

Then, as in Example 27.9, ode45 can be invoked and the results plotted (Fig. 27.11),
>> tspan= [0,20];
>> y0= [1,1];
>> [t,y] =ode45('vanderpol',tspan,y0);
>> plot(t,y(:,1))

(b) If a standard solver like ode45 is used for the stiff case (μ = 1000), it will fail miser-
ably (try it, if you like). However, ode23s does an efficient job. After revising the M-file 
to reflect the new value of μ, the solution can be obtained and graphed (Fig. 27.12),
>> tspan= [0,3000];
>> y0= [1,1];

FIGURE 27.11
Nonstiff form of Van der Pol’s equation solved with MATLAB’s ode45 function.
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>> [t,y] =ode23S('vanderpol',tspan,y0);
>> plot(t,y(:,1))

  Notice how this solution has much sharper edges than for case (a). This is a visual 
manifestation of the “stiffness” of the solution.

FIGURE 27.12
Stiff form of Van der Pol’s equation solved with MATLAB’s ode23s function.

 For eigenvalues, the capabilities are also very easy to apply. Recall that, in our discus-
sion of stiff systems in Chap. 26, we presented the stiff system defined by Eq. (26.6). 
Such linear ODEs can be written as an eigenvalue problem of the form

[
5 − λ −3
−100 301 − λ]{

e1

e2}
= {0}

where λ and {e} = the eigenvalue and the eigenvector, respectively.
 MATLAB can then be employed to evaluate both the eigenvalues (d) and eigenvec-
tors (v) with the following simple commands:

>> a= [5 –3;–100 301];
>> [v,d] =eig(a)

v =
  –0.9477 0.0101
  –0.3191 –0.9999

d =
  3.9899 0
     0 302.0101

Thus, we see that the eigenvalues are of quite different magnitudes, which is typical of 
a stiff system.

 27.3 ODES AND EIGENVALUES WITH SOFTWARE PACKAGES 817
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 The eigenvalues can be interpreted by recognizing that the general solution for a 
system of ODEs can be represented as the sum of exponentials. For example, the solution 
for the present case would be of the form

y1 = c11e
−3.9899t + c12e

−302.0101t

y2 = c21e
−3.9899t + c22e

−302.0101t

where cij = the part of the initial condition for yi that is associated with the jth eigenvalue. 
It should be noted that the c’s can be evaluated from the initial conditions and the 
 eigenvectors. Any good book on differential equations, for example, Boyce and DiPrima 
(1992), will provide an explanation of how this can be done.
 Because, for the present case, all the eigenvalues are positive (and hence negative 
in the exponential function), the solution consists of a series of decaying exponentials. 
The one with the largest eigenvalue (in this case, 302.0101) would dictate the step size 
if an explicit solution technique were used.

27.3.3 Mathcad
Mathcad has a number of different functions that solve differential equations and deter-
mine eigenvalues and eigenvectors. The most basic technique employed by Mathcad to 
solve systems of first-order differential equations is a fixed step-size fourth-order Runge- 
Kutta algorithm. This is provided by the rkfixed function. Although this is a good all-
purpose integrator, it is not always efficient. Therefore, Mathcad supplies Rkadapt, 
which is a variable step-sized version of rkfixed. It is well suited for functions that 
change rapidly in some regions and slowly in others. Similarly, if you know your solution 
is a smooth function, then you may find that the Mathcad Bulstoer function works well. 
This function employs the Bulirsch-Stoer method and is often both efficient and highly 
accurate for smooth functions.
 Stiff differential equations are at the opposite end of the spectrum. Under these 
conditions the rkfixed function may be very inefficient or unstable. Therefore, Mathcad 
provides two special methods specifically designed to handle stiff systems. These func-
tions are called Stiffb and Stiffr and are based on a modified Bulirsch-Stoer method for 
stiff systems and the Rosenbrock method.
 As an example, let’s use Mathcad to solve the following nonlinear ODEs,

dy1

dt
= 1.2y1 − 0.6y1 y2

dy2

dt
= −0.8y2 + 0.3y1 y2

with the initial conditions, y1 = 2 and y2 = 1. This system, called Lotka-Volterra equa-
tions, is used by environmental engineers and ecologists to evaluate the interactions of 
predators (y2) and prey (y1).
 As in Fig. 27.13, the definition symbol is first used to define the vector D(u,y) 
holding the right-hand sides of the ODEs for input to rkfixed. Note that y1 and y2 in 
the ODEs are changed to y0 and y1 to comply with Mathcad requirements. In addition, 
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we define the initial conditions (y0), the integration limit (tf), and the number of values 
we want to generate (npts). The solutions for rkfixed with 200 steps between t = 0 
and tf are stored in the ysol matrix. The solution is displayed graphically in the plot 
in Fig. 27.13.
 Next, we can illustrate how Mathcad evaluates eigenvalues and eigenvectors. The 
function eigenvals(M) returns the eigenvalues of the square matrix M. The function 
eigenvecs(M) returns a matrix containing normalized eigenvectors corresponding to the 
eigenvectors of M whereas eigenvec(M,e) returns the eigenvector corresponding to the 
eigenvalue e. We can illustrate these functions for the system given by [recall Eq. (26.6)]

dy1

dt
= −5y1 + 3y2

dy2

dt
= 100y1 − 301y2

 The results are shown in Fig. 27.14. Because the eigenvalues (aa) are of different 
magnitudes, the system is stiff. Note that bb holds the specific eigenvector associated 
with the smaller eigenvalue. The result cc is a matrix containing both eigenvectors as its 
columns.

FIGURE 27.13
Mathcad screen to solve a system of ODEs.

 27.3 ODES AND EIGENVALUES WITH SOFTWARE PACKAGES 819
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FIGURE 27.14
Mathcad screen to solve for the eigenvalues of a system of ODEs.

PROBLEMS

27.1 A steady-state heat balance for a rod can be represented as
d 

2T

dx2 − 0.15T = 0

Obtain an analytical solution for a 10-m rod with T(0) = 240 and 
T(10) = 150.
27.2 Use the shooting method to solve Prob. 27.1.
27.3 Use the finite-difference approach with Δx = 1 to solve 
Prob. 27.1.
27.4 Use the shooting method to solve

7 

d 
2y

dx2 − 2 

dy

dx
− y + x = 0

with the boundary conditions y(0) = 5 and y(20) = 8.
27.5 Solve Prob. 27.4 with the finite-difference approach using 
Δx = 2.
27.6 Use the shooting method to solve

d 
2T

dx2 − 1 × 10−7(T + 273)4 + 4(150 − T) = 0 (P27.6.1)

Obtain a solution for these boundary conditions: T(0) = 200 and 
T(0.5) = 100.
27.7 Differential equations like the one solved in Prob. 27.6 can 
 often be simplified by linearizing their nonlinear terms. For example, 
a first-order Taylor series expansion can be used to linearize the 
quartic term in Eq. (P27.6.1) as

1 × 10−7(T + 273)4 = 1 × 10−7(Tb + 273)4 +

4 × 10−7(Tb + 273)3(T − Tb)

where Tb is a base temperature about which the term is linearized. 
Substitute this relationship into Eq. (P27.6.1), and then solve the 
resulting linear equation with the finite-difference approach. 
 Employ Tb = 150 and Δx = 0.01 to obtain your solution.
27.8 Repeat Example 27.4 but for three masses. Produce a plot like 
Fig. 27.6 to identify the principal modes of vibration. Change all 
the k’s to 240.
27.9 Repeat Example 27.6, but for five interior points (h = 3∕6).
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dz

dt
= −bz + xy

where σ = 10, b = 2.666667, and r = 28. Employ initial conditions 
of x = y = z = 5 and integrate from t = 0 to 20.
27.23 Use finite differences to solve the ordinary differential 
 equation

d 
2u

dx2 + 7 

du

dx
− u = 2

given boundary conditions u(0) = 10 and u(2) = 1. Plot the results 
of u versus x. Use Δx = 0.1.
27.24 Solve the nondimensionalized ODE using finite-difference 
methods that describe the temperature distribution in a circular rod 
with internal heat source S,

d 
2T

dr2 +
1
r
 
dT

dr
+ S = 0

over the range 0 ≤ r ≤ 1, with the boundary conditions

T(r = 1) = 1  
dT

dr ∣
r=0

= 0

for S = 1, 10, and 20 K/m2. Plot the temperature versus radius.
27.25 Derive the set of differential equations for a three mass–four 
spring system (Fig. P27.25) that describes their time motion. Write 
the three differential equations in matrix form,

[Acceleration vector]+[k∕m matrix][displacement vector x] =0

Note that each equation has been divided by the mass. Solve for 
the eigenvalues and natural frequencies for the following values of 
mass and spring constants: k1 = k4 = 15 N/m, k2 = k3 = 35 N/m, 
and m1 = m2 = m3 = 1.5 kg.

27.10 Use minors to expand the determinant of

[
2 − λ 8 10

8 4 − λ 5
10 5 7 − λ]

27.11 Use the power method to determine the highest eigenvalue 
and corresponding eigenvector for Prob. 27.10.
27.12 Use the power method to determine the lowest eigenvalue 
and corresponding eigenvector for Prob. 27.10.
27.13 Develop a user-friendly computer program to implement the 
shooting method for a linear second-order ODE. Test the program 
by duplicating Example 27.1.
27.14 Use the program developed in Prob. 27.13 to solve Probs. 
27.2 and 27.4.
27.15 Develop a user-friendly computer program to implement the 
finite-difference approach for solving a linear second-order ODE. 
Test it by duplicating Example 27.3.
27.16 Use the program developed in Prob. 27.15 to solve Probs. 
27.3 and 27.5.
27.17 Develop a user-friendly program to solve for the largest eigen-
value with the power method. Test it by duplicating Example 27.7.
27.18 Develop a user-friendly program to solve for the smallest ei-
genvalue with the power method. Test it by duplicating Example 27.8.
27.19 Use the Excel Solver to directly solve (that is, without lin-
earization) Prob. 27.6 using the finite-difference approach. Employ 
Δx = 0.1 to obtain your solution.
27.20 Use MATLAB to integrate the following pair of ODEs from 
t = 0 to 100:

dy1

dt
= 0.4y1 − 1.8y1y2  

dy2

dt
= 0.05y1y2 − 0.15y2

where y1 = 1 and y2 = 0.05 at t = 0. Develop a state-space plot (y1 
versus y2) of your results.
27.21 The following differential equation can be used to analyze 
the vibrations of an automobile shock absorber:

1.3 × 106
 
d 

2x

dt2 + 1 × 107
 
dx

dt
+ 1.75 × 109x = 0

Transform this equation into a pair of ODEs. (a) Use MATLAB to 
solve these equations from t = 0 to 0.4 for the case where x = 0.5 
and dx∕dt = 0 at t = 0. (b) Use MATLAB to determine the eigen-
values and eigenvectors for the system.
27.22 Use MATLAB or Mathcad to integrate

dx

dt
= −σx + σy

dy

dt
= rx − y − xz

FIGURE P27.25

k2 k3 k4k1

x1 x2 x3

m1 m2 m3

27.26 Consider the mass-spring system in Fig. P27.26. The fre-
quencies for the mass vibrations can be determined by solving for 
the eigenvalues and by applying M  x

 + kx = 0, which yields

[
m1 0 0
0 m2 0
0 0 m3

] {
x


1

x


2

x


3
} + [

2k −k −k

−k 2k −k

−k −k 2k ]{
x1

x2

x3
} = {

0
0
0}
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shooting method to solve this equation for position and velocity 
given the boundary conditions x(0) = 0 and x(12) = 500.
27.31 Repeat Example 27.3, but insulate the left end of the rod. 
That is, change the boundary condition at the left end of the rod to 
T′(0) = 0.
27.32 Suppose that three individuals are connected by bungee 
cords. Figure P27.32a shows them being held in place vertically so 
that each cord is fully extended but unstretched. We can define 
three distances, x1, x2, and x3, as measured downward from each of 
the unstretched positions. Assuming that drag is minimal and the 
cords act like undamped linear springs (i.e., they follow Hooke’s 
law), after the jumpers are released, gravity takes hold and they will 
oscillate up and down as in Fig. P27.32b. Develop ODEs based on 
force balance for each jumper (recall Example 9.11). Determine the 
resulting eigenvalues and eigenvectors that would eventually char-
acterize the jumpers’ oscillating motions and relative positions af-
ter they were released from their starting positions. Use the 
following parameters for your analysis:

Applying the guess x = x0e
iωt as a solution, we get the following 

matrix:

[
2k − m1ω

2 −k −k

−k 2k − m2ω
2 −k

−k −k 2k − m3ω
2]{

x01

x02

x03
}eiωt = {

0
0
0}

Use MATLAB’s eig command to solve for the eigenvalues of the 
k − mω2 matrix above. Then use these eigenvalues to solve for the 
frequencies (ω). Let m1 = m2 = m3 = 1 kg and k = 2 N/m.

FIGURE P27.26

k

k

k

x1 x2 x3

m1 m2 m3

27.27 The following nonlinear, parasitic ODE was suggested by 
Hornbeck (1975):

dy1

dt
= 5(y1 − t2)

If the initial condition is y1(0) = 0.08, obtain a solution from t = 0 
to 5:
(a) Analytically.
(b) Using the fourth-order RK method with a constant step size of 

0.03125.
(c) Using the MATLAB function ode45.
(d) Using the MATLAB function ode23s.
(e) Using the MATLAB function ode23tb.
Present your results in graphical form.
27.28 A heated rod with a uniform heat source can be modeled 
with the Poisson equation,

d 
2T

dx2 = −f (x)

Given a heat source f(x) = 25 and the boundary conditions T(x = 0) = 
40 and T(x = 10) = 200, solve for the temperature distribution 
with (a) the shooting method and (b) the finite-difference method 
(Δx = 2).
27.29 Repeat Prob. 27.28, but for the following heat source: f(x) = 
0.12x3 − 2.4x2 + 12x.
27.30 Suppose that the position of a falling object is governed by 
the following differential equation,

d 
2x

dt2 +
c

m
 
dx

dt
− g = 0

where c = a first-order drag coefficient = 12.5 kg/s, m = mass =  
70 kg, and g = gravitational acceleration = 9.81 m/s2. Use the 

  Spring Constant Unstretched Cord
Jumper Mass (kg) (N/m) Length (m)

Top (1) 60 50 20
Middle (2) 70 100 20
Bottom (3) 80 50 20

(a ) Unstretched (b ) Stretched

x1 = 0

x2 = 0

x3 = 0

FIGURE P27.32
Three individuals connected by bungee cords.
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28
Case Studies: Ordinary 
Differential Equations

The purpose of this chapter is to solve some ordinary differential equations using the 
numerical methods presented in the preceding chapters of Part Seven. The equations 
originate from practical engineering applications. Many of these applications result in 
nonlinear differential equations that cannot be solved using analytic techniques. There-
fore, numerical methods are usually required. Thus, the techniques for the numerical 
solution of ordinary differential equations are fundamental capabilities that characterize 
good engineering practice. The problems in this chapter illustrate some of the trade-offs 
associated with various methods developed in Part Seven.
 Section 28.1 derives from a chemical engineering problem context. It demonstrates 
how the transient behavior of chemical reactors can be simulated. It also illustrates how 
optimization can be used to estimate parameters for ODEs.
 Sections 28.2 and 28.3, which are taken from civil and electrical engineering, re-
spectively, deal with the solution of systems of equations. In both cases, high accuracy 
is demanded, and as a consequence, a fourth-order RK scheme is used. In addition, the 
electrical engineering application also deals with determining eigenvalues.
 Section 28.4 employs a variety of different approaches to investigate the behavior 
of a swinging pendulum. This problem also utilizes two simultaneous equations. An 
important aspect of this example is that it illustrates how numerical methods allow 
 nonlinear effects to be incorporated easily into an engineering analysis.

 28.1 USING ODES TO ANALYZE THE TRANSIENT RESPONSE  
OF A REACTOR (CHEMICAL/BIO ENGINEERING)

Background. In Sec. 12.1, we analyzed the steady state of a series of reactors. In ad-
dition to steady-state computations, we might also be interested in the transient response 
of a completely mixed reactor. To do this, we have to develop a mathematical expression 
for the accumulation term in Eq. (12.1).
 Accumulation represents the change in mass in the reactor per change in time. For 
a constant-volume system, it can be simply formulated as

Accumulation = V  

dc

dt
 (28.1)
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824 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

where V = volume and c = concentration. Thus, a mathematical formulation for accu-
mulation is volume times the derivative of c with respect to t.
 In this application we will incorporate the accumulation term into the general mass- 
balance framework we developed in Sec. 12.1. We will then use that model to simulate 
the dynamics of a single reactor and a system of reactors. In the latter case, we will show 
how the system’s eigenvalues can be determined and provide insight into its dynamics. 
Finally, we will illustrate how optimization can be used to estimate the parameters of 
mass-balance models.

Solution. Equations (28.1) and (12.1) can be used to represent the mass balance for a 
single reactor such as the one shown in Fig. 28.1:

V  

dc

dt
= Qcin − Qc (28.2)

Accumulation = inputs − outputs

 Equation (28.2) can be used to determine transient, or time-variable, solutions for the 
reactor. For example, if c = c0 at t = 0, calculus can be employed to analytically solve 
Eq. (28.2) for

c = cin(1 − e−(Q∕V)t) + c0e
−(Q∕V)t

If cin = 50 mg/m3, Q = 5 m3/min, V = 100 m3, and c0 = 10 mg/m3, the equation is

c = 50(1 − e−0.05t) + 10e−0.05t

Figure 28.2 shows this exact, analytical solution.
 Euler’s method provides an alternative approach for solving Eq. (28.2). Figure 28.2 
includes two solutions with different step sizes. As the step size is decreased, the nu-
merical solution converges on the analytical solution. Thus, for this case, the numerical 
method can be used to check the analytical result.
 Besides checking the results of an analytical solution, numerical solutions have 
added value in those situations where analytical solutions are impossible or so difficult 
that they are impractical. For example, aside from a single reactor, numerical methods 
have utility when simulating the dynamics of systems of reactors. For example, ODEs 

Qc

Qcin

FIGURE 28.1
A single, completely mixed reactor with an inflow and an outflow.
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 28.1 USING ODES TO ANALYZE THE TRANSIENT RESPONSE OF A REACTOR 825

can be written for the five coupled reactors in Fig. 12.3. The mass balance for the first 
reactor can be written as

V1
dc1

dt
= Q01c01 + Q31c3 − Q12c1 − Q15c1

or, substituting parameters (note that Q01c01 = 50 mg/min, Q03c03 = 160 mg/min, V1 =  
50 m3, V2 = 20 m3, V3 = 40 m3, V4 = 80 m3, and V5 = 100 m3),

dc1

dt
= −0.12c1 + 0.02c3 + 1

Similarly, balances can be developed for the other reactors as

dc2

dt
= 0.15c1 − 0.15c2

dc3

dt
= 0.025c2 − 0.225c3 + 4

dc4

dt
= 0.0125c2 + 0.1c3 − 0.1375c4 + 0.025c5

dc5

dt
= 0.03c1 + 0.01c2 − 0.04c5

 Suppose that at t = 0 all the concentrations in the reactors are at zero. Compute how 
the concentrations will increase over the next hour.
 The equations can be integrated with the fourth-order RK method for systems 
of equations, and the results are depicted in Fig. 28.3. Notice that each of the reactors 
shows a different transient response to the introduction of chemical. These responses can 
be parameterized by a 90% response time, t90, which measures the time required for 
each reactor to reach 90% of its ultimate steady-state level. The times range from about 

FIGURE 28.2
Plot of analytical and numerical 
solutions of Eq. (28.2). The 
 numerical solutions are ob-
tained with Euler’s method us-
ing  different step sizes.

c,
 m

g/
m

3
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t, min

30 50
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0

30

50

20

40
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Euler, step size = 10
step size = 5

Exact
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t90

t90

t90

t90

t90

c–1

t

t

t

t

t

c1

c2

c3
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4
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0
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4

8
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FIGURE 28.3
Plots of transient, or dynamic, response of the network of reactors from Fig. 12.3. Note 
that all the reactors eventually approach their steady-state concentrations previously 
computed in Sec. 12.1. In addition, the time to steady state is parameterized by the 90%  
response time t90.
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13 min for reactor 3 to about 72 min for reactor 5. The response times of reactors 4 and 
5 are of particular concern because the two outflow streams for the system exit these 
tanks. Thus, a chemical engineer designing the system might change the flows or vol-
umes of the reactors to speed up the response of these tanks while still maintaining the 
desired outputs. Numerical methods of the sort described in this part of the book can prove 
useful in these design calculations.
 Further insight into the system’s response characteristics can be developed by 
computing its eigenvalues. First, the system of ODEs can be written as an eigenvalue 
problem:

[

0.12 − λ 0 −0.02 0 0
−0.15 0.15 − λ 0 0 0

0 −0.025 0.225 − λ 0 0
0 −0.0125 −0.1 0.1375 − λ −0.025

−0.03 −0.01 0 0 0.04 − λ
]{

e1

e2

e3

e4

e5

}
= {0}

where λ and {e} = the eigenvalue and the eigenvector, respectively.
 A package like MATLAB software can be used to very conveniently generate the 
eigenvalues and eigenvectors,

a= [0.12 0.0 –0.02 0.0 0.0;–.15 0.15 0.0 0.0 0.0;0.0
–0.025 0.225 0.0 0.0; 0.0 –0.0125 –.1 0.1375 –0.025;–0.03 
–0.01 0.0 0.0 0.04];

[evect, lambda] =eig(a)
evect =
 0 0 –0.2490 –0.1228 –0.1059
 0 0 –0.8444 0.2983 0.5784
 0 0 –0.1771 0.5637 0.3041
 1.0000 0.2484 –0.3675 –0.7604 –0.7493
 0 0.9687 0.2419 0.0041 –0.0190

lambda =
 0.1375 0 0 0 0
 0 0.0400 0 0 0
 0 0 0.1058 0 0
 0 0 0 0.2118 0
 0 0 0 0 0.1775

 The eigenvalues can be interpreted by recognizing that the general solution for a 
 system of ODEs can be represented as the sum of exponentials. For example, for reactor 1, 
the general solution would be of the form

c1 = c11e
−λ1t + c12e

−λ2t + c13e
−λ3t + c14e

−λ4t + c15e
−λ5t

where cij = the part of the initial condition for reactor i that is associated with the jth 
eigenvalue. Thus, because, for the present case, all the eigenvalues are positive (and 
hence negative in the exponential function), the solution consists of a series of decaying 
exponentials. The one with the smallest eigenvalue (in our case, 0.04) will be the  slowest. 
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828 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

FIGURE 28.4
A simple experiment to collect rate data for a chemical compound that decays with time  
(reprinted from Chapra 1997).
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In some cases, the engineer performing this analysis could be able to relate this eigen-
value back to the system parameters. For example, the ratio of the outflow from reactor 
5 to its volume is (Q55 + Q54)∕V5 = 4∕100 = 0.04. Such information can then be used 
to modify the system’s dynamic performance.
 The final topic we would like to review within the present context is parameter 
estimation. One area where this occurs frequently is in reaction kinetics, that is, the 
quantification of chemical reaction rates.
 A simple example is depicted in Fig. 28.4. A series of beakers are set up containing a 
chemical compound that decays over time. At time intervals, the concentration in one of the 
beakers is measured and recorded. Thus, the result is a table of times and concentrations.
 One model that is commonly used to describe such data is

dc

dt
= −kcn (28.3)

where k = a reaction rate and n = the order of the reaction. Chemical engineers use 
concentration-time data of the sort depicted in Fig. 28.4 to estimate k and n. One way 
to do this is to guess values of the parameters and then solve Eq. (28.3) numerically. 
The predicted values of concentration can be compared with the measured concentrations 
and an assessment of the fit made. If the fit is deemed inadequate (for example, by 
examining a plot or a statistical measure like the sum of the squares of the residuals), 
the guesses are adjusted and the procedure repeated until a decent fit is attained.
 The following data can be fit in this fashion:

t, d 0 1 3 5 10 15 20

c, mg/L 12 10.7 9 7.1 4.6 2.5 1.8
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A B C D E F G H
1 Fitting of reaction rate
2 data with the integral/least-squares approach
3 k 0.091528
4 n 1.044425
5 dt 1
6 t k1 k2 k3 k4 cp cm (cp-cm)^2
7 0 −1.22653 −1.16114 −1.16462 −1.10248 12 12 0
8 1 −1.10261 −1.04409 −1.04719 −0.99157 10.83658 10.7 0.018653
9 2 −0.99169 −0.93929 −0.94206 −0.89225 9.790448
10 3 −0.89235 −0.84541 −0.84788 −0.80325 8.849344 9 0.022697
11 4 −0.80334 −0.76127 −0.76347 −0.72346 8.002317
12 5 −0.72354 −0.68582 −0.68779 −0.65191 7.239604 7.1 0.019489
13 6 −0.65198 −0.61814 −0.61989 −0.5877 6.552494
14 7 −0.58776 −0.55739 −0.55895 −0.53005 5.933207
15 8 −0.53011 −0.50283 −0.50424 −0.47828 5.374791
16 9 −0.47833 −0.45383 −0.45508 −0.43175 4.871037
17 10 −0.4318 −0.40978 −0.4109 −0.38993 4.416389 4.6 0.033713
18 11 −0.38997 −0.37016 −0.37117 −0.35231 4.005877
19 12 −0.35234 −0.33453 −0.33543 −0.31846 3.635053
20 13 −0.31849 −0.30246 −0.30326 −0.28798 3.299934
21 14 −0.28801 −0.27357 −0.2743 −0.26054 2.996949
22 15 −0.26056 −0.24756 −0.24821 −0.23581 2.7229 2.5 0.049684
23 16 −0.23583 −0.22411 −0.22469 −0.21352 2.474917
24 17 −0.21354 −0.20297 −0.20349 −0.19341 2.250426
25 18 −0.19343 −0.18389 −0.18436 −0.17527 2.047117
26 19 −0.17529 −0.16668 −0.16711 −0.1589 1.862914
27 20 −0.15891 −0.15115 −0.15153 −0.14412 1.695953 1.8 0.010826
28
29 SSR = 0.155062

FIGURE 28.5
The application of a spreadsheet and numerical methods to determine the order and rate  
coefficient of reaction data. This application was performed with an Excel spreadsheet.

The solution to this problem is shown in Fig. 28.5. An Excel spreadsheet was used to 
perform the computation.
 Initial guesses for the reaction rate and order are entered into cells B3 and B4, re-
spectively, and the time step for the numerical calculation is typed into cell B5. For this 
case, a column of calculation times is entered into column A starting at 0 (cell A7) and 
ending at 20 (cell A27). The k1 through k4 coefficients of the fourth-order RK method 
are then calculated in the block B7..E27. These are then used to determine the predicted 
concentrations (the cp values) in column F. The measured values (cm) are entered in 
column G adjacent to the corresponding predicted values. These are then used in con-
junction with the predicted values to compute the squared residual in column H. These 
values are then summed in cell H29.
 At this point, the Excel Solver can be used to determine the best parameter values. 
Once you have accessed the Solver, you are prompted for a target, or solution, cell (H29), 
queried whether you want to maximize or minimize the target cell (minimize), and 
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830 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

prompted for the cells that are to be varied (B3..B4). You then activate the algorithm 
[s(olve)], and the results are as in Fig. 28.5. As shown, the values in cells B3..B4 (k = 0.0915 
and n = 1.044) minimize the sum of the squares of the residuals (SSR = 0.155) between the 
predicted and measured data. A plot of the fit along with the data is shown in Fig. 28.6.

 28.2 PREDATOR-PREY MODELS AND CHAOS  
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. Environmental engineers deal with a variety of problems involving sys-
tems of nonlinear ordinary differential equations. In this section, we will focus on two 
of these applications. The first relates to the so-called predator-prey models that are used 
to study the cycling of nutrient and toxic pollutants in aquatic food chains and biological 
treatment systems. The second are equations derived from fluid dynamics that are used 
to simulate the atmosphere. Aside from their obvious application to weather prediction, 
such equations have also been used to study air pollution and global climate change.
 Predator-prey models were developed independently in the early part of the twentieth 
century by the Italian mathematician Vito Volterra and the American biologist Alfred 
J. Lotka. These equations are commonly called Lotka-Volterra equations. The simplest 
example is the following pair of ODEs:

dx

dt
= ax − bxy (28.4)

dy

dt
= −cy + dxy (28.5)

where x and y = the number of prey and of predators, respectively, a = the prey growth 
rate, c = the predator death rate, and b and d = the rate characterizing the effect of the 
predator-prey interaction on prey death and predator growth, respectively. The multiplica-
tive terms (that is, those involving xy) are what make such equations nonlinear.

FIGURE 28.6
Plot of fit generated with the integral/least-squares approach.
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 An example of a simple model based on atmospheric fluid dynamics is the Lorenz 
equations developed by the American meteorologist Edward Lorenz,

dx

dt
= −σx + σy (28.6)

dy

dt
= rx − y − xz (28.7)

dz

dt
= −bz + xy (28.8)

Lorenz developed these equations to relate the intensity of atmospheric fluid motion, x, 
to temperature variations y and z in the horizontal and vertical directions, respectively. 
As with the predator-prey model, we see that the nonlinearity is localized in simple 
multiplicative terms (xz and xy).
 Use numerical methods to obtain solutions for these equations. Plot the results to 
visualize how the dependent variables change temporally. In addition, plot the dependent 
variables versus each other to see whether any interesting patterns emerge.

Solution. Use the following parameter values for the predator-prey simulation: a = 1.2, 
b = 0.6, c = 0.8, and d = 0.3. Employ initial conditions of x = 2 and y = 1 and integrate 
from t = 0 to 30. We will use the fourth-order RK method with double precision to 
obtain solutions.
 The results using a step size of 0.1 are shown in Fig. 28.7. Note that a cyclical pat-
tern emerges. Thus, because predator population is initially small, the prey grows expo-
nentially. At a certain point, the prey become so numerous, that the predator population 
begins to grow. Eventually, the increased predators cause the prey to decline. This de-
crease, in turn, leads to a decrease of the predators. Eventually, the process repeats. 
Notice that, as expected, the predator peak lags the prey. Also, observe that the process 
has a fixed period; that is, it repeats in a set time.
 Now, if the parameters used to simulate Fig. 28.7 were changed, although the general 
pattern would remain the same, the magnitudes of the peaks, lags, and period would 
change. Thus, there are an infinite number of cycles that could occur.
 A phase-plane representation is useful in discerning the underlying structure of the 
model. Rather than plotting x and y versus t, we can plot x versus y. This plot illustrates 

FIGURE 28.7
Time-domain representation of 
numbers of prey and preda-
tors for the Lotka-Volterra 
model.
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832 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

the way that the state variables (x and y) interact, and is referred to as a phase-plane 
representation.
 Figure 28.8 shows the phase-plane representation for the case we are studying. Thus, 
the interaction between the predator and the prey defines a closed counterclockwise orbit. 
Notice that there is a critical or rest point at the center of the orbit. The exact location of 
this point can be determined by setting Eqs. (28.4) and (28.5) to steady state (dy∕dt = 
dx∕dt = 0) and solving for (x, y) = (0, 0) and (c∕d, a∕b). The former is the trivial result 
that if we start with neither predators nor prey, nothing will happen. The latter is the more 
interesting outcome that if the initial conditions are set at x = c∕d and y = a∕b, the de-
rivative will be zero and the populations will remain constant.
 Now, let us use the same approach to investigate the trajectories of the Lorenz equa-
tions with the following parameter values: σ = 10, b = 2.666667, and r = 28. Employ 
initial conditions of x = y = z = 5 and integrate from t = 0 to 20. Again, we will use 
the fourth-order RK method with double precision to obtain solutions.
 The results shown in Fig. 28.9 are quite different from the behavior of the Lotka-
Volterra equations. The variable x seems to be undergoing an almost random pattern of 
oscillations, bouncing around from negative values to positive values. However, even 

FIGURE 28.8
Phase-plane representation for 
the Lotka-Volterra model.
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FIGURE 28.9
Time-domain representation of 
x versus t for the Lorenz equa-
tions. The solid time series is 
for the initial conditions (5, 5, 
5). The dashed line is where 
the initial condition for x is per-
turbed slightly (5.001, 5, 5).

20

x

0

10

– 20

– 10

20 t155 10

cha32077_ch28_823-854.indd   832 10/17/19   2:53 PM



 28.2 PREDATOR-PREY MODELS AND CHAOS 833

though the patterns seem random, the frequency of the oscillation and the amplitudes 
seem fairly consistent.
 Another interesting feature can be illustrated by changing the initial condition for x 
slightly (from 5 to 5.001). The results are superimposed as the dashed line in Fig. 28.9. 
Although the solutions track on each other for a time, after about t = 12.5 they diverge 
significantly. Thus, we can see that the Lorenz equations are quite sensitive to their 
initial conditions. In his original study, this led Lorenz to the conclusion that long-range 
weather forecasts might be impossible!
 Finally, let us examine the phase-plane plots. Because we are dealing with three in-
dependent variables, we are limited to projections. Figure 28.10 shows projections in the 
xy and the xz planes. Notice how a structure is manifest when perceived from the phase-
plane perspective. The solution forms orbits around what appear to be critical points. 

FIGURE 28.10
Phase-plane representation for the Lorenz equations. (a) xy projection and (b) xz projection.
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834 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

These points are called strange attractors in the jargon of mathematicians who study such 
nonlinear systems.
 Solutions such as the type we have explored for the Lorenz equations are referred 
to as chaotic solutions. The study of chaos and nonlinear systems presently represents 
an exciting area of analysis that has implications to mathematics as well as to science 
and engineering.
 From a numerical perspective, the primary point is the sensitivity of such solutions 
to initial conditions. Thus, different numerical algorithms, computer precision, and inte-
gration time steps can all have an impact on the resulting numerical solution.

 28.3 SIMULATING TRANSIENT CURRENT FOR AN ELECTRIC  
CIRCUIT (ELECTRICAL ENGINEERING)

Background. Electric circuits where the current is time-variable rather than constant 
are common. A transient current is established in the right-hand loop of the circuit shown 
in Fig. 28.11 when the switch is suddenly closed.
 Equations that describe the transient behavior of the circuit in Fig. 28.11 are based 
on Kirchhoff’s law, which states that the algebraic sum of the voltage drops around a 
closed loop is zero (recall Sec. 8.3). Thus,

L 
di

dt
+ Ri +

q

C
− E(t) = 0 (28.9)

where L(di∕dt) = voltage drop across the inductor, L = inductance (H), R = resistance 
(Ω), q = charge on the capacitor (C), C = capacitance (F), E(t) = time-variable voltage 
source (V), and

i =
dq

dt
 (28.10)

Equations (28.9) and (28.10) are a pair of first-order linear differential equations that can 
be solved analytically. For example, if E(t) = E0 sin ωt and R = 0,

q(t) =
−E0

L( p2 − ω2)  
ω

p
 sin pt +

E0

L(p2 − ω2)  sin ωt (28.11)

FIGURE 28.11
An electric circuit where the current varies with time.
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where p = 1∕√LC. The values of q and dq∕dt are zero for t = 0. Use a numerical ap-
proach to solve Eqs. (28.9) and (28.10) and compare the results with Eq. (28.11).

Solution. This problem involves a rather long integration range and demands the use of 
a highly accurate scheme to solve the differential equation if good results are expected. 
Let us assume that L = 1 H, E0 = 1 V, C = 0.25 C, and ω2 = 3.5 s2. This gives p = 2, 
and Eq. (28.11) becomes

q(t) = −1.8708 sin (2t) + 2 sin (1.8708t)

for the analytical solution. This function is plotted in Fig. 28.12. The rapidly chang-
ing nature of the function places a severe requirement on any numerical procedure 
to find q(t). Furthermore, because the function exhibits a slowly varying periodic 
nature as well as a rapidly varying component, long integration ranges are necessary 
to portray the solution. Thus, we expect that a high-order method is preferred for 
this problem.
 However, we can try both Euler and fourth-order RK methods and compare the 
results. Using a step size of 0.1 s gives a value for q at t = 10 s of −6.638 with Euler’s 
method and a value of −1.9897 with the fourth-order RK method. These results compare 
to an exact solution of −1.996 C.
 Figure 28.13 shows the results of Euler integration every 1.0 s compared to the exact 
solution. Note that only every tenth output point is plotted. It is seen that the global error 
increases as t increases. This divergent behavior intensifies as t approaches infinity.
 In addition to directly simulating a network’s transient response, numerical methods 
can also be used to determine its eigenvalues. For example, Fig. 28.14 shows an LC 
network for which Kirchhoff’s voltage law can be employed to develop the following 

FIGURE 28.12
Computer screen showing the plot of the function represented by Eq. (28.11).
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system of ODEs:

−L1 
di1

dt
−

1
C1

∫ t

−∞
 (i1 − i2) dt = 0

−L2 
di2

dt
−

1
C2

∫ t

−∞
 (i2 − i3) dt +

1
C1

∫ t

−∞
 (i1 − i2) dt = 0

−L3 
di3

dt
−

1
C3

∫ t

−∞
 i3 

dt +
1
C2

∫ t

−∞
 (i2 − i3) dt = 0

Notice that we have represented the voltage drop across the capacitor as

VC =
1
C ∫ t

−∞
 i dt

This is an alternative and equivalent expression to the relationship used in Eq. (28.9) and 
introduced in Sec. 8.3.

FIGURE 28.13
Results of Euler integration versus exact solution. Note that only every tenth output point is 
plotted.
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 The system of ODEs can be differentiated and rearranged to yield

L1 

d 
2i1

dt 

2 +
1
C1

 (i1 − i2) = 0

L2 

d 

2i2

dt 

2 +
1

C 2
 (i2 − i3) −

1
C1

 (i1 − i2) = 0

L3 

d 

2i3

dt2 +
1
C3

 i3 −
1
C2

 (i2 − i3) = 0

 Comparison of this system with the one in Eq. (27.5) indicates an analogy between 
a spring-mass system and an LC circuit. As was done with Eq. (27.5), the solution can 
be assumed to be of the form

ij = Aj sin (ωt)

This solution along with its second derivative can be substituted into the simultaneous 
ODEs. After simplification, the result is

(
1
C1

− L1ω
2
)A1 −

1
C2

 A2 = 0

−
1
C1

 A1 + (
1
C1

+
1
C2

− L2ω
2
)A2 −

1
C2

 A3 = 0

−
1
C2

 A2 + (
1
C2

+
1
C3

− L3ω
2
)A3 = 0

Thus, we have formulated an eigenvalue problem. Further simplification results for the 
special case where the C’s and L’s are constant. For this situation, the system can be 
expressed in matrix form as

[
1 − λ −1 0

−1 2 − λ −1
0 −1 2 − λ] {

A1

A2

A3
} = {0} (28.12)

where

λ = LCω2 (28.13)

 Numerical methods can be employed to determine values for the eigenvalues and 
eigenvectors. MATLAB is particularly convenient in this regard. The following  MATLAB 
session has been developed to do this:

>>a= [1 −1 0; −1 2 −1; 0 −1 2]

a =

 1 −1 0
 −1 2 −1
 0 −1 2
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>>[v,d] =eig(a)

v =

 0.7370 0.5910 0.3280
 0.5910 −0.3280 −0.7370
 0.3280 −0.7370 0.5910

d =

 0.1981 0 0
 0 1.5550 0
 0 0 3.2470

 The matrix v consists of the system’s three eigenvectors (arranged as columns), and 
d is a matrix with the corresponding eigenvalues on the diagonal. Thus, the package com-
putes that the eigenvalues are λ = 0.1981, 1.555, and 3.247. These values in turn can be 
substituted into Eq. (28.13) to solve for the natural circular frequencies of the system

ω =

{

0.4450
√LC

1.2470
√LC

1.8019
√LC

 Aside from providing the natural frequencies, the eigenvalues can be substituted into 
Eq. (28.12) to gain further insight into the circuit’s physical behavior. For example, 
substituting λ = 0.1981 yields

[
0.8019 −1 0

−1 1.8019 −1
0 −1 1.8019] {

i1

i2

i3
} = {0}

Although this system does not have a unique solution, it will be satisfied if the currents 
are in fixed ratios, as in

0.8019i1 = i2 = 1.8019i3 (28.14)

Thus, as depicted in Fig. 28.15a, they oscillate in the same direction with different mag-
nitudes. Observe that if we assume that i1 = 0.737, we can use Eq. (28.14) to compute 
the other currents, with the result

{i} = {
0.737
0.591
0.328}

which is the first column of the v matrix calculated with MATLAB.
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 In a similar fashion, the second eigenvalue of λ = 1.555 can be substituted and the 
result evaluated to yield

−1.8018i1 = i2 = 2.247i3

As depicted in Fig. 28.15b, the first loop oscillates in the opposite direction from the 
second and third. Finally, the third mode can be determined as

−0.445i1 = i2 = −0.8718i3

Consequently, as in Fig. 28.15c, the first and third loops oscillate in the opposite direction 
from the second.

 28.4 THE SWINGING PENDULUM (MECHANICAL/AEROSPACE 
ENGINEERING)
Background. Mechanical engineers (as well as all other engineers) are frequently faced 
with problems concerning the periodic motion of free bodies. The engineering approach to 
such problems ultimately requires that the position and velocity of the body be known as a 
function of time. These functions of time invariably are the solutions of ordinary differential 
equations. The differential equations are usually based on Newton’s laws of motion.
 As an example, consider the simple pendulum shown previously in Fig. PT7.1. The 
particle of weight W is suspended on a weightless rod of length l. The only forces acting 
on the particle are its weight and the tension R in the rod. The position of the particle 
at any time is completely specified in terms of the angle θ and l.
 The free-body diagram in Fig. 28.16 shows the forces on the particle and the 
 acceleration. It is convenient to apply Newton’s laws of motion in the x direction tangent 
to the path of the particle:

ΣF = −W sin θ =
W

g
 a

where g = the gravitational constant (32.2 ft/s2) and a = the acceleration in the x direction. 
The angular acceleration of the particle (α) becomes

α =
a

l

(a) ω = 0.4451
          LC

(b) ω = 1.2470
          LC

(c) ω = 1.8019
          LC

FIGURE 28.15
A visual representation of the natural modes of oscillation of the LC network of Fig. 28.14. Note  
that the diameters of the circular arrows are proportional to the magnitudes of the currents for  
the three loops.

FIGURE 28.16
A free-body diagram of the 
swinging pendulum showing  
the forces on the particle and 
the acceleration. 
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Therefore, in polar coordinates (α = d2θ∕dt2),

−W sin θ =
Wl

g
 α =

Wl

g
 
d 

2θ

dt 
2

or

d 
2θ

dt2 +
g

l
  sin θ = 0 (28.15)

This apparently simple equation is a second-order nonlinear differential equation. In 
general, such equations are difficult or impossible to solve analytically. You have two 
choices regarding further progress. First, the differential equation might be reduced to a 
form that can be solved analytically (recall Sec. PT7.1.1), or second, a numerical 
 approximation technique can be used to solve the differential equation directly. We will 
examine both of these alternatives in this example.

Solution. Proceeding with the first approach, we note that the series expansion for sin θ 
is given by

sin θ = θ −
θ3

3!
+

θ5

5!
−

θ7

7!
+ … (28.16)

For small angular displacements, sin θ is approximately equal to θ when expressed in 
radians. Therefore, for small displacements, Eq. (28.15) becomes

d 
2θ

dt2 +
g

l
 θ = 0 (28.17)

which is a second-order linear differential equation. This approximation is very important 
because Eq. (28.17) is easy to solve analytically. The solution, based on the theory of 
differential equations, is given by

θ(t) = θ0 cos √
g

l
 t (28.18)

where θ0 = the displacement at t = 0 and where it is assumed that the velocity (υ = dθ∕dt) 
is zero at t = 0. The time required for the pendulum to complete one cycle of oscillation 
is called the period and is given by

T = 2π √
l

g
 (28.19)

 Figure 28.17 shows a plot of the displacement θ and velocity dθ∕dt as a function of 
time, as calculated from Eq. (28.18) with θ0 = π∕4 and l = 2 ft. The period, as calculated 
from Eq. (28.19), is 1.5659 s.
 The above calculations essentially are a complete solution of the motion of the 
pendulum. However, you must also consider the accuracy of the results because of the 
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 28.4 THE SWINGING PENDULUM 841

assumptions inherent in Eq. (28.17). To evaluate the accuracy, it is necessary to obtain 
a numerical solution for Eq. (28.15), which is a more complete physical representation 
of the motion. Any of the methods discussed in Chaps. 25 and 26 could be used for this 
purpose—for example, the Euler and fourth-order RK methods. Equation (28.15) must 
be transformed into two first-order equations to be compatible with the above methods. 
This is accomplished as follows. The velocity υ is defined by

dθ

dt
= υ (28.20)

and, therefore, Eq. (28.15) can be expressed as

dυ

dt
= −

g

l
  sin θ (28.21)

Equations (28.20) and (28.21) comprise a coupled system of two ordinary differential 
equations. The numerical solutions by the Euler method and the fourth-order RK method 
give the results shown in Table 28.1, which compares the analytic solution for the linear 
equation of motion [Eq. (28.18)] in column (a) with the numerical solutions in columns 
(b), (c), and (d).
 The Euler and fourth-order RK methods yield different results and both disagree 
with the analytic solution, although the fourth-order RK method for the nonlinear 
case is closer to the analytic solution than is the Euler method. To properly evaluate 
the difference between the linear and nonlinear models, it is important to determine 
the accuracy of the numerical results. This is accomplished in three ways. First, the 
Euler numerical solution is easily recognized as inadequate because it overshoots 
the initial condition at t = 0.8 s. This clearly violates conservation of energy. Second, 
columns (c) and (d) in Table 28.1 show the solutions of the fourth-order RK method 

θ

– 0.8

0.8

0
t

– 2

2

0
t

dθ
dt

FIGURE 28.17
Plot of displacement θ and 
 velocity dθ/dt as a function of 
time t, as calculated from  
Eq. (28.18). θ0 is π/4 and the 
length is 2 ft.
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TABLE 28.1  Comparison of a linear analytical solution of the swinging pendulum 
problem with three nonlinear numerical solutions.

 Nonlinear Numerical Solutions

  Linear 
  Analytical Euler 4th-Order RK 4th-Order RK 
 Time,  Solution  (h = 0.05) (h = 0.05) (h = 0.01) 
 s (a) (b) (c) (d)

 0.0 0.785398 0.785398 0.785398 0.785398
 0.2 0.545784 0.615453 0.566582 0.566579
 0.4 −0.026852 0.050228 0.021895 0.021882
 0.6 −0.583104 −0.639652 −0.535802 −0.535820
 0.8 −0.783562 −1.050679 −0.784236 −0.784242
 1.0 −0.505912 −0.940622 −0.595598 −0.595583
 1.2 0.080431 −0.299819 −0.065611 −0.065575
 1.4 0.617698 0.621700 0.503352 0.503392
 1.6 0.778062 1.316795 0.780762 0.780777

for step sizes of 0.05 and 0.01. Because these vary in the fourth decimal place, it is 
reasonable to assume that the solution with a step size of 0.01 is also accurate with 
this degree of certainty. Third, for the 0.01-s step-size case, θ obtains a local maxi-
mum value of 0.785385 at t = 1.63 s (not shown in Table 28.1). This indicates that 
the pendulum returns to its original position with four-place accuracy with a period 
of 1.63 s. These considerations allow you to safely assume that the difference be-
tween columns (a) and (d) in Table 28.1 truly represents the difference between the 
linear and nonlinear models.
 Another way to characterize the difference between the linear and nonlinear models 
is on the basis of period. Table 28.2 shows the period of oscillation as calculated by the 
linear model and the nonlinear model for three different initial displacements. It is seen 
that the calculated periods agree closely when θ is small because θ is a good approxima-
tion for sin θ in Eq. (28.16). This approximation deteriorates when θ becomes large.
 These analyses are typical of cases you will routinely encounter as an engineer. The 
utility of the numerical techniques becomes particularly significant in nonlinear prob-
lems, and in many cases real-world problems are nonlinear.

TABLE 28.2  Comparison of the period of an oscillating body calculated from linear and 
nonlinear models.

 Period, s

 Initial  Linear Model Nonlinear Model 
 Displacement, θ0 (T = 2π √I∕g)  [Numerical Solution of Eq. (28.15)]

 π/16 1.5659 1.57
 π/4 1.5659 1.63
 π/2 1.5659 1.85
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PROBLEMS

Chemical/Bio Engineering
28.1 Perform the first computation in Sec. 28.1, but for the case 
where h = 10. Use the Heun method (without iteration) and the 
fourth- order RK method to obtain solutions.
28.2 Perform the second computation in Sec. 28.1, but for the 
 system described in Prob. 12.4.
28.3 A mass balance for a chemical in a completely mixed reactor 
can be written as

V  
dc

dt
= F − Qc − kVc2

where V = volume (12 m3), c = concentration (g/m3), F = feed rate 
(175 g/min), Q = flow rate (1 m3/min), and k = a second-order re-
action rate (0.15 m3/g/min). If c(0) = 0, solve the ODE until the 
concentration reaches a stable level. Use the midpoint method (h = 
0.5) and plot your results.

Challenge question: If one ignores the fact that concentrations 
must be positive, find a range of initial conditions such that you 
obtain a very different trajectory than was obtained with c(0) = 0. 
Relate your results to the steady-state solutions.
28.4 If cin = cb(1 − e−0.12t), calculate the outflow concentration of a 
conservative substance (no reaction) for a single, completely mixed 
reactor as a function of time. Use Heun’s method (without itera-
tion) to perform the computation. Employ values of cb = 40 mg/m3, 
Q = 6 m3/min, V = 100 m3, and c0 = 20 mg/m3. Perform the compu-
tation from t = 0 to 100 min using h = 2. Plot your  results along with 
the inflow concentration versus time.
28.5 Brackish water with a salt concentration of 8000 g/m3 is 
pumped into a well-mixed tank at a rate of 0.6 m3/hr. Because of 
faulty  design work, water is evaporating from the tank at a rate of 
0.035 m3/hr. The salt solution leaves the tank at a rate of 0.6 m3/hr.
(a) If the tank originally contains 1 m3 of the inlet solution, how 

long after the outlet pump is turned on will the tank run dry?
(b) Use numerical methods to determine the salt concentration in 

the tank as a function of time.
28.6 A spherical ice cube (an “ice sphere”) that is 6 cm in diam-
eter is removed from a 0°C freezer and placed on a mesh screen 
at room temperature, Ta = 20°C. What will be the diameter of 
the ice cube as a function of time out of the freezer (assuming 
that all the water that has melted immediately drips through the 
screen)? The heat transfer coefficient h for a sphere in a still 
room is about 3 W/(m2 K). The heat flux from the ice sphere to 
the air is given by

Flux =
q

A
= h(Ta − T)

where q = heat and A = surface area of the sphere. Use a  numerical 
method to make your calculation. Note that the latent heat of fusion 
is 333 kJ/kg and the density of ice is approximately 0.917 kg/m3.
28.7 The following equations define the concentrations of three 
reactants:

dca

dt
= −10cacc + cb

dcb

dt
= 10cacc − cb

dcc

dt
= −10cacc + cb − 2cc

If the initial conditions are ca = 50, cb = 0, and cc = 40, find the 
concentrations for the times from 0 to 3 s.
28.8 Compound A diffuses through a 4-cm-long tube and reacts as 
it diffuses. The equation governing diffusion with reaction is

D 

d 
2A

dx2 − kA = 0

At one end of the tube, there is a large source of A at a concentration 
of 0.1 M. At the other end of the tube there is an adsorbent material 
that quickly absorbs any A, making the concentration 0 M. If D = 
1.5 × 10−6 cm2/s and k = 5 × 10−6 s−1, what is the concentration of 
A as a function of distance in the tube?
28.9 In the investigation of a homicide or accidental death, it is 
often important to estimate the time of death. From the experimen-
tal observations, it is known that the surface temperature of an 
 object changes at a rate proportional to the difference between the 
temperature of the object and that of the surrounding environment 
or ambient temperature. This is known as Newton’s law of cooling. 
Thus, if T(t) is the temperature of the object at time t, and Ta is the 
constant ambient temperature:

dT

dt
= −K(T − Ta)

where K > 0 is a constant of proportionality. Suppose that at time 
t = 0 a corpse is discovered and its temperature is measured to be 
To. We assume that at the time of death, the body temperature, Td, 
was at the normal value of 37°C. Suppose that the temperature of 
the corpse when it was discovered was 29.5°C, and that 2 hours 
later, it is 23.5°C. The ambient temperature is 20°C.
(a) Determine K and the time of death.
(b) Solve the ODE numerically and plot the results.
28.10 The reaction A → B takes place in two reactors in series. 
The reactors are well mixed but are not at steady state. The 
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L (cm), a chemical compound A diffuses into the biofilm, where it 
is subject to an irreversible first-order reaction that converts it to a 
product, B.

Steady-state mass balances can be used to derive the following 
ordinary differential equations for compound A:

D 

d 
2ca

dx2 = 0  0 ≤ x < L

Df  

d 
2ca

dx2 − kca = 0  L ≤ x < L + Lf

where D = the diffusion coefficient in the diffusion layer = 
0.8 cm2/d, Df = the diffusion coefficient in the biofilm =  
0.64 cm2/d, and k = the first-order rate for the conversion of A to B 
= 0.1/d. The following boundary conditions hold:

ca = ca0  at x = 0
dca

dx
= 0  at x = L + Lf

where ca 0 = the concentration of A in the bulk liquid = 100 mol/L. 
Use the finite-difference method to compute the steady-state distri-
bution of A from x = 0 to L + Lf, where L = 0.008 cm and Lf = 
0.004 cm. Employ centered finite differences with Δx = 0.001 cm.
28.14 The following differential equation describes the steady-
state concentration of a substance that reacts with first-order kinet-
ics in an axially dispersed plug-flow reactor (Fig. P28.14),

D 

d 
2c

dx2 − U 

dc

dx
− kc = 0

 unsteady-state mass balance for each reactor is shown below:

dCA1

dt
=

1
τ

 (CA0 − CA1) − kCA1

dCB1

dt
= −

1
τ

 CB1 + kCA1

dCA2

dt
=

1
τ

 (CA1 − CA2) − kCA2

dCB2

dt
=

1
τ

 (CB1 − CB2) + kCA2

where CA0 = concentration of A at the inlet of the first reactor, 
CA1 = concentration of A at the outlet of the first reactor (and inlet 
of the second), CA2 = concentration of A at the outlet of the sec-
ond reactor, CB1 = concentration of B at the outlet of the first re-
actor (and inlet of the second), CB2 = concentration of B in the 
second reactor, τ = residence time for each reactor, and k = the 
rate constant for reaction of A to produce B. If CA0 is equal to 20, 
find the concentrations of A and B in both reactors during their 
first 10 minutes of operation. Use k = 0.12/min and τ = 5 min and 
assume that the initial conditions of all the dependent variables 
are zero.
28.11 A nonisothermal batch reactor can be described by the 
 following equations:

dC

dt
= −e(−10∕(T+273))C

dT

dt
= 1000e(−10∕(T+273))C − 10(T − 20)

where C is the concentration of the reactant and T is the tempera-
ture of the reactor. Initially the reactor is at 15°C and has a concen-
tration of reactant C of 1.0 gmol/L. Find the concentration and 
temperature of the reactor as a function of time.
28.12 The following system is a classic example of stiff ODEs that 
can occur in the solution of chemical reaction kinetics:

dc1

dt
= −0.013c1 − 1000c1c3

dc2

dt
= −2500c2c3

dc3

dt
= −0.013c1 − 1000c1c3 − 2500c2c3

Solve these equations from t = 0 to 50 with initial conditions c1(0) = 
c2(0) = 1 and c3(0) = 0. If you have access to MATLAB software, use 
both standard (for example, ode45) and stiff (for example, ode23s) 
functions to obtain your solutions.
28.13 A biofilm with a thickness Lf (cm) grows on the surface of a 
solid (Fig. P28.13). After traversing a diffusion layer of thickness 

Bulk
liquid

0

Diffusion
layer Biofilm

x

Solid
surface

L Lf

FIGURE P28.13
A biofilm growing on a solid surface.
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Use the finite-difference approach to solve for the concentration 
of each reactant as a function of distance given: D = 0.1 m2/min, 
U = 1 m/min, k1 = 3/min, k2 = 1/min, L = 0.5 m, ca,in = 10 mol/L. 
Employ centered finite-difference approximations with Δx = 
0.05 m to obtain your solutions and assume Danckwerts boundary 
conditions, as described in Prob. 28.14. Also, compute the sum of 
the reactants as a function of distance. Do your results make 
sense?
28.16 Bacteria growing in a batch reactor utilize a soluble food 
source (substrate) as depicted in Fig. P28.16. The uptake of the 
substrate is represented by a logistic model with Michaelis-
Menten limitation. Death of the bacteria produces detritus 
which is subsequently converted to the substrate by hydrolysis. 
In addition, the bacteria also excrete some substrate directly. 
Death, hydrolysis, and excretion are all simulated as first-order 
reactions.

Mass balances can be written as

dX

dt
= μmax(1 −

X

K)(
S

Ks + S)X − kd 
X − ke 

X

dC

dt
= kd 

X − khC

dS

dt
= ke 

X + khC − μmax(1 −
X

K)(
S

Ks + S)X

where X, C, and S = the concentrations (mg/L) of bacteria, detritus, 
and substrate, respectively; μmax = maximum growth rate (d−1), K = 
the logistic carrying capacity (mg/L); Ks = the Michaelis-Menten 
half-saturation constant (mg/L), kd = death rate (d−1); ke = excretion 
rate (d−1); and kh = hydrolysis rate (d−1). Simulate the concentra-
tions from t = 0 to 100 d given the initial conditions X(0) = 1 mg/L, 
S(0) = 100 mg/L, and C(0) = 0 mg/L. Employ the following param-
eters in your calculation: μmax = 10/d, K = 10 mg/L, Ks = 10 mg/L, 
kd = 0.1/d, ke = 0.1/d, and kh = 0.1/d.
28.17 A pharmacokinetic model can be developed to predict the 
time evolution of alcohol levels in human subjects. As depicted 
in Fig. P28.17, according to the model, after ingestion into the 
stomach, alcohol passes through the small intestine followed by 

where D = the dispersion coefficient (m2/hr), c = concentration 
(mol/L), x = distance (m), U = the velocity (m/hr), and k = the 
reaction rate (/hr). The boundary conditions can be formulated as

Ucin = Uc(x = 0) − D  

dc

dx
 (x = 0)

dc

dx
 (x = L) = 0

where cin = the concentration in the inflow (mol/L) and L = the 
length of the reactor (m). These are called Danckwerts boundary 
conditions. Use the finite-difference approach to solve for concen-
tration as a function of distance given the following parameters: 
D = 5000 m2/hr, U = 100 m/hr, k = 2/hr, L = 100 m, and cin =  
100 mol/L. Employ centered finite-difference approximations 
with Δx = 10 m to obtain your solutions. Compare your numerical 
 results with the analytical solution,

c =
Ucin

(U − Dλ1)λ2e
λ2L − (U − Dλ2)λ1e

λ1L

× (λ2e
λ2Leλ1x − λ1e

λ1Leλ2x)
where

λ1

λ2
=

U

2D(1 ± √1 +
4k D

U2  )

28.15 A series of first-order, liquid-phase reactions create a desir-
able product (B) and an undesirable by-product (C)

A →
k1

B →
k2

C

If the reactions take place in an axially dispersed plug-flow reactor 
(Fig. P28.14), steady-state mass balances can be used to develop 
the following second-order ODEs,

D 

d 
2ca

dx2 − U 

dca

dx
− k1ca = 0

D 

d 
2cb

dx2 − U 

dcb

dx
+ k1ca − k2cb = 0

D 

d 
2cc

dx2 − U 

dcc

dx
+ k2cb = 0

FIGURE P28.14
An axially dispersed plug-flow reactor.

x = 0 x = L
x

hydrolysis

excretion

deathuptakeSubstrate
S

Bacteria
X

Detritus
C

FIGURE P28.16
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d[S]
dt

= −kf [E][S] + kr( [E]0 − [E])

d[E]
dt

= −kf [E][S] + kr( [E]0 − [E]) + kc( [E]0 − [E])

d[P]
dt

= kc( [E]0 − [E])

where the brackets designate molar concentrations and [E]0 = the 
initial enzyme concentration. Note that the total amount of enzyme 
is conserved,

[E]0 = [E] + [ES]

Thus, [ES] can be computed at each time as [E]0 − [E]. Compute 
and plot the curves for all four variables versus time for the initial 
conditions [S]0 = [E]0 = 1 and [P]0 = 0, for two cases: (a) kf = kr = 
kc = [E]0 = 1 and (b) kf = kr = [E]0 = 1 and kc = 10. 
28.19 The following differential equations define the concentra-
tions of three reactants in a closed system (Fig. P28.19),

dc1

dt
= −k12c1 + k21c2 + k31c3

dc2

dt
= k12c1 − k21c2 − k32c2

dc3

dt
= k32c2 − k31c3

distribution across the lean body mass. Mass balances around the 
three compartments results in the following system of ODEs,

dc1

dt
= k

1 + ac2
1
c1   

dc2

dt
= k

1 + ac2
1
c1 − kac2

dc3

dt
= kac2 −

Vm

Km + c3
c3

where t = time, k = the rate constant for gastric emptying if no al-
cohol has been administered, a = a constant parameterizing the 
feedback control accounting for stomach alcohol content, ka = the 
rate constant for intestinal emptying, Vm = maximum velocity of 
alcohol elimination from the body mass, and Km = a half-saturation 
constant. Using the parameter values in Table P28.17, simulate and 
graph the alcohol levels in each of the compartments over a 6-hour 
period given initial stomach levels of c1(0) = 0.455 and 0.703 g/L 
for the reference man and woman, respectively.
28.18 In bioengineering and biochemistry, the Michaelis-Menten 
model is among the best-known representation of enzyme kinetics. 
As depicted in Fig. P28.18, it involves an enzyme, E, binding to a 
substrate, S, to form a complex, ES, via a reversible reaction. The 
enzyme in turn releases a product, P, and regenerates the original 
enzyme in an irreversible catalytic reaction. The k’s are rate 
 constants, where the subscripts denote the forward ( f ), reverse (r), 
and catalytic (c) rates.

Based on the law of mass action and mass conservation, the fol-
lowing system of nonlinear ODEs, can be written to describe the 
rate of change of the reactant and product concentrations with time: 

TABLE P28.17 Typical model parameter values for a 
reference man and woman.

Parameter Units Man Woman

Vm g/(L h) 0.47 0.48
Km g/L 0.38 0.41
k hr−1 5.55 4.96
ka hr−1 7.05 4.96
a g2/h2 0.42 0.75

FIGURE P28.17
A three-compartment pharmacokinetic model of the metabo-
lism of alcohol in a human subject.

Small
intestine

Lean
body mass

Stomach

c3c2c1

FIGURE P28.18
The reaction of an enzyme (E) and a substrate (S) to produce 
a product (P) in a completely mixed batch reactor following 
Michaelis-Menten kinetics.

kc
kf

kr

E + PESE + S

FIGURE P28.19
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k31
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t 0 2 4 6 8 12 16 20
c1 0 15 11 7 6 3 2 1
c2 0 3 5 7 7 6 4 2
c3 100 48 26 16 10 4 3 2

Using mass balances, the system can be modeled as the following 
simultaneous ODEs:

V1
dc1

dt
= −Qc1 + E12(c2 − c1) + E13(c3 − c1)

V2
dc2

dt
= E12(c1 − c2)

V3
dc3

dt
= E13(c1 − c3)

where Vi = volume of segment i, Q = flow, and Eij = diffusive 
 mixing rate between segments i and j. Use the data and the differ-
ential equations to estimate the E’s if V1 = 1 × 107, V2 = 8 × 106,  
V3 = 5 × 106, and Q = 4 × 106. Employ Euler’s method with a step 
size of 0.1 for your analysis.
28.25 Population-growth dynamics are important in a variety of 
planning studies for areas such as transportation and water-resource 
engineering. One of the simplest models of such growth incorpo-
rates the assumption that the rate of change of the population p is 
proportional to the existing population at any time t:

dp

dt
= Gp (P28.25.1)

Integrate the equations and use optimization to estimate the values 
of the k’s that minimize the sum of the squares of the discrepancies 
between the model predictions and the data. Employ initial guesses 
of 0.15 for all the k’s.

Civil/Environmental Engineering
28.20 Perform the same computation for the Lotka-Volterra model 
in Sec. 28.2, but use (a) Euler’s method, (b) Heun’s method (with-
out iterating the corrector), (c) the fourth-order RK method, and  
(d) the MATLAB ode45 function. In all cases, use single- precision 
variables and a step size of 0.1, and simulate from t = 0 to 20. 
 Develop phase-plane plots for all cases.
28.21 Perform the same computation for the Lorenz equations in 
Sec. 28.2, but use (a) Euler’s method, (b) Heun’s method (without 
iterating the corrector), (c) the fourth-order RK method, and (d) the 
MATLAB ode45 function. In all cases, use single-precision vari-
ables and a step size of 0.1 and simulate from t = 0 to 20. Develop 
phase-plane plots for all cases.
28.22 The following equation can be used to model the deflection 
of a sailboat mast subject to a wind force:

d 
2y

dz2 =
f

2EI
 (L − z)2

where f = wind force, E = modulus of elasticity, L = mast length, 
and I = moment of inertia. Calculate the deflection if y = 0  
and dy∕dz = 0 at z = 0. Use parameter values of f = 60, L = 30,  
E = 1.25 × 108, and I = 0.05 for your computation.
28.23 Perform the same computation as in Prob. 28.22, but rather 
than using a constant wind force, employ a force that varies with 
height according to (recall Sec. 24.2)

f (z) =
200z

5 + z
 e−2z∕30

28.24 An environmental engineer is interested in estimating the 
mixing that occurs between a stratified lake and an adjacent em-
bayment (Fig. P28.24). A conservative tracer is instantaneously 
mixed with the bay water, and then the tracer concentration is 
monitored over the ensuing period in all three segments. The val-
ues are

t 1 2 3 4 5 6 8 9 10 12 15

c1 85.3 66.6 60.6   56.1   49.1   45.3      41.9 37.8    33.7    34.4   35.1

c2   16.9  18.7   24.1 20.9     18.9 19.9 20.6     13.9      19.1      14.5 15.4

c3     4.7       7.9   20.1 22.8 32.5   37.7 42.4 47 50.5 52.3 51.3

FIGURE P28.24

Bay
(3)

Upper
layer

(1)

Lower
layer

(2)

An experiment with initial conditions of c1(0) = 100 and c2(0) = 
c3(0) = 0 yields the following data: 
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(a) Integrate the Lotka-Volterra equations from 1960 through 
2020. Determine the coefficient values that yield an optimal 
fit. Compare your simulation with these data using a time- 
series approach, and comment on the results.

(b) Plot the simulation of (a), but use a phase-plane approach.
(c) After 1993, suppose that the wildlife managers trap one wolf 

per year and transport it off the island. Predict how the 
 populations of both the wolves and moose would evolve to the 
year 2020. Present your results as both time-series and phase-
plane plots. For this case, as well as for (d), use the following 
coefficients: a = 0.3, b = 0.01111, c = 0.2106, and d = 
0.0002632.

(d) Suppose that in 1993, some poachers snuck onto the island and 
killed 50% of the moose. Predict how the populations of both 
the wolves and moose would evolve to the year 2020. Present 
your results as both time-series and phase-plane plots.

28.28 A cable is hanging from two supports at A and B (Fig. P28.28). 
The cable is loaded with a distributed load whose magnitude varies 
with x as

w = wo [1 + sin(
πx

2lA
)]

where wo = 1000 lb/ft. The slope of the cable (dy∕dx) = 0 at x = 0, 
which is the lowest point for the cable. It is also the point where the 
tension in the cable is a minimum of To. The differential equation 
that governs the cable is

d 
2y

dx2 =
wo

To
[1 + sin(

πx

2lA
)]

Solve this equation using a numerical method and plot the shape of 
the cable (y versus x). For the numerical solution, the value of To is 
unknown, so the solution must use an iterative technique, similar to 
the shooting method, to converge on a correct value of hA for vari-
ous values of To.

where G = a growth rate (per year). This model makes intuitive 
sense because the greater the population, the greater the number of 
potential parents. At time t = 0, an island has a population of 6000 
people. If G = 0.075 per year, employ Heun’s method (without itera-
tion) to predict the population at t = 20 years, using a step size of  
0.5 year. Plot p versus t on standard and semilog graph paper. Deter-
mine the slope of the line on the semilog plot. Discuss your results.
28.26 Although the model in Prob. 28.25 works adequately when 
population growth is unlimited, it breaks down when factors such as 
food shortages, pollution, and lack of space inhibit growth. In such 
cases, the growth rate itself can be thought of as being inversely 
proportional to population. One model of this relationship is

G = G′(pmax − p) (P28.26.1)

where G′ = a population-dependent growth rate (per people-year) and 
pmax = the maximum sustainable population. Thus, when population 
is small (p ≪ pmax), the growth rate will be at a high constant rate of 
G′pmax. For such cases, growth is unlimited and Eq. (P28.26.1) is es-
sentially identical to Eq. (P28.25.1). However, as population grows 
(that is, p approaches pmax), G decreases until at p = pmax it is zero. 
Thus, the model predicts that, when the population reaches the maxi-
mum sustainable level, growth is nonexistent, and the system is at a 
steady state. Substituting Eq. (P28.26.1) into Eq. (P28.25.1) yields

dp

dt
= G′(pmax − p)p

For the same island as in Prob. 28.25, employ Heun’s method 
(without iteration) to predict the population at t = 20 years, using a 
step size of 0.5 year. Employ values of G′ = 10−5 per people-year 
and pmax = 20,000 people. At time t = 0, the island has a population 
of 6000 people. Plot p versus t and interpret the shape of the curve.
28.27 Isle Royale National Park is a 210-square-mile archipelago 
composed of a single large island and many small islands in Lake 
Superior. Moose arrived around 1900 and by 1930, their population 
approached 3000, ravaging vegetation. In 1949, wolves crossed an 
ice bridge from Ontario. Since the late 1950s, the numbers of the 
moose and wolves have been tracked. (Dash indicates no data.)

Year Moose Wolves Year Moose Wolves

1960 700 22 1972 836 23
1961 — 22 1973 802 24
1962 — 23 1974 815 30
1963 — 20 1975 778 41
1964 — 25 1976 641 43
1965 — 28 1977 507 33
1966 881 24 1978 543 40
1967 — 22 1979 675 42
1968 1000 22 1980 577 50
1969 1150 17 1981 570 30
1970 966 18 1982 590 13
1971 674 20 1983 811 23

FIGURE P28.28

w = wo[1 + sin (πx/2la)]
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28.31 In Prob. 28.30, the basic differential equation of the elastic 
curve for a uniformly loaded beam was formulated as 

EI
d2y

dx2 =
wLx

2
−

wx2

2

Note that the right-hand side represents the moment as a function of 
x. An equivalent approach can be formulated in terms of the fourth 
derivative of deflection as

EI
d4y

dx4 = −w

For this formulation, four boundary conditions are required. For the 
supports shown in Fig. P28.30, the conditions are that the end dis-
placements are zero, y(0) = y(L) = 0, and that the end moments are 
zero, y″(0) = y″(L) = 0. Solve for the deflection of the beam using 
the finite-difference approach (Δx = 0.6 m). The following param-
eter values apply: E = 200 GPa, I = 30,000 cm4, w = 15 kN/m, and 
L = 3 m. Compare your numerical results with the analytical solu-
tion given in Prob. 28.30.
28.32 A pond drains through a pipe, as shown in Fig. P28.32. Un-
der a number of simplifying assumptions, the following differential 
equation describes how depth changes with time:

dh

dt
= −

πd 
2

4A(h)
√2g(h + e)

where h = depth (m), t = time (s), d = pipe diameter (m), A(h) = 
pond surface area as a function of depth (m2), g = gravitational 
constant (= 9.81 m/s2), and e = depth of pipe outlet below the pond 
bottom (m). Based on the following area-depth table, solve this dif-
ferential equation to determine how long it takes for the pond to 
empty given that h(0) = 6 m, d = 0.25 m, and e = 1 m.

h, m 6 5 4 3 2 1 0

A(h), 104 m2 1.17 0.97 0.67 0.45 0.32 0.18 0

28.33 Engineers and scientists use mass-spring models to gain 
 insight into the dynamics of structures under the influence of 

28.29 The basic differential equation of the elastic curve for a can-
tilever beam (Fig. P28.29) is given as

EI 
d 

2y

dx2 = −P(L − x)

where E = the modulus of elasticity and I = the moment of inertia. 
Solve for the deflection of the beam using a numerical method. The 
following parameter values apply: E = 30,000 ksi, I = 800 in4, 
P = 1 kip, L = 10 ft. Compare your numerical results to the ana-
lytical solution,

y = −
PLx2

2EI
+

Px3

6EI

28.30 The basic differential equation of the elastic curve for a uni-
formly loaded beam (Fig. P28.30) is given as

EI 
d 

2y

dx2 =
wLx

2
−

wx2

2

where E = the modulus of elasticity and I = the moment of inertia. 
Solve for the deflection of the beam using (a) the finite-difference 
approach (Δx = 2 ft) and (b) the shooting method. The following 
parameter values apply: E = 30,000 ksi, I = 800 in4, w = 1 kip/ft, 
L = 10 ft. Compare your numerical results to the analytical solution,

y =
wLx3

12EI
−

wx4

24EI
−

wL3x

24EI

FIGURE P28.29
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850 CASE STUDIES: ORDINARY DIFFERENTIAL EQUATIONS

height of the water table as the average of the boundary conditions. 
Obtain your solution with (a) the shooting method and (b) the finite-
difference method (Δx = 100 m).
28.37 In Prob. 28.36, a linearized groundwater model was used 
to simulate the height of the water table for an unconfined aqui-
fer. A more realistic result can be obtained by using the following 
nonlinear ODE:

d

dx(Kh 

dh

dx) + N = 0

where x = distance (m), K = hydraulic conductivity (m/d), h = 
height of the water table (m), and N = infiltration rate (m/d). 
Solve for the height of the water table for the same case as in 
Prob. 28.36. That is, solve from x = 0 to 1000 m with h(0) = 10 m, 
h(1000) = 5 m, K = 1 m/d, and N = 0.0001 m/d. Obtain your solu-
tion with (a) the shooting method and (b) the finite-difference 
method (Δx = 100 m).
28.38 The Lotka-Volterra equations described in Sec. 28.2 have 
been refined to include additional factors that impact predator-prey 
dynamics. For example, over and above predation, prey population 
can be limited by other factors such as space. Space limitation can 
be incorporated into the model as a carrying capacity (recall the 
logistic model described in Prob. 28.16) as in

dx

dt
= a(1 −

x

K)x − bxy

dy

dt
= −cy + dxy

where K = the carrying capacity. Use the same parameter values 
and initial conditions as in Sec. 28.2 to integrate these equations 
from t = 0 to 100 using ode45.

 disturbances such as earthquakes. Figure P28.33 shows such a rep-
resentation for a three-story building. For this case, the analysis is 
limited to horizontal motion of the structure. Force balances can be 
developed for this system as

(
k1 + k2

m1
− ω2

)X1      −
k2

m1
          X2                                            = 0

          −
k2

m2
 X1 + (

k2 + k3

m2
− ω2

)X2 −
k3

m2
               X3 = 0

                                              −
k3

m3
 X2 + (

k3

m3
− ω2

)X3 = 0

Determine the eigenvalues and eigenvectors and graphically repre-
sent the modes of vibration for the structure by displaying the 
 amplitudes versus height for each of the eigenvectors. Normalize 
the amplitudes so that the displacement of the third floor is 1.
28.34 Repeat the computations in Prob. 23.33 but remove the third 
floor.
28.35 Repeat the computations in Prob. 23.33 but add a fourth 
floor with a mass of m4 = 6000 kg connected with the third floor by 
a spring with k4 = 1200 kN/m.
28.36 Under a number of simplifying assumptions, the steady-
state height of the water table in a one-dimensional, unconfined 
groundwater aquifer (Fig. P28.36) can be modeled with the follow-
ing second-order ODE,

K h 

d 
2h

dx2 + N = 0  

where x = distance (m), K = hydraulic conductivity (m/d), h = 
height of the water table (m), h = the average height of the water 
table (m), and N = infiltration rate (m/d).

Solve for the height of the water table for x = 0 to 1000 m where 
h(0) = 10 m and h(1000) = 5 m. Use the following parameters for 
the calculation: K = 1 m/d and N = 0.0001 m/d. Set the average 

m3 = 8000 kg

k3 = 1800 kN/m

k2 = 2400 kN/m

k1 = 3000 kN/m

m2 = 10,000 kg

m1 = 12,000 kg

FIGURE P28.33

Ground surface

Water table Infiltration
h

x

Confining bed

Aquifer
Groundwater flow

FIGURE P28.36
An unconfined, or “phreatic,” aquifer.
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individuals falls below 10. Use the following parameters: a = 
0.002/(person·week) and r = 0.15∕d. Develop time-series plots 
of all the state variables. Also generate a phase-plane plot of S 
versus I versus R.

(b) Suppose that after recovery, there is a loss of immunity that 
causes recovered individuals to become susceptible. This rein-
fection mechanism can be computed as ρR, where ρ = the 
 reinfection rate. Modify the model to include this mechanism 
and repeat the computations in (a) using ρ = 0.015∕d.

Electrical Engineering
28.41 Perform the same computation as in the first part of Sec. 
28.3, but with R = 0.025 Ω.
28.42 Solve the ODE in the first part of Sec. 8.3 from t = 0 to 0.5 
using numerical techniques if q = 0.1 and i = −3.281515 at t = 0. 
Use R = 50 along with the other parameters from Sec. 8.3.
28.43 For a simple RL circuit, Kirchhoff’s voltage law requires 
that (if Ohm’s law holds)

L 
di

dt
+ Ri = 0

where i = current, L = inductance, and R = resistance. Solve for i, 
if L = 1, R = 1.5, and i(0) = 0.5. Solve this problem analytically and 
with a numerical method. Present your results graphically.
28.44 In contrast to the case in Prob. 28.43, real resistors may not 
always obey Ohm’s law. For example, the voltage drop may be non-
linear and the circuit dynamics described by a relationship such as

L 
di

dt
+ R[

i

I
− (

i

I)
3

] = 0

where all other parameters are as defined in Prob. 28.43 and I is a 
known reference current equal to 1. Solve for i as a function of time 
under the same conditions as specified in Prob. 28.43.
28.45 Develop an eigenvalue problem for an LC network similar to 
the one in Fig. 28.14, but with only two loops. That is, omit the i3 
loop. Draw the network, illustrating how the currents oscillate in 
their primary modes.
28.46 Just as Fourier’s law and the heat balance can be employed 
to characterize temperature distribution, analogous relationships 
are available to model field problems in other areas of engineering. 
For example, electrical engineers use a similar approach when 
modeling electrostatic fields. Under a number of simplifying 
 assumptions, an analog of Fourier’s law can be represented in 
 one-dimensional form as

D = −ε 

dV

dx

where D is called the electric flux density vector, ε = permittivity 
of the material, and V = electrostatic potential. Similarly, a Poisson 

(a) Employ the very large value of K = 108 to validate that you 
obtain the same results as in Sec. 28.2.

(b) Compare (a) with the more realistic carrying capacity of K = 
200. Discuss your results.

28.39 The growth of floating, unicellular algae below a sewage 
treatment plant discharge can be modeled with the following simul-
taneous ODEs:

da

dt
= [kg(n, p) − kd − ks] a

dn

dt
= rnckhc − rnakg(n, p)a

dp

dt
= rpckhc − rpakg(n, p)a

dc

dt
= rcakda − khc

where t = travel time (d), a = algal chlorophyll concentration 
(μgA/L), n = inorganic nitrogen concentration (μgN/L), p = inor-
ganic phosphorus concentration (μgP/L), c = detritus concentration 
(μgC/L), kd = algal death rate (d−1), ks = algal settling rate (d−1), kh = 
detrital hydrolysis rate (d−1), rnc = nitrogen-to-carbon ratio (μgN/
μgC), rpc = phosphorus-to-carbon ratio (μgP/μgC), rna = nitrogen-
to-chlorophyll ratio (μgN/μgA), rpa = phosphorus-to-chlorophyll 
 ratio (μgP/μgA), and kg(n, p) = algal growth rate (d−1), which can be 
computed with

kg(n, p) = kg min{
p

ksp + p
, 

n

ksn + n}

where kg = the algal growth rate at excess nutrient levels (d−1), 
ksp = the phosphorus half-saturation constant (μgP/L), and ksn = the 
 nitrogen half-saturation constant (μgN/L). Use the ode45 and 
ode15s functions to solve these equations from t = 0 to 50 d given 
the initial conditions a = 1, n = 4000, p = 800, and c = 0. Note that 
the parameters are kd = 0.1, ks = 0.15, kh = 0.025, rnc = 0.18, rpc = 
0.025, rna = 7.2, rpa = 1, rca = 40, kg = 0.5, ksp = 2, and ksn = 15. 
Develop plots of both solutions and interpret the results.
28.40 The following ODEs have been proposed as a model of an 
epidemic:

dS

dt
= −aSI

dI

dt
= aSI − rI

dR

dt
= rI

where S = the susceptible individuals, I = the infected, R = the re-
covered, a = the infection rate, and r = the recovery rate. A city has 
10,000 people, all of whom are susceptible.
(a) If a single infectious individual enters the city at t = 0, compute 

the progression of the epidemic until the number of infected 
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30 s with Heun’s method (without iteration of the corrector) using 
a step size of 2 s. Plot υ versus t for t = 0 to 30 s.
28.52 The following ordinary differential equation describes the 
motion of a damped spring-mass system (Fig. P28.52):

m 
d 

2x

dt2 + a ∣ dx

dt ∣ dx

dt
+ bx3 = 0

where x = displacement from the equilibrium position, t = time, 
m = 1 kg mass, and a = 5 N/(m/s)2. The damping term is nonlinear 
and represents air damping.

The spring is a cubic spring and is also nonlinear with b = 5 N/m3. 
The initial conditions are

Initial velocity 
dx

dt
= 0.5 m∕s

Initial displacement x = 1 m

Solve this equation using a numerical method over the time period 
0 ≤ t ≤ 8 s. Plot the displacement and velocity versus time and plot 
the phase-plane representation (velocity versus displacement) for 
all the following cases:
(a) A similar linear equation,

m 
d 

2x

dt2 + 2 
dx

dt
+ 5x = 0

(b) The nonlinear equation with only a nonlinear spring term,

d 
2x

dt2 + 2
dx

dt
+ bx3 = 0

(c) The nonlinear equation with only a nonlinear damping term,

m 
d 

2x

dt2 + a ∣ dx

dt ∣ dx

dt
+ 5x = 0

(d) The full nonlinear equation where both the damping and spring 
terms are nonlinear,

m
d 

2x

dt2 + a ∣ dx

dt ∣ dx

dt
+ bx3 = 0

equation for electrostatic fields can be represented in one dimen-
sion as

d 
2V

dx2 = −
ρυ

ε

where ρυ = charge density. Use the finite-difference technique with 
Δx = 2 to determine V for a wire where V(0) = 1000, V(20) = 0,  
ε = 2, L = 20, and ρυ = 30.

Mechanical/Aerospace Engineering
28.47 Perform the same computation as in Sec. 28.4 but for a 
1-m-long pendulum.
28.48 The rate of cooling of a body can be expressed as

dT

dt
= −k(T − Ta)

where T = temperature of the body (°C), Ta = temperature of the sur-
rounding medium (°C), and k = the proportionality constant (min−1). 
Thus, this equation specifies that the rate of cooling is proportional to 
the difference in temperature between the body and the surrounding 
medium. If a metal ball heated to 90°C is dropped into water that is 
held at a constant value of Ta = 20°C, use a numerical method to 
compute how long it takes the ball to cool to 40°C if k = 0.25 min−1.
28.49 The rate of heat flow (conduction) between two points on a 
cylinder heated at one end is given by

dQ

dt
= λ  A 

dT

dx

where λ = a constant, A = the cylinder’s cross-sectional area, 
Q = heat flow, T = temperature, t = time, and x = distance from the 
heated end. Because the equation involves two derivatives, we will 
simplify this equation by letting

dT

dx
=

100(L − x) (20 − t)
100 − xt

where L is the length of the rod. Combine the two equations and 
compute the heat flow for t = 0 to 25 s. The initial condition is 
Q(0) = 0 and the parameters are λ = 0.5 cal cm/s, A = 12 cm2,  
L = 20 cm, and x = 2.5 cm. Plot your results.
28.50 Repeat the falling parachutist problem (Example 1.2), but 
with the upward force due to drag as a second-order rate:

Fu = −cυ2

where c = 0.225 kg/m. Solve for t = 0 to 30, plot your results, and 
compare with those of Example 1.2.
28.51 Suppose that, after falling for 13 s, the parachutist from 
Examples 1.1 and 1.2 pulls the rip cord. At this point, assume that 
the drag coefficient is instantaneously increased to a constant 
value of 55 kg/s. Compute the parachutist’s velocity from t = 0 to 

Cubic spring

Air damping

x

m

FIGURE P28.52
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analogues for the derivatives. Write a computer program to obtain 
the solution and plot temperature versus axial distance for various 
values of p = 10, 20, 50, and 100.
28.55 The dynamics of a forced spring-mass-damper system can 
be represented by the following second-order ODE:

m 
d 

2x

dt2 + c 
dx

dt
+ k1x + k3x

3 = P cos (ωt)

where m = 1 kg, c = 0.4 N · s/m, P = 0.5 N, and ω = 0.5/s. Use a 
numerical method to solve for displacement (x) and velocity (υ = 
dx∕dt) as a function of time with the initial conditions x = υ = 0. 
Express your results graphically as time-series plots (x and υ versus t) 
and a phase-plane plot (υ versus x). Perform simulations for both  
(a) linear (k1 = 1; k3 = 0) and (b) nonlinear (k1 = 1; k3 = 0.5) springs.
28.56 The differential equation for the velocity of a bungee jumper 
is different depending on whether the jumper has fallen to a distance 
where the cord is fully extended and begins to stretch. Thus, if the 
distance fallen is less than the cord length, the jumper is only subject 
to gravitational and drag forces. Once the cord begins to stretch, the 
spring and dampening forces of the cord must also be included. 
These two conditions can be expressed by the following equations:

dυ

dt
= g − sign(υ) 

cd

m
 υ2  x ≤ L

dυ

dt
= g − sign(υ) 

cd

m
 υ2 −

k

m
 (x − L) −

γ

m
 υ  x > L

where υ = velocity (m/s), t = time (s), g = gravitational constant 
(= 9.81 m/s2), sign(υ) = function that returns −1, 0, and 1 for 
negative, zero, and positive x, respectively, cd = second-order drag 

28.53 A forced damped spring-mass system (Fig. P28.53) has the 
following ordinary differential equation of motion:

m
d 

2x

dt2 + a ∣ dx

dt ∣ dx

dt
+ kx = Fo sin (ωt)

where x = displacement from the equilibrium position, t = time, m = 
2 kg mass, a = 5 N/(m/s)2, and k = 6 N/m. The damping term is non-
linear and represents air damping. The forcing function Fo sin (ωt) has 
values of Fo = 2.5 N and ω = 0.5 rad/sec. The initial conditions are

Initial velocity 
dx

dt
= 0 m/s

Initial displacement x = 1 m

Solve this equation using a numerical method over the time period 
0 ≤ t ≤ 15 s. Plot the displacement and velocity versus time, and 
plot the forcing function on the same curve. Also, develop a sepa-
rate plot of velocity versus displacement.
28.54 The temperature distribution in a tapered conical cooling fin 
(Fig. P28.54) is described by the following differential equation, 
which has been nondimensionalized,

d 
2u

dx2 + (
2
x)(

du

dx
− pu) = 0

where u = temperature (0 ≤ u ≤ 1), x = axial distance (0 ≤ x ≤ 1), 
and p is a nondimensional parameter that describes the heat transfer 
and geometry,

p =
hL

k
 √1 +

4
2m2

where h = a heat transfer coefficient, k = thermal conductivity, L = 
the length or height of the cone, and m = the slope of the cone wall. 
The equation has the boundary conditions

u(x = 0) = 0   u(x = 1) = 1

Solve this equation for the temperature distribution using finite-
difference methods. Use second-order accurate finite-difference 

Air damping

k

x

m
Fo sin(ωt)

FIGURE P28.53

u(x = 1) = 1

u(x = 0) = 0

x

x = 1

FIGURE P28.54
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(c) Develop plots of y versus t and y versus x. Use the plots to 
graphically estimate when and where the jumper would hit the 
ground if the chute failed to open.

(d) At what angle would the parachutist be traveling in the last 
whole second before impact?

28.59 As depicted in Fig. P28.59, a double pendulum consists of a 
pendulum attached to another pendulum. We indicate the upper and 
lower pendulums by subscripts 1 and 2, respectively, and we place 
the origin at the pivot point of the upper pendulum with y increas-
ing upwards. We further assume that the system oscillates in a ver-
tical plane subject to gravity, that the pendulum rods are massless 
and rigid, and that the pendulum masses are considered to be point 
masses. Under these assumptions, force balances can be used to 
derive the following equations of motion:

coefficient (kg/m), m = mass (kg), k = cord spring constant (N/m), 
γ = cord dampening coefficient (N s/m), and L = cord length (m). 
Determine the position and velocity of the jumper given the 

x

k1

L1 w1 L2 w2

x10 x2

k2

m1 m2

FIGURE P28.57

x

L1

L2

m1

m2

y

θ1

θ2

FIGURE P28.59
A double pendulum.

 following parameters: L = 30 m, m = 68.1 kg, cd = 0.25 kg/m, k = 
40 N/m, and γ = 8 kg/s. Perform the computation from t = 0 to  
50 s and assume that the initial conditions are x(0) = υ(0) = 0.
28.57 Two masses are attached to a wall by linear springs (Fig. 
P28.57). Force balances based on Newton’s second law can be 
 written as

d 
2x1

dt 

2 = −
k1

m1
 (x1 − L1) +

k2

m1
 (x2 − x1 − w1 − L2)

d 
2x2

dt 

2 = −
k2

m2
 (x2 − x1 − w1 − L2)

where k = the spring constants, m = mass, L = the length of the 
unstretched spring, and w = the width of the mass. Compute the 
positions of the masses as a function of time using the following pa-
rameter values: k1 = k2 = 5, m1 = m2 = 2, w1 = w2 = 5, and L1 = L2 = 
2. Set the initial conditions as x1 = L1 and x2 = L1 + w1 +  
L2 + 6. Perform the simulation from t = 0 to 20. Construct time- 
series plots of both the displacements and the velocities. In addition, 
produce a phase-plane plot of x1 versus x2.
28.58 Suppose that a parachutist with linear drag (m = 70 kg, cd = 
12.5 kg/s) jumps from an airplane flying at an altitude of 200 m 
with a horizontal velocity of 180 m/s relative to the ground.
(a) Write a system of four differential equations for x, y, dx/dt, and 

dy/dt.
(b) If the initial horizontal position is defined as x = 0, use Excel, 

MATLAB, Mathcad, or some other computing tool to imple-
ment Euler’s method with Δt = 1 s to compute the jumper’s 
position over the first 10 seconds.

d2θ1

dt2 =
−g(2m1 + m2) sin θ1 − m2g sin (θ1 − 2θ2) − 2 sin (θ1 − θ2)m2(dθ2∕dt)2L2 + (dθ1∕dt)2L1 cos (θ1 − θ2)

L1[2m1 + m2 − m2 cos (2θ1 − 2θ2) ]

d2θ2

dt2 =
2 sin (θ1 − θ2) ((dθ1∕dt)2

 L1(m1 + m2) + g(m1 + m2) cos (θ1) + (dθ2∕dt)2L2m2 cos (θ1 − θ2))
L2[2m1 + m2 − m2 cos (2θ1 − 2θ2) ]

where the subscripts 1 and 2 designate the top and bottom pendulum, 
respectively, θ = angle (radians) with 0 = vertical downwards and 
counterclockwise positive, t = time (s), g = gravitational accelera-
tion (= 9.81 m/s2), m = mass (kg), and L = length (m). Note that the 
x and y coordinates of the masses are functions of the angles, as in

x1 = L1 sin θ1    y1 = −L1 cos θ1   
x2 = x1 + L2 sin θ2  y2 = y1 − L2 cos θ2

Numerically solve for the angles and angular velocities of the 
masses as a function of time from t = 0 to 25 s. Create a time-series 
plot of your results. Test your code for the following:
Case 1 (small displacement): L1 = L2 = 1 m, m1 = m2 = 0.25 kg, 
with initial conditions θ1 = 0.5 m and θ2 = dθ1/dt = dθ1/dt = 0.
Case 2 (large displacement): L1 = L2 = 1 m, m1 = 0.5 kg, m2 =  
0.25 kg, with initial conditions θ1 = 1 m and θ2 = dθ1/dt = dθ1/dt = 0.
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 PT7.4 TRADE-OFFS
Table PT7.3 contains trade-offs associated with numerical methods for the solution of 
initial-value ordinary differential equations. The factors in this table must be evaluated 
by the engineer when selecting a method for each particular applied problem.
 Simple self-starting techniques such as Euler’s method can be used if the problem 
requirements involve a short range of integration. In this case, adequate accuracy may 
be obtained using small step sizes to avoid large truncation errors, and the round-off 
errors may be acceptable. Euler’s method may also be appropriate for cases where the 
mathematical model has an inherently high level of uncertainty or has coefficients or 
forcing functions with significant errors, as might arise during a measurement process. 
In this case, the accuracy of the model itself simply does not justify the effort involved 
to employ a more complicated numerical method. Finally, the simpler techniques may 
be best when the problem or simulation need only be performed a few times. In these 
applications, it is probably best to use a simple method that is easy to program and 

TABLE PT7.3  Comparison of the characteristics of alternative methods for the numerical  
solution of ODEs. The comparisons are based on general experience  
and do not account for the behavior of special functions.

 Starting Iterations Global Ease of Changing Programming  
Method Values  Required  Error  Step Size  Effort Comments

One-step
 Euler’s 1 No O(h) Easy Easy Good for quick estimates
 Heun’s 1 Yes O(h2) Easy Moderate —
 Midpoint 1 No O(h2) Easy Moderate —
 Second-order Ralston 1 No O(h2) Easy Moderate  The second-order RK 

method that minimizes 
truncation error

Fourth-order RK 1 No O(h4) Easy Moderate Widely used
Adaptive fourth-order
RK or RK-Fehlberg 1 No O(h5)* Easy Moderate to Error estimate allows  
     difficult  step-size adjustment
Multistep
 Non-self-starting 2 Yes O(h3)* Difficult Moderate to  Simple multistep method 
 Heun     difficult†
Milne’s 4 Yes O(h5)* Difficult Moderate to  Sometimes unstable 
     difficult†
Fourth-order Adams 4 Yes O(h5)* Difficult Moderate to  
     difficult† 

*Provided the error estimate is used to modify the solution.
†With variable step size.
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understand, despite the fact that the method may be computationally inefficient and 
relatively time-consuming to run on the computer.
 If the range of integration of the problem is long enough to involve a large number 
of steps, then it may be necessary and appropriate to use a more accurate technique than 
Euler’s method. The fourth-order RK method is popular and reliable for many engineer-
ing problems. In these cases, it may also be advisable to estimate the truncation error 
for each step as a guide to selecting the best step size. This can be accomplished with 
the adaptive RK or fourth-order Adams approaches. If the truncation errors are extremely 
small, it may be wise to increase the step size to save computer time. On the other hand, 
if the truncation error is large, the step size should be decreased to avoid accumulation 
of error. Milne’s method should be avoided if significant stability problems are expected. 
The Runge-Kutta method is simple to program and convenient to use but may be less 
efficient than the multistep methods. However, the Runge-Kutta method is usually em-
ployed in any event to obtain starting values for the multistep methods.
 A large number of engineering problems may fall into an intermediate range of in-
tegration interval and accuracy requirement. In these cases, the second-order RK and the 
non-self-starting Heun methods are simple to use and are relatively efficient and accurate.
 Stiff systems involve equations with slowly and rapidly varying components. Special 
techniques are usually required for the adequate solution of stiff equations. For example, 
implicit approaches are often used. You can consult Enright et al. (1975), Gear (1971), 
and Shampine and Gear (1979) for additional information regarding these techniques.
 A variety of techniques are available for solving eigenvalue problems. For small systems 
or where only a few of the smallest or largest eigenvalues are required, simple approaches 
such as the polynomial and the power methods are available. For symmetric systems, Jacobi’s, 
Given’s, or Householder’s method can be employed. Finally, the QR method represents a 
general approach for finding all the eigenvalues of symmetric and nonsymmetric matrices.

 PT7.5 IMPORTANT RELATIONSHIPS AND FORMULAS
Table PT7.4 summarizes important information that was presented in Part Seven. This 
table can be consulted to quickly access important relationships and formulas.

 PT7.6 ADVANCED METHODS AND ADDITIONAL REFERENCES
Although we have reviewed a number of techniques for solving ordinary differential 
equations, there is additional information that is important in engineering practice. The 
question of stability was introduced in Sec. 26.2.4. This topic has general relevance to 
all methods for solving ODEs. Further discussion of the topic can be pursued in Carnahan, 
Luther, and Wilkes (1969), Gear (1971), and Hildebrand (1974).
 In Chap. 27, we introduced methods for solving boundary-value problems. Isaacson 
and Keller (1966), Keller (1968), Na (1979), and Scott and Watts (1976) can be consulted 
for additional information on standard boundary-value problems. Additional material on 
eigenvalues can be found in Ralston and Rabinowitz (1978), Wilkinson (1965), Fadeev 
and Fadeeva (1963), and Householder (1953, 1964).
 In summary, the foregoing is intended to provide you with avenues for deeper explo-
ration of the subject. Additionally, all the above references provide descriptions of the basic 
techniques covered in Part Seven. We urge you to consult these alternative sources to 
broaden your understanding of numerical methods for the solution of differential equations.
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 PT8.1 MOTIVATION
Given a function u that depends on both x and y, the partial derivative of u with respect 
to x at an arbitrary point (x, y) is defined as

∂u

∂x
= lim

Δx→0

u(x + Δx, y) − u(x, y)
Δx

 (PT8.1)

Similarly, the partial derivative with respect to y is defined as

∂u

∂y
= lim

Δy→0

u(x, y + Δy) − u(x, y)
Δy

 (PT8.2)

An equation involving partial derivatives of an unknown function of two or more inde-
pendent variables is called a partial differential equation, or PDE. For example,

∂2u

∂x2 + 2xy 
∂2u

∂y2 + u = 1 (PT8.3)

∂3u

∂x2∂y
+ x 

∂2u

∂y2 + 8u = 5y (PT8.4)

(
∂2u

∂x2)
3

+ 6 

∂3u

∂x∂y2 = x (PT8.5)

∂2u

∂x2 + xu 

∂u

∂y
= x (PT8.6)

The order of a PDE is that of the highest-order partial derivative appearing in the equa-
tion. For example, Eqs. (PT8.3) and (PT8.4) are second- and third-order, respectively.
 A partial differential equation is said to be linear if it is linear in the unknown 
function and all its derivatives, with coefficients depending only on the independent 
variables. For example, Eqs. (PT8.3) and (PT8.4) are linear, whereas Eqs. (PT8.5) and 
(PT8.6) are not.

PARTIAL DIFFERENTIAL 
EQUATIONS
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 PT8.1 MOTIVATION 859

 Because of their widespread application in engineering, our treatment of PDEs will 
focus on linear, second-order equations. For two independent variables, such equations 
can be expressed in the following general form:

A 

∂2u

∂x2 + B 

∂2u

∂x∂y
+ C 

∂2u

∂y2 + D = 0 (PT8.7)

where A, B, and C are functions of x and y and D is a function of x, y, u, ∂u∕∂x, and 
∂u∕∂y. Depending on the values of the coefficients of the second-derivative terms—A, B, 
C—Eq. (PT8.7) can be classified into one of three categories (Table PT8.1). This classi-
fication, which is based on the method of characteristics, for example, see Vichnevetsky 
(1981) or Lapidus and Pinder (1981), is useful because each category relates to specific 
and distinct engineering problem contexts that demand special solution techniques. It 
should be noted that for cases where A, B, and C depend on x and y, the equation may 
actually fall into a different category, depending on the location in the domain for which 
the equation holds. For simplicity, we will limit the present discussion to PDEs that remain 
exclusively in one of the categories.

PT8.1.1 PDEs and Engineering Practice
Each of the categories of partial differential equations in Table PT8.1 conforms to spe-
cific kinds of engineering problems. The initial sections of the following chapters will 
be devoted to deriving each type of equation for a particular engineering problem context. 
For the time being, we will discuss the general properties and applications of each type 
and show how they can be employed in different physical contexts.
 Elliptic equations are typically used to characterize steady-state systems. As in the 
Laplace equation in Table PT8.1, this is indicated by the absence of a time derivative. 
Thus, these equations are typically employed to determine the steady-state distribution 
of an unknown in two spatial dimensions.

TABLE PT8.1  Categories into which linear, second-order partial differential equations in 
two variables can be classified.

 B2 − 4AC Category Example

 < 0 Elliptic Laplace equation (steady state with two spatial dimensions),

   
∂2T

∂x2 +
∂2T

∂y 

2 = 0

 = 0 Parabolic  Heat-conduction equation (time variable with one spatial 
dimension),

   
∂T
∂t

= k′ 
∂2T

∂x2

 > 0 Hyperbolic Wave equation (time variable with one spatial dimension),

   
∂2y

∂x2 =
1

c2 
∂2y

∂t 

2
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860 PARTIAL DIFFERENTIAL EQUATIONS

 A simple example is the heated plate in Fig. PT8.1a. For this case, the boundaries 
of the plate are held at different temperatures. Because heat flows from regions of high 
to low temperature, the boundary conditions set up a potential that leads to heat flow 
from the hot to the cool boundaries. If sufficient time elapses, such a system will even-
tually reach the stable, or steady-state, distribution of temperature depicted in Fig. PT8.1a. 
The Laplace equation, along with appropriate boundary conditions, provides a means to 
determine this distribution. By analogy, the same approach can be employed to tackle 
other problems involving potentials, such as seepage of water under a dam (Fig. PT8.1b) 
or the distribution of an electric field (Fig. PT8.1c).
 In contrast to the elliptic category, parabolic equations determine how an unknown 
varies in both space and time. This is manifested by the presence of both spatial and 
temporal derivatives in the heat-conduction equation from Table PT8.1. Such cases 
are referred to as propagation problems because the solution “propagates,” or changes, 
in time.
 A simple example is a long, thin rod that is insulated everywhere except at its end 
(Fig. PT8.2a). The insulation is employed to avoid complications due to heat loss along 
the rod’s length. As was the case for the heated plate in Fig. PT8.1a, the ends of the rod 
are set at fixed temperatures. However, in contrast to Fig. PT8.1a, the rod’s thinness 
allows us to assume that heat is distributed evenly over its cross section—that is, later-
ally. Consequently, lateral heat flow is not an issue, and the problem reduces to studying 
the conduction of heat along the rod’s longitudinal axis. Rather than focusing on the 
steady-state distribution in two spatial dimensions, the problem shifts to determining how 
the one-dimensional spatial distribution changes as a function of time (Fig. PT8.2b). 
Thus, the solution consists of a series of spatial distributions corresponding to the state 

Conductor

Dam

Flow line

Impermeable rock

Equipotential
line

Hot

Cool

CoolHot

(a) (b) (c)

FIGURE PT8.1
Three steady-state distribution problems that can be characterized by elliptic PDEs. (a) Temperature  
distribution on a heated plate, (b) seepage of water under a dam, and (c) the electric  
field near the point of a conductor.
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FIGURE PT8.2
(a) A long, thin rod that is  
insulated everywhere but at its  
end. The dynamics of the one- 
dimensional distribution of  
temperature along the rod’s  
length can be described by a  
parabolic PDE. (b) The solution,  
consisting of distributions  
corresponding to the state of the  
rod at various times.

T

x

(a)

(b)

CoolHot

t = 3Δt
t = 2Δtt = Δt

t = 0

of the rod at various times. Using an analogy from photography, the elliptic case yields 
a portrait of a system’s stable state, whereas the parabolic case provides a motion picture 
of how it changes from one state to another. As with the other types of PDEs described 
herein, parabolic equations can be used to characterize a wide variety of other engineer-
ing problem contexts by analogy.
 The final class of PDEs, the hyperbolic category, also deals with propagation prob-
lems. However, an important distinction manifested by the wave equation in Table PT8.1 
is that the unknown is characterized by a second derivative with respect to time. As a 
consequence, the solution oscillates.
 The vibrating string in Fig. PT8.3 is a simple physical model that can be described 
with the wave equation. The solution consists of a number of characteristic states with 
which the string oscillates. A variety of engineering systems such as vibrations of rods and 
beams, motion of fluid waves, and transmission of sound and electrical signals can be 
characterized by this model.

PT8.1.2 Precomputer Methods for Solving PDEs
Prior to the advent of digital computers, engineers relied on analytical or exact solutions 
of partial differential equations. Aside from the simplest cases, these solutions often 
required a great deal of effort and mathematical sophistication. In addition, many phys-
ical systems could not be solved directly but had to be simplified using linearizations, 

FIGURE PT8.3
A taut string vibrating at a low  
amplitude is a simple physical  
system that can be characterized  
by a hyperbolic PDE.
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simple geometric representations, and other idealizations. Although these solutions are 
elegant and yield insight, they are limited with respect to how faithfully they represent 
real systems—especially those that are highly nonlinear and irregularly shaped.

 PT8.2 ORIENTATION
Before we proceed to the numerical methods for solving partial differential equations, 
some orientation might be helpful. The following material is intended to provide you 
with an overview of the material discussed in Part Eight. In addition, we have formulated 
objectives to focus your studies in the subject area.

PT8.2.1 Scope and Preview
Figure PT8.4 provides an overview of Part Eight. Two broad categories of numerical 
methods will be discussed in this part of this book. Finite-difference approaches, which 
are covered in Chaps. 29 and 30, are based on approximating the solution at a finite 
number of points. In contrast, the finite-element method, covered in Chap. 31, approxi-
mates the solution in pieces, or “elements.” Various parameters are adjusted until these 
approximations conform to the underlying differential equation in an optimal sense.
 Chapter 29 is devoted to finite-difference solutions of elliptic equations. Before 
launching into the methods, we derive the Laplace equation for the physical problem 
context of the temperature distribution for a heated plate. Then, a standard solution 
approach, the Liebmann method, is described. We will illustrate how this approach is 
used to compute the distribution of the primary scalar variable, temperature, as well as 
a secondary vector variable, heat flux. The third section of the chapter deals with bound-
ary conditions. This material includes procedures to handle different types of conditions 
as well as irregular boundaries.
 In Chap. 30, we turn to finite-difference solutions of parabolic equations. As with the 
discussion of elliptic equations, we first provide an introduction to a physical problem 
context, the heat-conduction equation for a one-dimensional rod. Then we introduce both 
explicit and implicit algorithms for solving this equation. This is followed by an efficient 
and reliable implicit method—the Crank-Nicolson technique. Finally, we describe a particu-
larly effective approach for solving two-dimensional parabolic equations—the alternating-
direction implicit, or ADI, method.
 Note that, because they are somewhat beyond the scope of this book, we have chosen 
to omit hyperbolic equations. The epilogue of this part of the book contains references 
related to this type of PDE.
 In Chap. 31, we turn to the other major approach for solving PDEs—the finite-element 
method. Because it is so fundamentally different from the finite-difference approach, we 
devote the initial section of the chapter to a general overview. Then we show how the 
finite-element method is used to compute the steady-state temperature distribution of a 
heated rod. Finally, we provide an introduction to some of the issues involved in extending 
such an analysis to two-dimensional problem contexts.
 Chapter 32 is devoted to applications from all fields of engineering. Finally, a short 
review section is included at the end of Part Eight. This epilogue summarizes important 
information related to PDEs. This material includes a discussion of trade-offs that are 
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CHAPTER 29
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Elliptic
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PART EIGHT
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CHAPTER 30
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CHAPTER 31
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Method

CHAPTER 32
Case Studies

EPILOGUE

30.4
Crank-
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30.3
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30.2
Explicit

methods

30.1
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PT 8.5
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methods
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Boundary
conditions

29.4
Control-volume

approach

29.5
Computer
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29.1
Laplace
equation

30.5
ADI

FIGURE PT8.4
Schematic representation of the organization of material in Part Eight: Partial Differential Equations.

 relevant to their implementation in engineering practice. The epilogue also includes refer-
ences for advanced topics.

PT8.2.2 Goals and Objectives
Study Objectives. After completing Part Eight, you should have greatly enhanced your 
capability to confront and solve partial differential equations. General study goals should 
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include mastering the techniques, having the capability to assess the reliability of the 
answers, and being able to choose the “best’’ method (or methods) for any particular 
problem. In addition to these general objectives, the specific study objectives in Table 
PT8.2 should be mastered.

Computer Objectives. Computer algorithms can be developed for many of the methods 
in Part Eight. For example, you may find it instructive to develop a general program to 
simulate the steady-state distribution of temperature on a heated plate. Further, you might 
want to develop programs to implement both the simple explicit and the Crank-Nicolson 
methods for solving parabolic PDEs in one spatial dimension.
 Finally, one of your most important goals should be to master several of the general-
purpose software packages that are widely available. In particular, you should become 
adept at using these tools to implement numerical methods for engineering problem 
solving.

TABLE PT8.2 Specific study objectives for Part Eight.

 1. Recognize the difference between elliptic, parabolic, and hyperbolic PDEs.
 2. Understand the fundamental difference between finite-difference and finite-element approaches.
 3. Recognize that the Liebmann method is equivalent to the Gauss-Seidel approach for solving 

simultaneous linear algebraic equations.
 4. Know how to determine secondary variables for two-dimensional field problems.
 5. Recognize the distinction between Dirichlet and derivative boundary conditions.
 6. Understand how to use weighting factors to incorporate irregular boundaries into a finite-

difference scheme for PDEs.
 7. Understand how to implement the control-volume approach for implementing numerical solutions  

of PDEs.
 8. Know the difference between convergence and stability of parabolic PDEs.
 9. Understand the difference between explicit and implicit schemes for solving parabolic PDEs.
 10. Recognize how the stability criteria for explicit methods detract from their utility for solving  

parabolic PDEs.
 11. Know how to interpret computational molecules.
 12. Recognize how the ADI approach achieves high efficiency in solving parabolic equations in two 

spatial dimensions.
 13. Understand the difference between the direct method and the method of weighted residuals for 

deriving element equations.
 14. Know how to implement Galerkin’s method.
 15. Understand the benefits of integration by parts during the derivation of element equations; in 

particular, recognize the implications of lowering the highest derivative from a second to a  
first derivative.
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C H A P T E R

29
Finite Difference: Elliptic 
Equations

Elliptic equations in engineering are typically used to characterize steady-state, boundary-
value problems. Before demonstrating how they can be solved, we will illustrate how a 
simple case—the Laplace equation—is derived from a physical problem context.

 29.1 THE LAPLACE EQUATION
As mentioned in the introduction to this part of the book, the Laplace equation can be 
used to model a variety of problems involving the potential of an unknown variable. 
Because of its simplicity and general relevance to most areas of engineering, we will use 
a heated plate as our fundamental context for deriving and solving this elliptic PDE. 
Homework problems and engineering applications (Chap. 32) will be employed to illus-
trate the applicability of the model to other engineering problem contexts.
 Figure 29.1 shows an element on the face of a thin rectangular plate of thickness Δz. 
The plate is insulated everywhere but at its edges, where the temperature can be set at a 
prescribed level. The insulation and the thinness of the plate mean that heat transfer is 
limited to the x and y dimensions. At steady state, the flow of heat into the element over 
a unit time period Δt must equal the flow out, as in

 q(x)Δy Δz Δt + q(y) Δx Δz Δt = q(x + Δx)Δy Δz Δt  
  + q(y + Δy)Δx Δz Δt (29.1)

where q(x) and q(y) = the heat fluxes at x and y, respectively [cal/(cm2 s)]. Dividing by 
Δz and Δt and collecting terms yields

[q(x) − q(x + Δx) ]Δy + [q(y) − q(y + Δy) ]Δx = 0

Multiplying the first term by Δx∕Δx and the second by Δy∕Δy gives
q(x) − q(x + Δx)

Δx
 Δx Δy +

q(y) − q(y + Δy)
Δy

 Δy Δx = 0 (29.2)

Dividing by Δx Δy and taking the limit results in

−
∂q

∂x
−

∂q

∂y
= 0 (29.3)

where the partial derivatives result from the definitions in Eqs. (PT8.1) and (PT8.2).
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866 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

 Equation (29.3) is a partial differential equation that is an expression of the conserva-
tion of energy for the plate. However, unless heat fluxes are specified at the plate’s edges, 
it cannot be solved. Because temperature boundary conditions are given, Eq. (29.3) must 
be reformulated in terms of temperature. The link between flux and temperature is pro-
vided by Fourier’s law of heat conduction, which can be represented as

qi = −kρC 
∂T

∂i
 (29.4)

where qi = heat flux in the direction of the i dimension [cal/(cm2 s)], k = coefficient of 
thermal diffusivity (cm2/s), ρ = density of the material (g/cm3), C = heat capacity of the 
material [cal/(g °C)], and T = temperature (°C), which is defined as

T =
H

ρCV

where H = heat (cal) and V = volume (cm3). Sometimes the term in front of the dif-
ferential in Eq. (29.4) is treated as a single term,

k′ = kρC (29.5)

where k′ is referred to as the coefficient of thermal conductivity [cal/(s cm °C)]. In either 
case, both k and k′ are parameters that reflect how well the material conducts heat.
 Fourier’s law is sometimes referred to as a constitutive equation. It is given this label 
because it provides a mechanism that defines the system’s internal interactions. Inspec-
tion of Eq. (29.4) indicates that Fourier’s law specifies that heat flux perpendicular to 

FIGURE 29.1
A thin plate of thickness Δz. An element is shown about which a heat balance is taken.

Δz

Δx

Δy

q(y)

q(x)

y

x

q(x + Δx)

q(y + Δy)
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the i axis is proportional to the gradient or slope of temperature in the i direction. The 
negative sign ensures that a positive flux in the direction of i results from a negative 
slope from high to low temperature (Fig. 29.2). Substituting Eq. (29.4) into Eq. (29.3) 
results in

∂2T

∂x2 +
∂2T

∂y2 = 0 (29.6)

which is the Laplace equation. Note that for the case where there are sources or sinks 
of heat within the two-dimensional domain, the equation can be represented as

∂2T

∂x2 +
∂2T

∂y2 = f(x, y) (29.7)

where f(x, y) is a function describing the sources or sinks of heat. Equation (29.7) is 
referred to as the Poisson equation.

 29.2 SOLUTION TECHNIQUE
The numerical solution of elliptic PDEs such as the Laplace equation proceeds in the 
reverse manner of the derivation of Eq. (29.6) from the preceding section. Recall that 
the derivation of Eq. (29.6) employed a balance around a discrete element to yield an 
algebraic difference equation characterizing heat flux for a plate. Taking the limit turned 
this difference equation into a differential equation [Eq. (29.3)].
 For the numerical solution, finite-difference representations based on treating the plate 
as a grid of discrete points (Fig. 29.3) are substituted for the partial derivatives in Eq. 
(29.6). As described next, the PDE is transformed into an algebraic difference equation.

FIGURE 29.2
Graphical depiction of a temperature gradient. Because heat moves ”downhill” from high to 
low temperature, the flow in (a) is from left to right in the positive i direction. However, due to 
the orientation of Cartesian coordinates, the slope is negative for this case. Thus, a negative 
gradient leads to a positive flow. This is the origin of the minus sign in Fourier’s law of heat 
conduction. The reverse case is depicted in (b), where the positive gradient leads to a nega-
tive heat flow from right to left.

T

i

(b)(a)

Direction of
heat flow

T

i

Direction of
heat flow

 ∂T

 ∂i
 < 0

 ∂T

 ∂i 
 > 0
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868 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

29.2.1 The Laplacian Difference Equation
Central differences based on the grid scheme from Fig. 29.3 are (recall Fig. 23.3)

∂2T

∂x2 =
Ti+1, j − 2Ti, j + Ti−1, j

Δx2

and
∂2T

∂y2 =
Ti, j+1 − 2Ti, j + Ti, j−1

Δy2

which have errors of O[Δ(x)2] and O[Δ(y)2], respectively. Substituting these expressions 
into Eq. (29.6) gives

Ti+1, j − 2Ti, j + Ti−1, j

Δx2 +
Ti, j+1 − 2Ti, j + Ti, j−1

Δy2 = 0

For the square grid in Fig. 29.3, Δx = Δy, and by collection of terms, the equation 
becomes

Ti+1, j + Ti−1, j + Ti, j+1 + Ti, j−1 − 4Ti, j = 0 (29.8)

This relationship, which holds for all interior points on the plate, is referred to as the 
Laplacian difference equation.
 In addition, boundary conditions along the edges of the plate must be specified to obtain 
a unique solution. The simplest case is where the temperature at the boundary is set at a fixed 
value. This is called a Dirichlet boundary condition. Such is the case for Fig. 29.4, where 

FIGURE 29.3
A grid used for the finite-difference solution of elliptic PDEs in two independent variables, 
such as the Laplace equation.

y

x

i – 1, j i + 1, j

0, n + 1
m + 1, n + 1

m + 1, 0

i, j – 1

i, j + 1

0, 0

i, j
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 29.2 SOLUTION TECHNIQUE 869

the edges are held at constant temperatures. For the case illustrated in Fig. 29.4, a balance 
for node (1, 1) is, according to Eq. (29.8),

T21 + T01 + T12 + T10 − 4T11 = 0 (29.9)

However, T01 = 75 and T10 = 0, and therefore, Eq. (29.9) can be expressed as

−4T11 + T12 + T21 = −75

 Similar equations can be developed for the other interior points. The result is the 
following set of nine simultaneous equations with nine unknowns:

4T11 −T21 −T12 =   75
−T11 +4T21 −T31 −T22 =     0

−T21 +4T31 −T32 =   50
−T11 +4T12 −T22 −T13 =   75

−T21 −T12 +4T22 −T32 −T23 =     0
−T31 −T22 +4T32 −T33 =   50

−T12 +4T13 −T23 = 175
−T22 −T13 +4T23 −T33 = 100

−T32 −T23 +4T33 = 150

 

 
(29.10)

29.2.2 The Liebmann Method
Most numerical solutions of the Laplace equation involve systems that are much larger 
than Eq. (29.10). For example, a 10-by-10 grid involves 100 linear algebraic equations. 
Solution techniques for these types of equations were discussed in Part Three.

FIGURE 29.4
A heated plate where boundary temperatures are held at constant levels. This case is called 
a Dirichlet boundary condition.

(1, 3) (2, 3) (3, 3)

(1, 2) (2, 2) (3, 2)

(1, 1) (2, 1) (3, 1)

100°C

0°C

75°C 50°C
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870 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

 Notice that there is a maximum of five unknown terms per line in Eq. (29.10). For 
larger-sized grids, this means that a significant number of the terms will be zero. When 
applied to such sparse systems, full-matrix elimination methods waste great amounts of 
computer memory storing these zeros. For this reason, approximate methods provide a 
viable approach for obtaining solutions for elliptical equations. The most commonly 
employed approach is Gauss-Seidel, which when applied to PDEs is also referred to as 
Liebmann’s method. In this technique, Eq. (29.8) is expressed as

Ti, j =
Ti+1, j + Ti−1, j + Ti, j+1 + Ti, j−1

4
 (29.11)

and solved iteratively for j = 1 to n and i = 1 to m. Because Eq. (29.8) is diagonally 
dominant, this procedure will eventually converge on a stable solution (recall Sec. 11.2.1). 
Overrelaxation is sometimes employed to accelerate the rate of convergence by applying 
the following formula after each iteration:

T new
i, j = λT new

i, j + (1 − λ)T old
i, j  (29.12)

where T new
i, j  and T old

i, j  are the values of Ti,j from the present and the previous iteration, 
respectively, and λ is a weighting factor that is set between 1 and 2.
 As with the conventional Gauss-Seidel method, the iterations are repeated until the 
absolute values of all the percent relative errors (εa)i,j fall below a prespecified stopping 
criterion, εs. These percent relative errors are estimated by

∣(εa)i, j∣ = ∣ T new
i, j − T old

i, j

T new
i, j

∣ 100% (29.13)

 EXAMPLE 29.1 Temperature of a Heated Plate with Fixed Boundary Conditions
Problem Statement. Use Liebmann’s method (Gauss-Seidel) to solve for the tem-
perature of the heated plate in Fig. 29.4. Employ overrelaxation with a value of 1.5 for 
the weighting factor and iterate to εs = 1%.

Solution. Equation (29.11) at i = 1,  j = 1 is

T11 =
0 + 75 + 0 + 0

4
= 18.75

and applying overrelaxation yields

T11 = 1.5(18.75) + (1 − 1.5)0 = 28.125

For i = 2,  j = 1,

T21 =
0 + 28.125 + 0 + 0

4
= 7.03125

T21 = 1.5(7.03125) + (1 − 1.5)0 = 10.54688

For i = 3,  j = 1,

T31 =
50 + 10.54688 + 0 + 0

4
= 15.13672
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 29.2 SOLUTION TECHNIQUE 871

T31 = 1.5(15.13672) + (1 − 1.5)0 = 22.70508

The computation is repeated for the other rows to give

T12 = 38.67188  T22 = 18.45703  T32 = 34.18579
T13 = 80.12696  T23 = 74.46900  T33 = 96.99554

Because all the Ti,  j’s are initially zero, all εa’s for the first iteration will be 100%.
 For the second iteration the results are

T11 = 32.51953  T21 = 22.35718  T31 = 28.60108
T12 = 57.95288  T22 = 61.63333  T32 = 71.86833
T13 = 75.21973  T23 = 87.95872  T32 = 67.68736

The error for T1,1 can be estimated as [Eq. (29.13)]

∣(εa)1, 1∣ = ∣ 32.51953 − 28.12500
32.51953 ∣ 100% = 13.5%

Because this value is above the stopping criterion of 1%, the computation is continued. 
The ninth iteration gives the result

T11 = 43.00061  T21 = 33.29755  T31 = 33.88506
T12 = 63.21152  T22 = 56.11238  T32 = 52.33999
T13 = 78.58718  T23 = 76.06402  T33 = 69.71050

where the maximum error is 0.71%.
 Figure 29.5 shows the results. As expected, a gradient is established as heat flows 
from high to low temperatures.

FIGURE 29.5
Temperature distribution for a heated plate subject to fixed boundary conditions.
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872 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

29.2.3 Secondary Variables
Because its distribution is described by the Laplace equation, temperature is considered to 
be the primary variable in the heated-plate problem. For this case, as well as for other 
problems involving PDEs, secondary variables may also be of interest. As a matter of fact, 
in certain engineering contexts, the secondary variable may actually be more important.
 For the heated plate, a secondary variable is the rate of heat flux across the plate’s 
surface. This quantity can be computed from Fourier’s law. Centered finite-difference 
approximations for the first derivatives (recall Fig. 23.3) can be substituted into Eq. (29.4) 
to give the following values for heat flux in the x and y dimensions:

qx = −k′
Ti+1, j − Ti−1, j

2 Δx
 (29.14)

and

qy = −k′
Ti, j+1 − Ti, j−1

2 Δy
 (29.15)

The resultant heat flux can be computed from these two quantities using

qn = √q2
x + q2

y  (29.16)

where the direction of qn is given by

θ = tan−1
(

qy

qx)
 (29.17)

for qx > 0 and

θ = tan−1
(

qy

qx)
+ π (29.18)

for qx < 0. Recall that the angle can be expressed in degrees by multiplying it by 180°/π. 
If qx = 0, θ is π∕2 (90°) or 3π∕2 (270°), depending on whether qy is positive or negative, 
respectively.

 EXAMPLE 29.2 Flux Distribution for a Heated Plate
Problem Statement. Employ the results of Example 29.1 to determine the distribution 
of heat flux for the heated plate from Fig. 29.4. Assume that the plate is 40 × 40 cm 
and is made out of aluminum [k′ = 0.49 cal/(s cm °C)].

Solution. For i = j = 1, Eq. (29.14) can be used to compute

qx = (−0.49 
cal

s cm °C) 
(33.29755 − 75)°C

2(10 cm)
= 1.022 cal/(cm2 s)

and [Eq. (29.15)]

qy = (−0.49 
cal

s cm °C) 
(63.21152 − 0)°C

2(10 cm)
= −1.549 cal/(cm2 s)
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The resultant flux can be computed with Eq. (29.16):

qn = √(1.022)2 + (−1.549)2 = 1.856 cal/(cm2 s)

and the angle of its trajectory by Eq. (29.17)

θ = tan−1
(

−1.549
1.022 ) = −0.98758 ×

180°
π

= −56.584°

Thus, at this point, the heat flux is directed down and to the right. Values at the other 
grid points can be computed; the results are displayed in Fig. 29.6.

 29.3 BOUNDARY CONDITIONS
Because it is free of complicating factors, the rectangular plate with fixed boundary condi-
tions has been an ideal context for showing how elliptic PDEs can be solved numerically. 
We will now elaborate on other issues that will expand our capabilities to address more 
realistic problems. These involve boundaries at which the derivative is specified and bound-
aries that are irregularly shaped.

29.3.1 Derivative Boundary Conditions
The fixed, or Dirichlet, boundary condition discussed to this point is but one of several 
types that are used with partial differential equations. A common alternative is the case 

FIGURE 29.6
Heat flux for a plate subject to fixed boundary temperatures. Note that the lengths of the ar-
rows are proportional to the magnitude of the flux.
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0°C

75°C 50°C
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874 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

where the derivative is given. This is commonly referred to as a Neumann boundary con-
dition. For the heated-plate problem, this amounts to specifying the heat flux rather than 
the temperature at the boundary. One example is the situation where the edge is insulated. 
In this case, the derivative is zero. This conclusion is drawn directly from Eq. (29.4) be-
cause insulating a boundary means that the heat flux (and consequently the gradient) must 
be zero. Another example would be where heat is lost across the edge by predictable 
mechanisms such as radiation or convection.
 Figure 29.7 depicts a node (0,  j) at the left edge of a heated plate. Applying Eq. (29.8) 
at the point gives

T1, j + T−1, j + T0, j+1 + T0, j−1 − 4T0, j = 0 (29.19)

Notice that an imaginary point (−1,  j) lying outside the plate is required for this equation. 
Although this exterior fictitious point might seem to represent a problem, it actually 
serves as the vehicle for incorporating the derivative boundary condition into the prob-
lem. This is done by representing the first derivative in the x dimension at (0,  j) by the 
finite divided difference

∂T

∂x
 ≅ 

T1, j − T−1, j

2 Δx

which can be solved for

T−1, j = T1, j − 2 Δx 
∂T

∂x

Now we have a relationship for T−l,  j that actually includes the derivative. It can be sub-
stituted into Eq. (29.19) to give

2T1, j − 2 Δx 
∂T

∂x
+ T0, j+1 + T0, j−1 − 4T0, j = 0 (29.20)

Thus, we have incorporated the derivative into the balance.
 Similar relationships can be developed for derivative boundary conditions at the 
other edges. The following example shows how this is done for the heated plate.

 EXAMPLE 29.3 Heated Plate with an Insulated Edge
Problem Statement. Repeat the same problem as in Example 29.1, but with the lower 
edge insulated.

Solution. The general equation to characterize a derivative at the lower edge (that is, at 
j = 0) of a heated plate is

Ti+1, 0 + Ti−1, 0 + 2Ti, 1 − 2 Δy 
∂T

∂y
− 4Ti, 0 = 0

For an insulated edge, the derivative is zero and the equation becomes

Ti+1, 0 + Ti−1, 0 + 2Ti, 1 − 4Ti, 0 = 0

T0, j + 1

T0, j – 1

T–1, j T0, j T1, j

FIGURE 29.7
A boundary node (0, j) on the 
left edge of a heated plate. To 
approximate the derivative 
normal to the edge (that is, the 
x derivative), an imaginary 
point (−1, j) is located a dis-
tance Δx beyond the edge.
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The simultaneous equations for temperature distribution on the plate in Fig. 29.4 with 
an insulated lower edge can be written in matrix form as

4 −1 −2
−1 4 −1 −2

−1 4 −2
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1 −1

−1 4 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1
−1 4 −1

−1 −1 4 −1
−1 −1 4

   

T10

T20

T30

T11

T21

T31

T12

T22

T32

T13

T23

T33

  =   

75
0
50
75
0
50
75
0
50
175
100
150

Note that because of the derivative boundary condition, the matrix is increased to 12 × 12, 
in contrast to the 9 × 9 system in Eq. (29.10), to account for the three unknown tem-
peratures along the plate’s lower edge. These equations can be solved for

T10 = 71.91  T20 = 67.01  T30 = 59.54
T11 = 72.81  T21 = 68.31  T31 = 60.57
T12 = 76.01  T22 = 72.84  T32 = 64.42
T13 = 83.41  T23 = 82.63  T33 = 74.26

          

75

75

75

75

50

50

50

50

100 100 100

83.4 82.6 74.3

76.0 72.8 64.4

72.8 68.3 60.6

71.9 67.0 59.5

Insulated

FIGURE 29.8
Temperature and flux distribution for a heated plate subject to fixed boundary conditions ex-
cept for an insulated lower edge.
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876 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

 These results and computed fluxes (for the same parameters as in Example 29.2) are 
displayed in Fig. 29.8. Note that, because the lower edge is insulated, the plate’s tem-
perature is higher than for Fig. 29.5, where the bottom edge temperature is fixed at zero. 
In addition, the heat flow (in contrast to Fig. 29.6) is now deflected to the right and 
moves parallel to the insulated wall.

29.3.2 Irregular Boundaries
Although the rectangular plate from Fig. 29.4 has served well to illustrate the fundamental 
aspects of solving elliptic PDEs, many engineering problems do not exhibit such an ideal-
ized geometry. For example, a great many systems have irregular boundaries (Fig. 29.9).
 Figure 29.9 is a system that can serve to illustrate how nonrectangular boundaries 
can be handled. As depicted, the plate’s lower left boundary is circular. Notice that we 
have affixed parameters—α1, α2, β1, β2—to each of the lengths surrounding the node. Of 
course, for the plate depicted in Fig. 29.9, α2 = β2 = 1. However, we will retain these 
parameters throughout the following derivation so that the resulting equation is generally 
applicable to any irregular boundary—not just one on the lower left-hand corner of a 
heated plate. The first derivatives in the x dimension can be approximated as

(
∂T

∂x)
i−1, i 

≅ 
Ti, j − Ti−1, j

α1 Δx
 (29.21)

and

(
∂T

∂x)
i, i+1 

≅ 
Ti+1, j − Ti, j

α2 Δx
 (29.22)

FIGURE 29.9
A grid for a heated plate with an irregularly shaped boundary. Note how weighting  
coefficients are used to account for the nonuniform spacing in the vicinity of the  
nonrectangular boundary.

β2 Δy

β1 Δy

α1 Δx α2 Δx
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 29.3 BOUNDARY CONDITIONS 877

The second derivatives can be developed from these first derivatives. For the x dimension, 
the second derivative is

∂2T

∂x2 =
∂
∂x(

∂T

∂x) =
(

∂T

∂x)
i, i+1

− (
∂T

∂x)
i−1, i

α1 Δx + α2 Δx

2

 (29.23)

Substituting Eqs. (29.21) and (29.22) into (29.23) gives

∂2T

∂x2 = 2 

Ti−1, j − Ti, j

α1 Δx
−

Ti+1, j − Ti, j

α2 Δx

α1 Δx + α2 Δx

Collecting terms yields

∂2T

∂x2 =
2

Δx2[
Ti−1, j − Ti, j

α1(α1 + α2)
+

Ti+1, j − Ti, j

α2(α1 + α2) ]

A similar equation can be developed in the y dimension:

∂2T

∂y2 =
2

Δy2[
Ti, j−1 − Ti, j

β1(β1 + β2)
+

Ti, j+1 − Ti, j

β2(β1 + β2) ]

Substituting these equations in Eq. (29.6) yields

2
Δx2[

Ti−1, j − Ti, j

α1(α1 + α2)
+

Ti+1, j − Ti, j

α2(α1 + α2) ]

+
2

Δy2[
Ti, j−1 − Ti, j

β1(β1 + β2)
+

Ti, j+1 − Ti, j

β2(β1 + β2) ] = 0 (29.24)

As illustrated in the following example, Eq. (29.24) can be applied to any node that lies 
adjacent to an irregular, Dirichlet-type boundary.

 EXAMPLE 29.4 Heated Plate with an Irregular Boundary
Problem Statement. Repeat the same problem as in Example 29.1, but with the lower 
edge as depicted in Fig. 29.9.

Solution. For the case in Fig. 29.9, Δx = Δy, α1 = β1 = 0.732, and α2 = β2 = 1. 
Substituting these values into Eq. (29.24) yields the following balance for node (1, 1):

0.788675(T01 − T11) + 0.57735(T21 − T11)
 + 0.788675(T10 − T11) + 0.57735(T12 − T11) = 0

Collecting terms, we can express this equation as

−4T11 + 0.8453T21 + 0.8453T12 = −1.1547T01 − 1.1547T10
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The simultaneous equations for temperature distribution on the plate in Fig. 29.9 with a 
lower-edge boundary temperature of 75 can be written in matrix form as

4 −0.845 −0.845
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 −4

   

T11

T21

T31

T12

T22

T32

T13

T23

T33

   =

173.2
75
125
75
0
50
175
100
150

These equations can be solved for

T11 = 74.98  T21 = 72.76  T31 = 66.07
T12 = 74.23  T22 = 75.00  T32 = 66.52
T13 = 83.93  T23 = 83.48  T33 = 75.00

 These results along with the computed fluxes are displayed in Fig. 29.10. Note that 
the fluxes are computed in the same fashion as in Sec. 29.2.3, with the exception that 
(α1 + α2) and (β1 + β2) are substituted for the 2’s in the denominators of Eqs. (29.14) 
and (29.15), respectively. Section 32.3 illustrates how this is done.

           

83.93 83.48 75.00

77.23 75.00 66.52

74.98 72.76 66.07

100°C

75°C

75°C 50°C

FIGURE 29.10
Temperature and flux distribution for a heated plate with a circular boundary.
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 Derivative conditions for irregularly shaped boundaries are more difficult to formu-
late. Figure 29.11 shows a point near an irregular boundary where the normal derivative 
is specified.
 The normal derivative at node 3 can be approximated by the gradient between nodes 
1 and 7,

∂T

∂η ∣
3

=
T1 − T7

L17
 (29.25)

When θ is less than 45° as shown, the distance from node 7 to 8 is Δx tan θ, and linear 
interpolation can be used to estimate

T7 = T8 + (T6 − T8) 

Δx tan θ
Δy

The length L17 is equal to Δx∕cos θ. This length, along with the approximation for T7, 
can be substituted into Eq. (29.25) to give

T1 = (
Δx

cos θ)
∂T

∂η ∣
3
+ T6 

Δx tan θ
Δy

+ T8(1 −
Δx tan θ

Δy ) (29.26)

 Such an equation provides a means for incorporating the normal gradient into the 
finite-difference approach. For cases where θ is greater than 45°, a different equation 
would be used. The determination of this formula will be left as a homework exercise.

 29.4 THE CONTROL-VOLUME APPROACH
To summarize, the finite-difference, or Taylor series, approach divides the continuum into 
nodes (Fig. 29.12a). The underlying partial differential equation is written for each of 
these nodes. Finite-difference approximations are then substituted for the derivatives to 
convert the equations to an algebraic form.

Δx

Δy

θ

8

7

6 5

1
4

3

2

FIGURE 29.11
A curved boundary where the normal gradient is specified.
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880 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

 Such an approach is quite simple and straightforward for orthogonal (that is, rect-
angular) grids and constant coefficients. However, the approach becomes a more difficult 
endeavor for derivative conditions on irregularly shaped boundaries.
 Figure 29.13 is an example of a system where additional difficulties arise. This plate 
is made of two different materials and has unequal grid spacing. In addition, half of its 
top edge is subject to convective heat transfer, whereas half is insulated. Developing 
equations for node (4, 2) would require some additional derivation beyond the approaches 
developed to this point.

FIGURE 29.12
Two different perspectives for developing approximate solutions of PDEs: (a) finite difference 
and (b) control volume.

(a) Pointwise, finite-di�erence
approach

(b) Control-volume
approach

FIGURE 29.13
A heated plate with unequal grid spacing, two materials, and mixed boundary conditions.

Convection
Insulated

In
su

la
te

d

(4, 2)

h
h/2

h

(1, 1)

Material A Material B

Δz

cha32077_ch29_865-885.indd   880 10/21/19   12:45 PM



 29.4 THE CONTROL-VOLUME APPROACH 881

 The control-volume approach (also called the volume-integral approach) offers an 
alternative way to numerically approximate PDEs that is especially useful for cases such 
as Fig. 29.13. As in Fig. 29.12b, the approach resembles the pointwise approach in that 
points are determined across the domain. However, rather than approximating the PDE 
at a point, the approximation is applied to a volume surrounding the point. For an or-
thogonal grid, the volume is formed by the perpendicular lines through the midpoint of 
each line joining adjacent nodes. A heat balance can then be developed for each volume 
in a fashion similar to Eq. (29.1).
 As an example, we will apply the control-volume approach to node (4, 2). First, 
the volume is defined by bisecting the lines joining the nodes. As in Fig. 29.14, the 
volume has conductive heat transfer through its left, right, and lower boundaries and 
convective heat transfer through half of its upper boundary. Notice that the transfer 
through the lower boundary involves both materials.
 A steady-state heat balance for the volume can be written in qualitative terms as

0 = (
left-side

conduction) − (
right-side

conduction) + (
lower conduction

material “a” )

     + (
lower conduction

material “b” ) − (
upper

convection) (29.27)

Now the conduction flux rate can be represented by the finite-difference version of 
 Fourier’s law. For example, for the left-side conduction gain, it would be

q = −k′a 
T42 − T41

h

where q has units of cal/cm2/s. This flux rate must be then multiplied by the area across 
which it enters (Δz × h∕2) to give the rate of heat entering the volume per unit time,

Q = −k′a 
T42 − T41

h
 
h

2
 Δz

where Q has units of cal/s.

h/2

h/2 h/4

4, 1 4, 2 4, 3

3, 2

FIGURE 29.14
A control volume for node (4, 2) with arrows indicating heat transfer through the boundaries.
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882 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

 The heat flux due to convection can be formulated as

q = hc 
(Ta − T42)

where hc = a heat convection coefficient [cal/(s cm2 °C)] and Ta = the air temperature 
(°C). Again, multiplication by the proper area yields the rate of heat flow per time,

Q = hc(Ta − T42) 

h

4
 Δz

 The other transfers can be developed in a similar fashion and substituted into Eq. (29.27) 
to yield

0 = −k′a 
T42 − T41

h
 
h

2
 Δz + k′b 

T43 − T42

h∕2
 
h

2
 Δz

(left-side conduction)(right-side conduction)

−k′a 
T42 − T32

h
 
h

2
 Δz − k′b 

T42 − T32

h
 
h

4
 Δz + hc(Ta − T42) 

h

4
 Δz

(
lower conduction

) (
lower conduction

) (upper convection)
material “a” material “b”  

Parameter values can then be substituted to yield the final heat balance equation. For 
 example, if Δz = 0.5 cm, h = 10 cm, k′a = 0.3 cal/(s cm °C), k′b = 0.5 cal/(s cm °C), 
and hc = 0.1 cal/(s cm2 °C), the equation becomes

0.5875T42 − 0.075T41 − 0.25T43 − 0.1375T32 = 2.5

To make this equation comparable to the standard Laplacian, it can be multiplied by 
4∕0.5875 so that the coefficient of the base node has a coefficient of 4,

4T42 − 0.510638T41 − 1.702128T43 − 0.93617T32 = 17.02128

 For the standard cases covered to this point, the control-volume and pointwise finite-
difference approaches yield identical results. For example, for node (1, 1) in Fig. 29.13, 
the heat balance will be

0 =−k′a 
T11 − T01

h
 h Δz + k′a 

T21 − T11

h
 h Δz − k′a 

T11 − T10

h
 h Δz + k′a 

T12 − T11

h
 h Δz

which simplifies to the standard Laplacian,

0 = 4T11 − T01 − T21 − T12 − T10

We will look at other standard cases (for example, the derivative boundary condition) 
and explore the control-volume approach in additional detail in the problems at the end 
of this chapter.

 29.5 SOFTWARE TO SOLVE ELLIPTIC EQUATIONS
Modifying a computer program to include derivative boundary conditions for rectangular 
systems is a relatively straightforward task. It merely involves ensuring that additional 
equations are generated to characterize the boundary nodes at which the derivatives are 
specified. In addition, the code must be modified so that these equations incorporate the 
derivative, as seen in Eq. (29.20).
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 Developing general software to characterize systems with irregular boundaries is a 
much more difficult proposition. For example, a fairly involved algorithm would be required 
to model the simple gasket depicted in Fig. 29.15. This would involve two major modifica-
tions. First, a scheme would have to be developed to conveniently input the configuration 
of the nodes and to identify which were at the boundary. Second, an algorithm would be 
required to generate the proper simultaneous equations on the basis of the input informa-
tion. The net result is that general software for solving elliptic (and for that matter, all) 
PDEs is relatively complicated.
 One method used to simplify such efforts is to require a very fine grid. For such cases, 
it is often assumed that the closest node serves as the boundary point. In this way, the 
analysis does not have to consider the weighting parameters from Sec. 29.3.2. Although 
this introduces some error, the use of a sufficiently fine mesh can make the resulting dis-
crepancy negligible. However, this involves a trade-off due to the computational burden 
introduced by the increased number of simultaneous equations.
 As a consequence of these considerations, numerical analysts have developed alterna-
tive approaches that differ radically from finite-difference methods. Although these finite-
element methods are more conceptually difficult, they can much more easily accommodate 
irregular boundaries. We will turn to these methods in Chap. 31. Before doing this, 
however, we will first describe finite-difference approaches for another category of 
PDEs—parabolic equations.

FIGURE 29.15
A finite-difference grid  
superimposed on an irregularly  
shaped gasket.

PROBLEMS

29.1 Use Liebmann’s method to solve for the temperature of the 
square heated plate in Fig. 29.4, but with the upper boundary condi-
tion increased to 175°C and the left boundary insulated. Use a 
 relaxation factor of 1.2 and iterate to εs = 1%.
29.2 Use Liebmann’s method to solve for the temperature of the 
square heated plate in Fig. 29.4, but with the upper boundary 

 condition increased to 150°C and the left boundary decreased to 
50°C. Use a relaxation factor of 1.2 and iterate to εs = 1%.
29.3 Compute the fluxes for Prob. 29.2 using the parameters from 
Example 29.3.
29.4 Repeat Example 29.1, but use 49 interior nodes (that is, Δx = 
Δy = 5 cm).
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884 FINITE DIFFERENCE: ELLIPTIC EQUATIONS

29.5 Repeat Prob. 29.4, but for the case where the lower edge is 
insulated.
29.6 Repeat Examples 29.1 and 29.3, but for the case where the flux 
at the lower edge is directed downward with a value of 2 cal/cm2 s.
29.7 Repeat Example 29.4 for the case where both the lower left 
and the upper right corners are rounded in the same fashion as the 
lower left corner of Fig. 29.9. Note that all boundary temperatures 
on the upper and right sides are fixed at 100°C and all on the lower 
and left sides are fixed at 50°C.
29.8 With the exception of the boundary conditions, the plate in 
Fig. P29.8 has the exact same characteristics as the plate used in 
Examples 29.1 through 29.3. Simulate both the temperatures and 
fluxes for the plate.
29.9 Write equations for the darkened nodes in the grid in Fig. 
P29.9. Note that all units are cgs. The coefficient of thermal 
 conductivity for the plate is 0.75 cal/(s cm °C), the convection 
 coefficient is hc = 0.015 cal/(cm2 °C s), and the thickness of the 
plate is 0.5 cm.
29.10 Write equations for the darkened nodes in the grid in 
Fig. P29.10. Note that all units are cgs. The convection coeffi-
cient is hc = 0.01 cal/(cm2 °C s) and the thickness of the plate 
is 2 cm.
29.11 Apply the control-volume approach to develop the equation 
for node (0, j) in Fig. 29.7.
29.12 Derive an equation like Eq. (29.26) for the case where θ is 
greater than 45° in Fig. 29.11.
29.13 Develop a user-friendly computer program to implement 
Liebmann’s method for a rectangular plate with Dirichlet bound-
ary conditions. Design the program so that it can compute both 

temperature and flux. Test the program by duplicating the results 
of Examples 29.1 and 29.2.
29.14 Employ the program from Prob. 29.13 to solve Probs. 29.2 
and 29.3.
29.15 Employ the program from Prob 29.13 to solve Prob. 29.4.
29.16 Use the control-volume approach and derive the node equa-
tion for node (2, 2) in Fig. 29.13 and include a heat source at this 
point. Use the following values for the constants: Δz = 0.25 cm,  
h = 10 cm, kA = 0.25 W/cm °C, and kB = 0.45 W/cm °C. The 
heat source comes only from material A at the rate of = 6 W/cm3.
29.17 Calculate heat flux (W/cm2) for node (2, 2) in Fig. 29.13 
using finite-difference approximations for the temperature  gradients 
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 PROBLEMS 885

at this node. Calculate the flux in the horizontal direction in materi-
als A and B, and determine if these two fluxes should be equal. 
Also, calculate the vertical flux in materials A and B. Should these 
two fluxes be equal? Use the following values for the constants: 
Δz = 0.5 cm, h = 10 cm, kA = 0.25 W/cm °C, kB = 0.45 W/cm °C, 
and nodal temperatures: T22 = 51.6°C, T21 = 74.2°C, T23 = 45.3°C, 
T32 = 38.6°C, and T12 = 87.4°C.
29.18 Compute the temperature distribution for the L-shaped plate 
in Fig. P29.18.
29.19 The Poisson equation can be written in three dimensions as

∂2T

∂x2 +
∂2T

∂y2 +
∂2T

∂z2 = f (x, y, z)

0

0

0

20

40

60

80

100

120

Insulated

Insulated

Insulated

FIGURE P29.18

50°C

100°C

0°C

75°C

FIGURE P29.20

Solve for the distribution of temperature within a unit (1 × 1) cube 
with zero boundary conditions and f = −10. Employ Δx = Δy = 
Δz = 1∕6.
29.20 Determine the temperature distribution and fluxes for the 
plate depicted in Fig. P29.20. The plate is 60 × 60 × 1 cm, is made 
out of aluminum [k′ = 0.49 cal/(s cm °C)], with an input of 
10 cal/s into the middle node.
29.21 Repeat Prob. 29.20, but with the bottom edge insulated. 
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C H A P T E R

30
Finite Difference: Parabolic 
Equations

Chapter 29 dealt with steady-state PDEs. We now turn to the parabolic equations that 
are employed to characterize time-variable problems. In the latter part of this chapter, 
we will illustrate how this is done in two spatial dimensions for the heated plate. Before 
doing this, we will first show how the simpler one-dimensional case is approached.

 30.1 THE HEAT-CONDUCTION EQUATION
In a fashion similar to the derivation of the Laplace equation [Eq. (29.6)], conservation 
of heat can be used to develop a heat balance for the differential element in the long, 
thin insulated rod shown in Fig. 30.1. However, rather than examine the steady-state case, 
the present balance also considers the amount of heat stored in the element over a unit 
time period Δt. Thus, the balance is in the form: inputs − outputs = storage, or

q(x) Δy Δz Δt − q(x + Δx) Δy Δz Δt = Δx Δy ΔzρC ΔT

Dividing by the volume of the element (= Δx Δy Δz) and Δt gives

q(x) − q(x + Δx)
Δx

= ρC 
ΔT

Δt

Taking the limit yields

−
∂q

∂x
= ρC 

∂T

∂t

FIGURE 30.1
A thin rod, insulated at all points except at its ends.

CoolHot
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 30.2 EXPLICIT METHODS 887

Substituting Fourier’s law of heat conduction [Eq. (29.4)] results in

k 
∂2T

∂x2 =
∂T

∂t
 (30.1)

which is the heat-conduction equation.
 Just as with elliptic PDEs, parabolic equations can be solved by substituting finite 
divided differences for the partial derivatives. However, in contrast to elliptic PDEs, we 
must now consider changes in time as well as in space. Whereas elliptic equations were 
bounded in all relevant dimensions, parabolic PDEs are temporally open-ended (Fig. 30.2). 
Because of their time-variable nature, solutions to these equations involve a number of 
new issues, notably stability. This, as well as other aspects of parabolic PDEs, will be 
examined in the following sections as we present two fundamental solution approaches—
explicit and implicit schemes.

 30.2 EXPLICIT METHODS
The heat-conduction equation requires approximations for the second derivative in space 
and the first derivative in time. The former is represented in the same fashion as for the 
Laplace equation by a centered finite-divided difference:

∂2T

∂x2 =
T 

l
i+1 − 2Tl

i + Tl
i−1

Δx2  (30.2)

FIGURE 30.2
A grid used for the finite-difference solution of parabolic PDEs in two independent variables 
such as the heat-conduction equation. Note how, in contrast to Fig. 29.3, this grid is open-
ended in the temporal dimension.
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888 FINITE DIFFERENCE: PARABOLIC EQUATIONS

which has an error (recall Fig. 23.3) of O[(Δx)2]. Notice the slight change in notation of 
the superscripts used to denote time. This is done so that a second subscript can be used 
to designate a second spatial dimension when the approach is expanded to two spatial 
dimensions.
 A forward finite-divided difference is used to approximate the time derivative

∂T

∂t
=

Tl+1
i − Tl

i

Δt
 (30.3)

which has an error (recall Fig. 23.1) of O(Δt).
 Substituting Eqs. (30.2) and (30.3) into Eq. (30.1) yields

k 
Tl

i+1 − 2Tl
i + Tl

i−1

(Δx)2 =
Tl+1

i − Tl
i

Δt
 (30.4)

which can be solved for

Tl+1
i = Tl

i + λ(Tl
i+1 − 2Tl

i + Tl
i−1) (30.5)

where λ = k Δt∕(Δx)2.
 This equation can be written for all the interior nodes on the rod. It then provides 
an explicit means to compute values at each node for a future time based on the present 
values at the node and its neighbors. Notice that this approach is actually a manifestation 
of Euler’s method for solving systems of ODEs. That is, if we know the temperature 
distribution as a function of position at an initial time, we can compute the distribution 
at a future time based on Eq. (30.5).
 A computational molecule for the explicit method is depicted in Fig. 30.3, show-
ing the nodes that constitute the spatial and temporal approximations. This molecule 
can be contrasted with others in this chapter to illustrate the differences between 
approaches.

FIGURE 30.3
A computational molecule for the explicit form.

Grid point involved in time di�erence

Grid point involved in space di�erence

xi – 1 xi xi + 1

t l 

t l + 1
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 30.2 EXPLICIT METHODS 889

 EXAMPLE 30.1 Explicit Solution of the One-Dimensional Heat-Conduction Equation
Problem Statement. Use the explicit method to solve for the temperature distribution of 
a long, thin rod with a length of 10 cm and the following values: k′ = 0.49 cal/(s cm °C), 
Δx = 2 cm, and Δt = 0.1 s. At t = 0, the temperature of the rod is zero and the bound-
ary conditions are fixed for all times at T(0) = 100°C and T(10) = 50°C. Note that the 
rod is aluminum with C = 0.2174 cal/(g °C) and ρ = 2.7 g/cm3. Therefore, k = 0.49/
(2.7 · 0.2174) = 0.835 cm2/s and λ = 0.835(0.1)∕(2)2 = 0.020875.

Solution. Applying Eq. (30.5) gives the following value at t = 0.1 s for the node at  
x = 2 cm:

T 1
1 = 0 + 0.020875[0 − 2(0) + 100] = 2.0875

At the other interior points, x = 4, 6, and 8 cm, the results are

T 1
2 = 0 + 0.020875[0 − 2(0) + 0] = 0

T 1
3 = 0 + 0.020875[0 − 2(0) + 0] = 0

T 1
4 = 0 + 0.020875[50 − 2(0) + 0] = 1.0438

At t = 0.2 s, the values at the four interior nodes are computed as

T 2
1 = 2.0875 + 0.020875[0 − 2(2.0875) + 100] = 4.0878

T 2
2 = 0 + 0.020875[0 − 2(0) + 2.0875] = 0.043577

T 2
3 = 0 + 0.020875[1.0438 − 2(0) + 0] = 0.021788

T 2
4 = 1.0438 + 0.020875[50 − 2(1.0438) + 0] = 2.0439

The computation is continued, and the results at 3-s intervals are depicted in Fig. 30.4. 
The general rise in temperature with time indicates that the computation captures the 
conduction of heat from the boundaries into the bar.

FIGURE 30.4
Temperature distribution in a long, thin rod as computed with the explicit method described 
in Sec. 30.2.
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30.2.1 Convergence and Stability
Convergence means that as Δx and Δt approach zero, the results of the finite-difference 
technique approach the true solution. Stability means that errors at any stage of the 
computation are not amplified but are attenuated as the computation progresses. It can 
be shown (Carnahan et al., 1969) that the explicit method is both convergent and stable 
if λ ≤ 1∕2, or

Δt ≤
1
2

 
Δx2

k
 (30.6)

In addition, it should be noted that setting λ ≤ 1∕2 could result in a solution in which errors 
do not grow, but oscillate. Setting λ ≤ 1∕4 ensures that the solution will not oscillate. It is 
also known that setting λ = 1∕6 tends to minimize truncation error (Carnahan et al., 1969).
 Figure 30.5 is an example of instability caused by violating Eq. (30.6). This plot is 
for the same case as in Example 30.1 but with λ = 0.735, which is considerably greater 
than 0.5. As in Fig. 30.5, the solution undergoes progressively increasing oscillations. 
This situation will continue to deteriorate as the computation continues.
 Although satisfaction of Eq. (30.6) will alleviate the instabilities of the sort mani-
fested in Fig. 30.5, it also places a strong limitation on the explicit method. For example, 
suppose that Δx is halved to improve the approximation of the spatial second derivative. 
According to Eq. (30.6), the time step must be quartered to maintain convergence and 
stability. Thus, to perform comparable computations, the time steps must be increased 
by a factor of 4. Furthermore, the computation for each of these time steps will take 
twice as long because halving Δx doubles the total number of nodes for which equations 
must be written. Consequently, for the one-dimensional case, halving Δx results in an 
eightfold increase in the number of calculations. Thus, the computational burden may be 
large to attain acceptable accuracy. As will be described shortly, other techniques are 
available that do not suffer from such severe limitations.

30.2.2 Derivative Boundary Conditions
As was the case for elliptic PDEs (recall Sec. 29.3.1), derivative boundary conditions 
can be readily incorporated into parabolic equations. For a one-dimensional rod, this 
necessitates adding two equations to characterize the heat balance at the end nodes. For 
example, the node at the left end (i = 0) would be represented by

Tl+1
0 = Tl

0 + λ(T l
1 − 2Tl

0 + Tl
−1)

Thus, an imaginary point is introduced at i = −1 (recall Fig. 29.7). However, as with the 
elliptic case, this point provides a vehicle for incorporating the derivative boundary condi-
tion into the analysis. Problem 30.2 at the end of the chapter deals with this exercise.

30.2.3 Higher-Order Temporal Approximations
The general idea of re-expressing the PDE as a system of ODEs is sometimes called the 
method of lines. Obviously, one way to improve on the Euler approach used above would 
be to employ a more accurate integration scheme for solving the ODEs. For example, the 
Heun method can be employed to obtain second-order temporal accuracy. An example of 
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this approach is called MacCormack’s method. This and other improved explicit methods 
are discussed elsewhere (for example, Hoffman 1992).

 30.3 A SIMPLE IMPLICIT METHOD
As noted previously, explicit finite-difference formulations have problems related to stabil-
ity. In addition, as depicted in Fig. 30.6, they exclude information that has a bearing on 
the solution. Implicit methods overcome both these difficulties at the expense of somewhat 
more complicated algorithms.

FIGURE 30.5
An illustration of instability. Solution of Example 30.1 but with λ = 0.735.
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892 FINITE DIFFERENCE: PARABOLIC EQUATIONS

 The fundamental difference between explicit and implicit approximations is depicted 
in Fig. 30.7. For the explicit method, we approximate the spatial derivative at time level 
l (Fig. 30.7a). Recall that when we substituted this approximation into the partial dif-
ferential equation, we obtained a difference equation (30.4) with a single unknown Tl+1

i . 
Thus, we can solve “explicitly” for this unknown as in Eq. (30.5).
 In implicit methods, the spatial derivative is approximated at an advanced time level 
l + 1. For example, the second derivative would be approximated by (Fig. 30.7b)

∂2T

∂x2  ≅ 
Tl+1

i+1 − 2Tl+1
i + Tl+1

i−1

(Δx)2  (30.7)

which is second-order accurate. When this relationship is substituted into the original 
PDE, the resulting difference equation contains several unknowns. Thus, it cannot be 
solved explicitly by simple algebraic rearrangement as was done in going from Eq. (30.4) 

FIGURE 30.6
Representation of the effect of  
other nodes on the finite- 
difference approximation at  
node (i, I) using an explicit  
finite-difference scheme.  
The shaded nodes have an  
influence on (i, I), whereas the  
unshaded nodes, which in  
reality affect (i, I ), are excluded.
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FIGURE 30.7
Computational molecules  
demonstrating the fundamental  
differences between (a) explicit  
and (b) implicit methods.
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to (30.5). Instead, the entire system of equations must be solved simultaneously. This is 
possible because, along with the boundary conditions, the implicit formulations result in 
a set of linear algebraic equations with the same number of unknowns. Thus, the method 
reduces to the solution of a set of simultaneous equations at each point in time.
 To illustrate how this is done, substitute Eqs. (30.3) and (30.7) into Eq. (30.1) 
to give

k 
Tl+1

i+1 − 2Tl+1
i + Tl+1

i−1

(Δx)2 =
Tl+1

i − Tl
i

Δt

which can be expressed as

−λTl+1
i−1 + (1 + 2λ)Tl+1

i − λTl+1
i+1 = Tl

i  (30.8)

where λ = k Δt∕(Δx)2. This equation applies to all but the first and the last interior nodes, 
which must be modified to reflect the boundary conditions. For the case where the 
temperature levels at the ends of the rod are given, the boundary condition at the left 
end of the rod (i = 0) can be expressed as

Tl+1
0 = f0(t l+1) (30.9)

where f0(t l+1) = a function describing how the boundary temperature changes with time. 
Substituting Eq. (30.9) into Eq. (30.8) gives the difference equation for the first interior 
node (i = 1):

(1 + 2λ)Tl+1
1 − λTl+1

2 = Tl
1 + λ

 
f0(t l+1) (30.10)

Similarly, for the last interior node (i = m),

−λTl+1
m−1 + (1 + 2λ)Tl+1

m = Tl
m + λ

 
fm+1(t l+1) (30.11)

where fm+1(t l+1) describes the specified temperature changes at the right end of the rod 
(i = m + 1).
 When Eqs. (30.8), (30.10), and (30.11) are written for all the interior nodes, the 
resulting set of m linear algebraic equations has m unknowns. In addition, the method 
has the added bonus that the system is tridiagonal. Thus, we can utilize the extremely 
efficient solution algorithms (recall Sec. 11.1.1) that are available for tridiagonal systems.

 EXAMPLE 30.2 Simple Implicit Solution of the Heat-Conduction Equation
Problem Statement. Use the simple implicit finite-difference approximation to solve 
the same problem as in Example 30.1.

Solution. For the rod from Example 30.1, λ = 0.020875. Therefore, at t = 0, Eq. (30.10) 
can be written for the first interior node as

1.04175T 1
1 − 0.020875T 1

2 = 0 + 0.020875(100)

or

1.04175T 1
1 − 0.020875T 1

2 = 2.0875
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894 FINITE DIFFERENCE: PARABOLIC EQUATIONS

In a similar fashion, Eqs. (30.8) and (30.11) can be applied to the other interior nodes. 
This leads to the following set of simultaneous equations:

[

 1.04175 −0.020875
−0.020875  1.04175 −0.020875

−0.020875  1.04175 −0.020875
−0.020875  1.04175

] {

T 1
1

T 2
1

T 3
1

T 4
1}

=
{

2.0875
0
0

1.04375
}

which can be solved for the temperatures at t = 0.1 s:

T 1
1 = 2.0047

T 1
2 = 0.0406

T 1
3 = 0.0209

T 1
4 = 1.0023

Notice how in contrast to Example 30.1, all the points have changed from the initial con-
dition during the first time step.
 To solve for the temperatures at t = 0.2, the right-hand-side vector must be modified 
to account for the results of the first step, as in

{

4.09215
0.04059
0.02090
2.04069

}
The simultaneous equations can then be solved for the temperatures at t = 0.2 s:

T 2
1 = 3.9305

T 2
2 = 0.1190

T 2
3 = 0.0618

T 2
4 = 1.9653

 Whereas the implicit method described is stable and convergent, it has the defect 
that the temporal difference approximation is first-order accurate, whereas the spatial 
difference approximation is second-order accurate (Fig. 30.8). In the next section we 
present an alternative implicit method that remedies the situation.
 Before proceeding, it should be mentioned that, although the simple implicit method 
is unconditionally stable, there is an accuracy limit to the use of large time steps. Con-
sequently, it is not that much more efficient than the explicit approaches for most time- 
variable problems.
 Where it does shine is for steady-state problems. Recall from Chap. 29 that a form 
of Gauss-Seidel (Liebmann’s method) can be used to obtain steady-state solutions for 
elliptic equations. An alternative approach would be to run a time-variable solution until 
it reached a steady state. In such cases, because inaccurate intermediate results are not an 
issue, implicit methods allow you to employ larger time steps, and hence, can generate 
steady-state results in an efficient manner.
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The Crank-Nicolson method provides an alternative implicit scheme that is second-order 
accurate in both space and time. To provide this accuracy, difference approximations are 
developed at the midpoint of the time increment (Fig. 30.9). To do this, the temporal first 
derivative can be approximated at tl+1∕2 by

∂T

∂t
 ≅ 

Tl+1
i − Tl

i

Δt
 (30.12)

The second derivative in space can be determined at the midpoint by averaging the dif-
ference approximations at the beginning (t l) and at the end (t l+1) of the time increment:

∂2T

∂x2  ≅ 
1
2[

Tl
i+1 − 2Tl

i + Tl
i+1

(Δx)2 +
Tl+1

i+1 − 2Tl+1
i + Tl+1

i−1

(Δx)2 ] (30.13)

FIGURE 30.8
A computational molecule for 
the simple implicit method.

Grid point involved in time di�erence

Grid point involved in space di�erence

xi – 1 xi xi + 1

t l 

t l + 1

FIGURE 30.9
A computational molecule for  
the Crank-Nicolson method.

Grid point involved in time di�erence

Grid point involved in space di�erence

xi – 1 xi xi + 1

t l 

t l + 1

t l + 1/2
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896 FINITE DIFFERENCE: PARABOLIC EQUATIONS

 Substituting Eqs. (30.12) and (30.13) into Eq. (30.1) and collecting terms gives

−λTl+1
i−1 + 2(1 + λ)Tl+1

i − λTl+1
i+1 = λTl

i−1 + 2(1 − λ)Tl
i + λTl

i+1 (30.14)

where λ = k Δt∕(Δx)2. As was the case with the simple implicit approach, boundary 
conditions of Tl+1

0 = f0(t l+1) and Tl+1
m+1 = fm+1(t l+1) can be prescribed to derive versions 

of Eq. (30.14) for the first and the last interior nodes. For the first interior node,

2(1 + λ)Tl+1
1 − λTl+1

2 = λ
 
f0(t l) + 2(1 − λ)Tl

1 + λTl
2 + λ f0(t l+1) (30.15)

and for the last interior node,

−λTl+1
m−1 + 2(1 + λ)Tl+1

m = λ
 
fm+1(t l) + 2(1 − λ)Tl

m + λTl
m−1 + λ

 
fm+1(t l+1) (30.16)

 Although Eqs. (30.14) through (30.16) are slightly more complicated than Eqs. (30.8), 
(30.10), and (30.11), they are also tridiagonal and, therefore, efficient to solve.

 EXAMPLE 30.3 Crank-Nicolson Solution to the Heat-Conduction Equation
Problem Statement. Use the Crank-Nicolson method to solve the same problem as in 
Examples 30.1 and 30.2.

Solution. Equations (30.14) through (30.16) can be employed to generate the following 
tridiagonal set of equations:

[

 2.04175 −0.020875
−0.020875  2.04175 −0.020875

−0.020875  2.04175 −0.020875
−0.020875  2.04175

]{

T 1
1

T 2
1

T 3
1

T 4
1}

=
{

4.175
0
0

2.0875
}

which can be solved for the temperatures at t = 0.1 s:

T 1
1 = 2.0450

T 1
2 = 0.0210

T 1
3 = 0.0107

T 1
4 = 1.0225

To solve for the temperatures at t = 0.2 s, the right-hand-side vector must be changed to

{

8.1801
0.0841
0.0427
4.0901

}
The simultaneous equations can then be solved for

T 2
1 = 4.0073

T 2
2 = 0.0826

T 2
3 = 0.0422

T 2
4 = 2.0036
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30.4.1 Comparison of One-Dimensional Methods
Equation (30.1) can be solved analytically. For example, a solution is available for the case 
where the rod’s temperature is initially at zero. At t = 0, the boundary condition at x = L 
is instantaneously increased to a constant level of T while T(0) is held at zero. For this case, 
the temperature can be computed with

T = T [
x

L
+∑

∞

n=1
 
2

nπ
 (−1)n sin (

n × x

L ) exp (
−n2π2kt

L2 )] (30.17)

where L = total length of the rod. This equation can be employed to compute the evolu-
tion of the temperature distribution for each boundary condition. Then, the total solution 
can be determined by superposition.

 EXAMPLE 30.4 Comparison of Analytical and Numerical Solutions
Problem Statement. Compare the analytical solution from Eq. (30.17) with numerical 
results obtained with the explicit, simple implicit, and Crank-Nicolson techniques. Per-
form the comparison for the rod employed in Examples 30.1, 30.2, and 30.3.

Solution. Recall from the previous examples that k = 0.835 cm2/s, L = 10 cm, and 
Δx = 2 cm. For this case, Eq. (30.17) can be used to predict that the temperature at 
x = 2 cm, and t = 10 s would equal 64.8018. Table 30.1 presents numerical predictions 
of T(2, 10). Notice that a range of time steps are employed. These results indicate a 
number of properties of the numerical methods. First, it can be seen that the explicit 
method is unstable for high values of λ. This instability is not manifested by either implicit 
approach. Second, the Crank-Nicolson method converges more rapidly as λ is decreased 
and provides moderately accurate results even when λ is relatively high. These outcomes 
are as expected because Crank-Nicolson is second-order accurate with respect to both 
independent variables. Finally, notice that as λ decreases, the methods seem to be converg-
ing on a value of 64.73 that is different than the analytical result of 64.80. This should not 
be surprising because a fixed value of Δx = 2 is used to characterize the x dimension. If 
both Δx and Δt were decreased as λ was decreased (that is, more spatial segments were 
used), the numerical solution would more closely approach the analytical result.

TABLE 30.1  Comparison of three methods of solving a parabolic PDE: the heated rod. 
The results shown are for temperature at t = 10 s at x = 2 cm for the rod 
from Examples 30.1 through 30.3. Note that the analytical solution is  
T (2, 10) = 64.8018.

 Δt λ Explicit Implicit Crank-Nicolson

 10 2.0875 208.75 53.01 79.77
 5 1.04375 −9.13 58.49 64.79
 2 0.4175 67.12 62.22 64.87
 1 0.20875 65.91 63.49 64.77
 0.5 0.104375 65.33 64.12 64.74
 0.2 0.04175 64.97 64.49 64.73
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 The Crank-Nicolson method is often used for solving linear parabolic PDEs in one 
spatial dimension. Its advantages become even more pronounced for more complicated 
applications such as those involving unequally spaced meshes. Such nonuniform spacing 
is often advantageous where we have foreknowledge that the solution varies rapidly in local 
portions of the system. Further discussion of such applications and the Crank-Nicolson 
method in general can be found elsewhere (Ferziger 1981; Lapidus and Pinder 1981; 
 Hoffman 1992).

 30.5 PARABOLIC EQUATIONS IN TWO SPATIAL DIMENSIONS
The heat-conduction equation can be applied to more than one spatial dimension. For 
two dimensions, its form is

∂T

∂t
= k(

∂2T

∂x2 +
∂2T

∂y2 ) (30.18)

One application of this equation is to model the temperature distribution on the face of 
a heated plate. However, rather than characterizing its steady-state distribution, as was 
done in Chap. 29, Eq. (30.18) provides a means to compute the plate’s temperature 
distribution as it changes in time.

30.5.1 Standard Explicit and Implicit Schemes
An explicit solution can be obtained by substituting finite-difference approximations of 
the form of Eqs. (30.2) and (30.3) into Eq. (30.18). However, as with the one-dimensional 
case, this approach is limited by a stringent stability criterion. For the two-dimensional 
case, the criterion is

Δt ≤
1
8

 
(Δx)2 + (Δy)2

k

Thus, for a uniform grid (Δx = Δy), λ = kΔt∕(Δx)2 must be less than or equal to 1∕4. 
Consequently, halving the step size results in a fourfold increase in the number of nodes 
and a 16-fold increase in computational effort.
 As was the case with one-dimensional systems, implicit techniques offer alternatives 
that guarantee stability. However, the direct application of implicit methods such as the 
Crank-Nicolson technique leads to the solution of m × n simultaneous equations. Addi-
tionally, when written for two or three spatial dimensions, these equations lose the valuable 
property of being tridiagonal. Thus, matrix storage and computation time can become 
exorbitantly large. The method described in the next section offers one way around this 
dilemma.

30.5.2 The ADI Scheme
The alternating-direction implicit, or ADI, scheme provides a means for solving parabolic 
equations in two spatial dimensions using tridiagonal matrices. To do this, each time 
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increment is executed in two steps (Fig. 30.10). For the first step, Eq. (30.18) is ap-
proximated by

Tl+1∕2
i, j − Tl

i, j

Δt∕2
= k[

Tl
i+1, j − 2Tl

i, j + Tl
i−1, j

(Δx)2 +
Tl+1∕2

i, j+1 − 2Tl+1∕2
i, j + Tl+1∕2

i, j−1

(Δy)2 ] (30.19)

Thus, the approximation of ∂2T∕∂x2 is written explicitly—that is, at the base point tl where 
values of temperature are known. Consequently, only the three temperature terms in the 
approximation of ∂2T∕∂y2 are unknown. For the case of a square grid (Δy = Δx), this 
equation can be expressed as

−λTl+1∕2
i, j−1 + 2(1 + λ)Tl+1∕2

i, j − λTl+1∕2
i, j+1 = λTl

i−1, j + 2(1 − λ)Tl
i, j + λTl

i+1, j (30.20)

which, when written for the system, results in a tridiagonal set of simultaneous equations.
 For the second step from t l+1∕2 to t l+1, Eq. (30.18) is approximated by

Tl+1
i, j − Tl+1∕2

i, j

Δt∕2
= k [

Tl+1
i+1, j − 2Tl+1

i, j + Tl+1
i−1, j

(Δx)2 +
Tl+1∕2

i, j+1 − 2Tl+1∕2
i, j + Tl+1∕2

i, j−1

(Δy)2 ] (30.21)

In contrast to Eq. (30.19), the approximation of ∂2T∕∂x2 is now implicit. Thus, the bias 
introduced by Eq. (30.19) will be partially corrected. For a square grid, Eq. (30.21) can 
be written as

−λTl+1
i−1, j + 2(1 + λ)Tl+1

i, j − λTl+1
i+1, j = λTl+1∕2

i, j−1 + 2(1 − λ)Tl+1∕2
i, j + λTl+1∕2

i, j+1  (30.22)

Again, when written for a two-dimensional grid, the equation results in a tridiagonal 
system (Fig. 30.11). As in the following example, this leads to an efficient numerical 
solution.

FIGURE 30.10
The two half-steps used in  
implementing the alternating- 
direction implicit scheme for  
solving parabolic equations in  
two spatial dimensions.

yj + 1

yj – 1
xi – 1 xi xi + 1

t l + 1

t l + 1/2

t l

xi – 1 xi xi + 1

yj

yj + 1

yj – 1

yj

Explicit
Implicit

(a) First half-step (b) Second half-step
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FIGURE 30.11
The ADI method only results in  
tridiagonal equations if it is  
applied along the dimension  
that is implicit. Thus, on the first  
step (a), it is applied along  
the y dimension and, on the  
second step (b), along the  
x dimension. These “alternating  
directions” are the root of the  
method’s name.

(a) First direction (b) Second direction

i = 1 i = 1i = 2 i = 2

j = 3

j = 2

j = 1

i = 3 i = 3

y

x

 EXAMPLE 30.5 ADI Method
Problem Statement. Use the ADI method to solve for the temperature of the plate in 
Examples 29.1 and 29.2. At t = 0, assume that the temperature of the plate is zero and the 
boundary temperatures are instantaneously brought to the levels shown in Fig. 29.4. Employ 
a time step of 10 s. Recall from Example 30.1 that the coefficient of thermal diffusivity 
for aluminum is k = 0.835 cm2/s.

Solution. A value of Δx = 10 cm was employed to characterize the 40 × 40-cm plate 
from Examples 29.1 and 29.2. Therefore, λ = 0.835(10)∕(10)2 = 0.0835. For the first 
step to t = 5 (Fig. 30.11a), Eq. (30.20) is applied to nodes (1, 1), (1, 2), and (1, 3) to 
yield the following tridiagonal equations:

[
  2.167 −0.0835

−0.0835   2.167 −0.0835
−0.0835   2.167 ] {

T1,1

T1,2

T1,3
} = {

6.2625
6.2625

14.6125}
which can be solved for

T1,1 = 3.01597  T1, 2 = 3.2708 T1, 3 = 6.8692

In a similar fashion, tridiagonal equations can be developed and solved for

T2,1 = 0.1274 T2, 2 = 0.2900 T2, 3 = 4.1291
and

T3,1 = 2.0181  T3, 2 = 2.2477  T3, 3 = 6.0256

 For the second step to t = 10 (Fig. 30.11b), Eq. (30.22) is applied to nodes (1, 1), (2, 1), 
and (3, 1) to yield

[
 2.167 −0.0835

−0.0835  2.167 −0.0835
−0.0835  2.167 ]{

T1,1

T2,1

T3,1
} = {

12.0639
0.2577
8.0619}
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which can be solved for

T1,1 = 5.5855  T2,1 = 0.4782 T3,1 = 3.7388

Tridiagonal equations for the other rows can be developed and solved for

T1, 2 = 6.1683 T2, 2 = 0.8238 T3, 2 = 4.2359

and

T1, 3 = 13.1120 T2, 3 = 8.3207 T3, 3 = 11.3606

 The computation can be repeated, and the results for t = 100, 200, and 300 s are de-
picted in Fig. 30.12a through c, respectively. As expected, the temperature of the plate rises. 
After a sufficient time elapses, the temperature will approach the steady-state distribution 
of Fig. 29.5.

 The ADI method is but one of a group of techniques called splitting methods. Some 
of these represent efforts to circumvent shortcomings of ADI. Discussion of other splitting 
methods as well as more information on ADI can be found elsewhere (Ferziger 1981; 
Lapidus and Pinder 1981).

FIGURE 30.12
Solution for the heated plate of Example 30.5 at (a) t = 100 s, (b) t = 200 s, and  
(c) t = 300 s.

28.56 14.57 20.73

41.09 27.20 31.94

60.76 52.57 53.02

(a) t = 100 s

37.40 25.72 28.69

55.26 45.32 44.86

72.82 68.17 64.12

(b) t = 200 s

40.82 30.43 31.96

60.30 52.25 49.67

76.54 73.29 67.68

(c) t = 300 s

PROBLEMS

30.1 Repeat Example 30.1, but use the midpoint method to gener-
ate your solution.
30.2 Repeat Example 30.1, but for the case where the rod is ini-
tially at 50°C and the derivative at x = 0 is equal to 1 and at x = 10 
is equal to 0. Interpret your results.
30.3 (a) Repeat Example 30.1, but for a time step of Δt = 0.05 s. 
Compute results to t = 0.2. (b) In addition, perform the same com-
putation with the Heun method (without iteration of the corrector) 

with a much smaller step size of Δt = 0.001 s. Assuming that the 
results of (b) are a valid approximation of the true solution, deter-
mine percent relative errors for the results obtained in Example 
30.1 as well as for part (a).
30.4 Repeat Example 30.2, but for the case where the derivative at 
x = 10 is equal to zero.
30.5 Repeat Example 30.3, but for Δx = 1 cm.
30.6 Repeat Example 30.5, but for the plate described in Prob. 29.2.
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 program to obtain the solution. Increase the value of Δt by 10% for 
each time step to more quickly obtain the steady-state solution, and 
select values of Δx and Δt for good accuracy. Plot the nondimen-
sional temperature versus nondimensional length for various values 
of nondimensional times.
30.14 The problem of transient radial heat flow in a circular rod in 
nondimensional form is described by

∂2u

∂r 

2 +
1
r
 
∂u

∂r
=

∂u

t

Boundary conditions u(1, t ) = 1 
∂u
∂t

 (0, t ) = 0

Initial conditions u(x, 0) = 0 0 ≤ x ≤ 1

Solve the nondimensional transient radial heat-conduction equation 
in a circular rod for the temperature distribution at various times as 
the rod temperature approaches steady state. Use second-order ac-
curate finite-difference analogues for the derivatives, with a Crank-
Nicolson formulation. Write a computer program for the solution. 
Select values of Δr and Δt for good accuracy. Plot the temperature 
u versus radius r for various times t.
30.15 Solve the following PDE:

∂2u

∂x2 + b 
∂u

∂x
=

∂u

∂t

Boundary conditions u (0, t ) = 0 u (1, t ) = 0
Initial conditions u (x, 0) = 0 0 ≤ x ≤ 1

Use second-order accurate finite-difference analogues for the deriva-
tives with a Crank-Nicolson formulation to integrate in time. Write a 
computer program for the solution. Increase the value of Δt by 10% 
for each time step to more quickly obtain the steady-state solution, 
and select values of Δx and Δt for good accuracy. Plot u versus x for 
various values of t. Solve for these values of b: 4, 2, 0, −2, −4.
30.16 Determine the temperatures along a 1-m horizontal rod de-
scribed by the heat-conduction equation (Eq. 30.1). Assume that the 
right boundary is insulated and that the left boundary (x = 0) is 
represented by

−k′ 

∂T

∂x ∣
x=0

= h(Ta − T0)

where k′ = coefficient of thermal conductivity (W/m °C), h = 
convective heat transfer coefficient (W/m2 °C), Ta = ambient 
 temperature (°C), and T0 = temperature of the rod at x = 0 (°C). 
Solve for temperature as a function of time using a spatial step of 
Δx = 1 cm and the following parameter values: k = 2 × 10−5 m2/s, 
k′ = 10 W/m °C, h = 25 W/m2 °C, and Ta = 50 °C. Assume that 
the initial temperature of the rod is zero.

30.7 The advection-diffusion equation is used to compute the dis-
tribution of concentration along the length of a rectangular chemi-
cal reactor (see Sec. 32.1),

∂c

∂t
= D 

∂2c

∂x2 − U 
∂c

∂x
− kc

where c = concentration (mg/m3), t = time (min), D = a diffusion 
coefficient (m2/min), x = distance along the tank’s longitudinal axis 
(m) where x = 0 at the tank’s inlet, U = velocity in the x direction 
(m/min), and k = a reaction rate (min−1) whereby the chemical de-
cays to another form. Develop an explicit scheme to solve this equa-
tion numerically. Test it for k = 0.2, D = 75, and U = 2.5 for a tank 
of length 20 m. Use Δx = 2 m and a step size of Δt = 0.005. Assume 
that the inflow concentration is 100 and that the initial concentration 
in the tank is zero. Perform the simulation from t = 0 to 100 and plot 
the final resulting concentrations versus x.
30.8 Develop a user-friendly computer program for the simple ex-
plicit method from Sec. 30.2. Test it by duplicating Example 30.1.
30.9 Modify the program in Prob. 30.8 so that it employs either 
Dirichlet or derivative boundary conditions. Test it by solving 
Prob. 30.2.
30.10 Develop a user-friendly computer program to implement 
the simple implicit scheme from Sec. 30.3. Test it by duplicating 
Example 30.2.
30.11 Develop a user-friendly computer program to implement 
the Crank-Nicolson method from Sec. 30.4. Test it by duplicating 
Example 30.3.
30.12 Develop a user-friendly computer program for the ADI 
method described in Sec. 30.5. Test it by duplicating Example 30.5.
30.13 The nondimensional form for the transient heat conduction 
in an insulated rod (Eq. 30.1) can be written as

∂2u

∂x 

2 =
∂u

∂t

where nondimensional space, time, and temperature are defined as

x =
x

L
 t =

T

(ρCL2∕k)
 u =

T − To

TL − To

where L = the rod length, k = thermal conductivity of the rod mate-
rial, ρ = density, C = specific heat, To = temperature at x = 0, and 
TL = temperature at x = L. This yields the following boundary and 
initial conditions:

Boundary conditions u(0, t ) = 0 u(1, t ) = 0
Initial conditions u(x, 0) = 0 0 ≤ x ≤ 1

Solve this nondimensional equation for the temperature distribution 
using finite-difference methods and a second-order accurate Crank-
Nicolson formulation to integrate in time. Write a computer 
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31
Finite-Element Method

To this juncture, we have employed finite-difference methods to solve partial differential 
equations. In these methods, the solution domain is divided into a grid of discrete points or 
nodes (Fig. 31.1b). The PDE is then written for each node and its derivatives replaced by 
finite-divided differences. Although such “pointwise” approximation is conceptually easy to 
understand, it has a number of shortcomings. In particular, it becomes harder to apply for 
systems with irregular geometry, unusual boundary conditions, or heterogenous composition.
 The finite-element method provides an alternative that is better suited for such systems. 
In contrast to finite-difference techniques, the finite-element method divides the solution 
domain into simply shaped regions, or “elements” (Fig. 31.1c). An approximate solution for 

FIGURE 31.1
(a) A gasket with irregular geometry and nonhomogeneous composition. (b) Such a system is very 
difficult to model with a finite-difference approach. This is due to the fact that complicated approx-
imations are required at the boundaries of the system and at the boundaries between regions of 
differing composition. (c) A finite-element discretization is much better suited for such systems.

Material A

Material B

Material C

(a) (b) (c)
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904 FINITE-ELEMENT METHOD

the PDE can be developed for each of these elements. The total solution is then generated 
by linking together, or “assembling,” the individual solutions, taking care to ensure continu-
ity at the interelement boundaries. Thus, the PDE is satisfied in a piecewise fashion.
 As in Fig. 31.1c, the use of elements, rather than a rectangular grid, provides a much 
better approximation for irregularly shaped systems. Further, values of the unknown can 
be generated continuously across the entire solution domain rather than at isolated points.
 Because a comprehensive description is beyond the scope of this book, this chapter 
provides a general introduction to the finite-element method. Our primary objective is 
to make you comfortable with the approach and cognizant of its capabilities. In this spirit, 
the following section is devoted to a general overview of the steps involved in a typical 
finite-element solution of a problem. This is followed by a simple example: a steady-state, 
one-dimensional heated rod. Although this example does not involve PDEs, it allows us 
to develop and demonstrate major aspects of the finite-element approach unencumbered 
by complicating factors. We can then discuss some issues involved in employing the finite-
element method to solve PDEs.

 31.1 THE GENERAL APPROACH
Although the particulars will vary, the implementation of the finite-element approach 
usually follows a standard step-by-step procedure. The following provides a brief over-
view of each of these steps. The application of these steps to engineering problem con-
texts will be developed in subsequent sections.

31.1.1 Discretization
This step involves dividing the solution domain into finite elements. Figure 31.2 provides 
examples of elements employed in one, two, and three dimensions. The points of inter-
section of the lines that make up the sides of the elements are referred to as nodes and 
the sides themselves are called nodal lines or planes.

31.1.2 Element Equations
The next step is to develop equations to approximate the solution for each element. This 
involves two steps. First, we must choose an appropriate function with unknown coef-
ficients that will be used to approximate the solution. Second, we evaluate the coeffi-
cients so that the function approximates the solution in an optimal fashion.

Choice of Approximation Functions. Because they are easy to manipulate mathemat-
ically, polynomials are often employed for this purpose. For the one-dimensional case, 
the simplest alternative is a first-order polynomial or straight line,

u(x) = a0 + a1x (31.1)

where u(x) = the dependent variable, a0 and a1 = constants, and x = the independent 
variable. This function must pass through the values of u(x) at the end points of the 
element at x1 and x2. Therefore,

u1 = a0 + a1x1

u2 = a0 + a1x2
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where u1 = u(x1) and u2 = u(x2). These equations can be solved using Cramer’s rule for

a0 =
u1 

x2 − u2 
x1

x2 − x1
  a1 =

u2 − u1

x2 − x1

These results can then be substituted into Eq. (31.1), which, after collection of terms, 
can be written as

u = N1 
u1 + N2 u2 (31.2)

where

N1 =
x2 − x

x2 − x1
 (31.3)

and

N2 =
x − x1

x2 − x1
 (31.4)

Equation (31.2) is called an approximation, or shape, function, and N1 and N2 are called 
interpolation functions. Close inspection reveals that Eq. (31.2) is, in fact, the Lagrange 

FIGURE 31.2
Examples of elements employed in (a) one, (b) two, and (c) three dimensions.

Line element

(a) One-dimensional

Nodal line

Node

Triangular
element

Quadrilateral
element

(b) Two-dimensional

Hexahedron
element

Nodal plane

(c) Three-dimensional
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906 FINITE-ELEMENT METHOD

first-order interpolating polynomial. It provides a means to predict intermediate values 
(that is, to interpolate) between given values u1 and u2 at the nodes.
 Figure 31.3 shows the shape function along with the corresponding interpolation 
functions. Notice that the sum of the interpolation functions is equal to 1.
 In addition, the fact that we are dealing with linear equations facilitates operations 
such as differentiation and integration. Such manipulations will be important in later 
sections. The derivative of Eq. (31.2) is

du

dx
=

dN1

dx
 u1 +

dN2

dx
 u2 (31.5)

According to Eqs. (31.3) and (31.4), the derivatives of the N’s can be calculated as

dN1

dx
= −

1
x2 − x1

  
dN2

dx
=

1
x2 − x1

 (31.6)

and, therefore, the derivative of u is

du

dx
=

1
x2 − x1

 (−u1 + u2) (31.7)

In other words, it is a divided difference representing the slope of the straight line con-
necting the nodes.
 The integral can be expressed as

∫ x2

x1

 u dx = ∫ x2

x1

 (N1 
u1 + N2 

u2) dx

Each term on the right-hand side is merely the integral of a right triangle with base x2 − x1 
and height u. That is,

∫ x2

x1

 Nu dx =
1
2

 (x2 − x1)u

Thus, the entire integral is

∫ x2

x1

 u dx =
u1 + u2

2
 (x2 − x1) (31.8)

In other words, it is simply the trapezoidal rule.

Obtaining an Optimal Fit of the Function to the Solution. Once the interpolation 
function is chosen, the equation governing the behavior of the element must be devel-
oped. This equation represents a fit of the function to the solution of the underlying 
differential equation. Several methods are available for this purpose. Among the most 
common are the direct approach, the method of weighted residuals, and the variational 
approach. The outcome of all of these methods is analogous to curve fitting. However, 
instead of fitting functions to data, these methods specify relationships between the 
unknowns in Eq. (31.2) that satisfy the underlying PDE in an optimal fashion.

FIGURE 31.3
(b) A linear approximation or 
shape function for (a) a line 
 element. The corresponding 
 interpolation functions are 
shown in (c ) and (d ).

Node 1 Node 2

u1

u2

x1 x2

N1

N2

u

1

1

(a)

(b)

(c)

(d)
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 31.1 THE GENERAL APPROACH 907

 Mathematically, the resulting element equations will often consist of a set of linear 
algebraic equations that can be expressed in matrix form,

[k]{u} = {F} (31.9)

where [k] = an element property, or stiffness, matrix, {u} = a column vector of unknowns 
at the nodes, and {F} = a column vector reflecting the effect of any external influences 
applied at the nodes. Note that, in some cases, the equations can be nonlinear. However, 
for the elementary examples described herein, and for many practical problems, the 
systems are linear.

31.1.3 Assembly
After the individual element equations are derived, they must be linked together or as-
sembled to characterize the unified behavior of the entire system. The assembly process 
is governed by the concept of continuity. That is, the solutions for contiguous elements 
are matched so that the unknown values (and sometimes the derivatives) at their common 
nodes are equivalent. Thus, the total solution will be continuous.
 When all the individual versions of Eq. (31.9) are finally assembled, the entire sys-
tem is expressed in matrix form as

[k]{u′} = {F′} (31.10)

where [K] = the assemblage property matrix and {u′} and {F′} column vectors for 
unknowns and external forces that are marked with primes to denote that they are an 
assemblage of the vectors {u} and {F} from the individual elements.

31.1.4 Boundary Conditions
Before Eq. (31.10) can be solved, it must be modified to account for the system’s bound-
ary conditions. These adjustments result in

[k]{u′} = {F′} (31.11)

where the overbars signify that the boundary conditions have been incorporated.

31.1.5 Solution
Solutions of Eq. (31.11) can be obtained with techniques described previously in Part 
Three, such as LU decomposition. In many cases, the elements can be configured so that 
the resulting equations are banded. Thus, the highly efficient solution schemes available 
for such systems can be employed.

31.1.6 Postprocessing
Upon obtaining a solution, it can be displayed in tabular form or graphically. In addition, 
secondary variables can be determined and displayed.
 Although the preceding steps are very general, they are common to most imple-
mentations of the finite-element approach. In the following section, we illustrate how 
they can be applied to obtain numerical results for a simple physical system—a 
heated rod.
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908 FINITE-ELEMENT METHOD

 31.2 FINITE-ELEMENT APPLICATION IN ONE DIMENSION
Figure 31.4 shows a system that can be modeled by a one-dimensional form of Poisson’s 
equation

d2
 T

dx2 = −f (x) (31.12)

where f(x) = a function defining a heat source along the rod and where the ends of the 
rod are held at fixed temperatures,

T(0, t) = T1

and

T(L, t) = T2

 Notice that this is not a partial differential equation but rather is a boundary-value ODE. 
This simple model is used because it will allow us to introduce the finite-element approach 
without some of the complications involved with, for example, a two-dimensional PDE.

 EXAMPLE 31.1 Analytical Solution for a Heated Rod
Problem Statement. Solve Eq. (31.12) for a 10-cm rod with boundary conditions of 
T(0, t) = 40 and T(10, t) = 200 and a uniform heat source of f(x) = 10.

Solution. The equation to be solved is

d 

2
 T

dx2 = −10

1 2 3 4

1 2 3 4 5

x = 0 x = L

T(0, t) T(L, t)

f (x)

x

(a)

(b)

FIGURE 31.4
(a) A long, thin rod subject to fixed boundary conditions and a continuous heat source along 
its axis. (b) The finite-element representation consisting of four equal-length elements and 
five nodes.
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 31.2 FINITE-ELEMENT APPLICATION IN ONE DIMENSION 909

Assume a solution of the form

T = ax2 + bx + c

which can be differentiated twice to give T″ = 2a. Substituting this result into the dif-
ferential equation gives a = −5. The boundary conditions can be used to evaluate the 
remaining coefficients. For the first condition at x = 0,

40 = −5(0)2 + b(0) + c

or c = 40. Similarly, for the second condition,

200 = −5(10)2 + b(10) + 40

which can be solved for b = 66. Therefore, the final solution is

T = −5x2 + 66x + 40

The results are plotted in Fig. 31.5.

FIGURE 31.5
The temperature distribution along a heated rod subject to a uniform heat source and held at 
fixed end temperatures.

T

100

0

200

5 10 x

31.2.1 Discretization
A simple configuration to model the system is a series of equal-length elements (Fig. 31.4b). 
Thus, the system is treated as four equal-length elements and five nodes.
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910 FINITE-ELEMENT METHOD

31.2.2 Element Equations
An individual element is shown in Fig. 31.6a. The distribution of temperature for the 
element can be represented by the approximation function

T
∼

= N1T1 + N2T2 (31.13)

where N1 and N2 = linear interpolation functions specified by Eqs. (31.3) and (31.4), 
respectively. Thus, as depicted in Fig. 31.6b, the approximation function amounts to a 
linear interpolation between the two nodal temperatures.
 As noted in Sec. 31.1, there are a variety of approaches for developing the element 
equation. In this section, we employ two of these. First, a direct approach will be used 
for the simple case where f(x) = 0. Then, because of its general applicability in engineer-
ing, we will devote most of the section to the method of weighted residuals.

The Direct Approach. For the case where f(x) = 0, a direct method can be employed 
to generate the element equations. The relationship between heat flux and temperature 
gradient can be represented by Fourier’s law:

q = −k′ 

d T

dx

where q = flux [cal/(cm2 s)] and k′ = the coefficient of thermal conductivity [cal/(s cm °C)]. 
If a linear approximation function is used to characterize the element’s temperature, the 
heat flow into the element through node 1 can be represented by

q1 = k′
T1 − T2

x2 − x1

where q1 is heat flux at node 1. Similarly, for node 2,

q2 = k′
T2 − T1

x2 − x1

These two equations express the relationship of the element’s internal temperature dis-
tribution (as reflected by the nodal temperatures) to the heat flux at its ends. As such, 
they constitute our desired element equations. They can be simplified further by recog-
nizing that Fourier’s law can be used to couch the end fluxes themselves in terms of the 
temperature gradients at the boundaries. That is,

q1 = −k′
dT(x1)

dx
  q2 = k′

dT(x2)
dx

which can be substituted into the element equations to give

1
x2 − x1

 [
1 −1

−1 1 ]{
T1

T2}
=

{
−

dT(x1)
dx

dT(x2)
dx

}
 (31.14)

 Notice that Eq. (31.14) has been cast in the format of Eq. (31.9). Thus, we have 
succeeded in generating a matrix equation that describes the behavior of a typical element 
in our system.

FIGURE 31.6
(a) An individual element.  
(b) The approximation function 
used to characterize the  
temperature distribution along 
the element.

Node 1 Node 2

T1

T2

x1 x2

T

(a)

(b)

~
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 31.2 FINITE-ELEMENT APPLICATION IN ONE DIMENSION 911

 The direct approach has great intuitive appeal. Additionally, in areas such as mechan-
ics, it can be employed to solve meaningful problems. However, in other contexts, it is 
often difficult or impossible to derive finite-element equations directly. Consequently, as 
described next, more general mathematical techniques are required.

The Method of Weighted Residuals. The differential equation [Eq. (31.12)] can be 
re-expressed as

0 =
d2T

dx2 + f(x)

The approximate solution [Eq. (31.13)] can be substituted into this equation. Because 
Eq. (31.13) is not the exact solution, the left side of the resulting equation will not be 
zero but will equal a residual,

R =
d2 T

∼

dx2 + f(x) (31.15)

 The method of weighted residuals (MWR) consists of finding a minimum for the 
residual according to the general formula

∫
D

 RWi dD = 0  i = 1, 2, … , m (31.16)

where D = the solution domain and Wi = linearly independent weighting functions.
 At this point, there are a variety of choices that could be made for the weighting 
function (Box 31.1). The most common approach for the finite-element method is to 
employ the interpolation functions Ni as the weighting functions. When these are substi-
tuted into Eq. (31.16), the result is referred to as Galerkin’s method,

∫
D

 RNi dD = 0  i = 1, 2, … , m

For our one-dimensional rod, Eq. (31.15) can be substituted into this formulation to give

∫ x2

x1

 [
d2 T

∼

dx2 + f(x)] Ni dx  i = 1, 2

which can be re-expressed as

∫ x2

x1

 
d2 T

∼

dx2  Ni(x) dx = −∫ x2

x1

 f (x)Ni(x) dx  i = 1, 2 (31.17)

 At this point, a number of mathematical manipulations will be applied to simplify 
and evaluate Eq. (31.17). Among the most important is the simplification of the left-hand 
side using integration by parts. Recall from calculus that this operation can be expressed 
generally as

∫b

a
 u dυ = uυ∣b

a − ∫b

a
 υ du
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912 FINITE-ELEMENT METHOD

If u and υ are chosen properly, the new integral on the right-hand side will be 
easier to evaluate than the original one on the left-hand side. This can be done for 
the term on the left-hand side of Eq. (31.17) by choosing Ni(x) as u and (d2T∕dx2)
dx as dυ to yield

∫ x2

x1

 Ni(x) 
d2T

∼

dx2  dx = Ni(x) 
dT

∼

dx ∣x2

x1

− ∫ x2

x1

 
dT

∼

dx
 
dNi

dx
 dx  i = 1, 2 (31.18)

Thus, we have taken the significant step of lowering the highest-order term in the for-
mulation from a second to a first derivative.
 Next, we can evaluate the individual terms that we have created in Eq. (31.18). For 
i = 1, the first term on the right-hand side of Eq. (31.18) can be evaluated as

N1(x) 

dT
∼

dx ∣x2

x1

= N1(x2) 

dT
∼

(x2)
dx

− N1(x1) 

dT
∼

(x1)
dx

However, recall from Fig. 31.3 that N1(x2) = 0 and N1(x1) = 1, and therefore,

N1(x) 

dT
∼

dx ∣x2

x1

= −
dT

∼
(x1)
dx

 (31.19)

  Box 31.1 Alternative Residual Schemes for the MWR

Several choices can be made for the weighting functions of Eq. 
(31.16). Each represents an alternative approach for the MWR.
 In the collocation approach, we choose as many locations as 
there are unknown coefficients. Then, the coefficients are ad-
justed until the residual vanishes at each of these locations. Con-
sequently, the approximating function will yield perfect results 
at the chosen locations but will have a nonzero residual else-
where. Thus, it is akin to the interpolation methods in Chap. 18. 
Note that collocation amounts to using the weighting function

W = δ(x − xi)     for i = 1, 2, … , n

where n = the number of unknown coefficients and δ(x − xi) = 
the Dirac delta function that vanishes everywhere but at x = xi, 
where it equals 1.
 In the subdomain method, the interval is divided into as many 
segments, or “subdomains,” as there are unknown coefficients. 
Then, the coefficients are adjusted until the average value of the 
residual is zero in each subdomain. Thus, for each subdomain, 
the weighting function is equal to 1 and Eq. (31.16) is

∫ xi

xi−1

 R dx = 0  for i = 1, 2, … , n

where xi−1 and xi are the bounds of the subdomain.

 For the least-squares approach, the coefficients are adjusted 
so as to minimize the integral of the square of the residual. 
Thus, the weighting functions are

Wi =
∂R

∂ai

which can be substituted into Eq. (31.16) to give

∫
D

  R 
∂R

∂ai

 dD = 0  i = 1, 2, … , n

or

∂
∂ai

∫
D

 R
2 dD = 0  i = 1, 2, … , n

Comparison of the formulation with those of Chap. 17 shows 
that this is the continuous form of regression.
 Galerkin’s method employs the interpolation functions Ni as 
weighting functions. Recall that these functions always sum to 1 
at any position in an element. For many problem contexts, 
Galerkin’s method yields the same results as are obtained by 
variational methods. Consequently, it is the most commonly 
employed version of MWR used in finite-element analysis.
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Similarly, for i = 2,

N2(x) 
dT

∼

dx ∣x2

x1

=
dT

∼
(x2)
dx

 (31.20)

Thus, the first term on the right-hand side of Eq. (31.18) represents the natural boundary 
conditions at the ends of the elements.
 Now, before proceeding let us regroup by substituting our results back into the 
original equation. Substituting Eqs. (31.18) through (31.20) into Eq. (31.17) and rear-
ranging gives for i = 1,

∫ x2

x1

 
dT

∼

dx
 
dN1

dx
 dx = −

dT
∼

(x1)
dx

+ ∫ x2

x1

  
f(x)N1(x) dx (31.21)

and for i = 2,

∫ x2

x1

 
dT

∼

dx
 
dN2

dx
 dx =

dT
∼

(x2)
dx

+ ∫ x2

x1

  
f(x)N2(x) dx (31.22)

 Notice that the integration by parts has led to two important outcomes. First, it has 
incorporated the boundary conditions directly into the element equations. Second, it has 
lowered the highest-order evaluation from a second to a first derivative. This latter out-
come yields the significant result that the approximation functions need to preserve 
continuity of value but not slope at the nodes.
 Also notice that we can now begin to ascribe some physical significance to the in-
dividual terms we have derived. On the right-hand side of each equation, the first term 
represents one of the element’s boundary conditions and the second is the effect of the 
system’s forcing function—in the present case, the heat source f(x). As will now become 
evident, the left-hand side embodies the internal mechanisms that govern the element’s 
temperature distribution. That is, in terms of the finite-element method, the left-hand 
side will become the element property matrix.
 To see this, let us concentrate on the terms on the left-hand side. For i = 1, the term is

∫ x2

x1

 
dT

∼

dx
 
dN1

dx
 dx (31.23)

Recall from Sec. 31.1.2 that the linear nature of the shape function makes differentiation 
and integration simple. Substituting Eqs. (31.6) and (31.7) into Eq. (31.23) gives

∫ x2

x1

 
T1 − T2

(x2 − x1)2 dx =
1

x2 − x1
 (T1 − T2) (31.24)

Similar substitutions for i = 2 [Eq. (31.22)] yield

∫ x2

x1

 
−T1 + T2

(x2 − x1)2 dx =
1

x2 − x1
 (−T1 + T2) (31.25)

 Comparison with Eq. (31.14) shows that these are similar to the relationships that 
were developed with the direct method using Fourier’s law. This can be made even clearer 
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914 FINITE-ELEMENT METHOD

by re-expressing Eqs. (31.24) and (31.25) in matrix form as

1
x2 − x1

 [
1 −1

−1 1 ]{
T1

T2}

 Substituting this result into Eqs. (31.21) and (31.22) and expressing the result in 
matrix form gives the final version of the element equations

1
x2 − x1

 [
1 −1

−1 1 ]{T} =
{

−
dT(x1)

dx

dT(x2)
ds

}
+

{
∫ x2

x1
 f(x)N1(x) dx

∫ x2

x1
 f(x)N2(x) dx}

 (31.26)

 Note that aside from the direct and the weighted residual methods, the element equa-
tions can also be derived using variational calculus (for example, see Allaire 1985). For the 
present case, this approach yields equations that are identical to those derived above.

 EXAMPLE 31.2 Element Equation for a Heated Rod
Problem Statement. Employ Eq. (31.26) to develop the element equations for a 
10-cm rod with boundary conditions of T(0, t) = 40 and T(10, t) = 200 and a uniform 
heat source of f(x) = 10. Employ four equal-size elements of length = 2.5 cm.
Solution. The heat source term in the first row of Eq. (31.26) can be evaluated by 
substituting Eq. (31.3) and integrating to give

∫2.5

0
 10 

2.5 − x

2.5
 dx = 12.5

Similarly, Eq. (31.4) can be substituted into the heat source term of the second row of 
Eq. (31.26), which can also be integrated to yield

∫2.5

0
 10 

x − 0
2.5

 dx = 12.5

These results along with the other parameter values can be substituted into Eq. (31.26) 
to give

0.4T1 − 0.4T2 = −
dT

dx
(x1) + 12.5

and

−0.4T1 + 0.4T2 =
dT

dx
(x2) + 12.5

31.2.3 Assembly
Before the element equations are assembled, a global numbering scheme must be estab-
lished to specify the system’s topology, or spatial layout. As in Table 31.1, this defines the 

External effects

Element stiffness matrix
Boundary  
condition
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TABLE 31.1  The system topology for the finite-element segmentation scheme from  
Fig. 31.4b.

 Node Numbers

Element Local Global

1 1 1
 2 2
2 1 2
 2 3
3 1 3
 2 4
4 1 4
 2 5

FIGURE 31.7
The assembly of the equations for the total system.
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]
 

   T1

   T2

{
T3

   T4

   0
}

=

{

−dT(x1)∕dx + 12.5
25

12.5 + 12.5
dT(x4)∕dx + 12.5

0
}

(d) 

[

0.4
−0.4
   0
   0
   0

       

−0.4
0.8

−0.4
   0
   0

           

   0
−0.4

0.8
−0.4
   0

            

   0
   0

−0.4
0.4

  
+0.4
−0.4

   

   0
   0
   0

−0.4
0.4

]
 

    T1

   T2

{
 T3

   T4

   T5

}
=

{

−dT(x1)∕dx + 12.5
25
25

12.5 + 12.5
dT(x5)∕dx + 12.5

}

(e) 

[

0.4
−0.4
   0
   0
   0

       

−0.4
0.8

−0.4
   0
   0

           

   0
−0.4

0.8
−0.4
   0

           

   0
   0

−0.4
0.8

−0.4

          

   0
   0
   0

−0.4
0.4

]
 

    T1

     T2

{
 T3

    T4

    T5

}
=

{

−dT(x1)∕dx + 12.5
25
25
25

dT(x5)∕dx + 12.5
}
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916 FINITE-ELEMENT METHOD

FIGURE 31.8
Results of applying the finite-element approach to a heated bar. The exact solution is also 
shown.
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Finite-element

Analytical

connectivity of the element mesh. Because the present case is one-dimensional, the numbering 
scheme might seem so predictable that it is trivial. However, for two- and three-dimensional 
problems it offers the only means to specify which nodes belong to which elements.
 Once the topology is specified, the element equation (31.26) can be written for each 
element using the global coordinates. Then they can be added one at a time to assemble 
the total system matrix (note that this process is explored further in Sec. 32.4). The 
process is depicted in Fig. 31.7.

31.2.4 Boundary Conditions
Notice that, as the equations are assembled, the internal boundary conditions cancel. 
Thus, the final result for {F} in Fig. 31.7e has boundary conditions for only the first and 
the last nodes. Because T1 and T5 are given, these natural boundary conditions at the 
ends of the bar, dT(x1)∕dx and dT(x5)∕dx, represent unknowns. Therefore, the equations 
can be re-expressed as

dT

dx
 (x1) −0.4T2 = −3.5

  0.8T2 −0.4T3 =  41
−0.4T2 +0.8T3 −0.4T4 =   25

−0.4T3 +0.8T4 =  105

−0.4T4 −
dT

dx
 (x5) = −67.5

 (31.27)
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31.2.5 Solution
Equation (31.27) can be solved for

dT

dx
 (x1) = 66  T2 = 173.75  T3 = 245

T4 = 253.75  
dT

dx
 (x5) = −34

31.2.6 Postprocessing
The results can be displayed graphically. Figure 31.8 shows the finite-element results 
along with the exact solution. Notice that the finite-element calculation captures the 
overall trend of the exact solution and, in fact, provides an exact match at the nodes. 
However, a discrepancy exists in the interior of each element due to the linear nature of 
the shape functions.

 31.3 TWO-DIMENSIONAL PROBLEMS
Although the mathematical “bookkeeping” increases markedly, the extension of the finite-
element approach to two dimensions is conceptually similar to the one-dimensional applica-
tions discussed to this point. It thus follows the same steps as were outlined in Sec. 31.1.

31.3.1 Discretization
A variety of simple elements such as triangles or quadrilaterals are usually employed for 
the finite-element mesh in two dimensions. In the present discussion, we will limit our-
selves to triangular elements of the type depicted in Fig. 31.9.

31.3.2 Element Equations
Just as for the one-dimensional case, the next step is to develop an equation to approxi-
mate the solution for the element. For a triangular element, the simplest approach is the 
linear polynomial [compare with Eq. (31.1)]

u(x, y) = a0 + a1,1x + a1,2y (31.28)

FIGURE 31.9
A triangular element.
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918 FINITE-ELEMENT METHOD

where u(x, y) = the dependent variable, the a’s = coefficients, and x and y = independent 
variables. This function must pass through the values of u(x, y) at the triangle’s nodes 
(x1, y1), (x2, y2), and (x3, y3). Therefore,

u1(x, y) = a0 + a1,1x1 + a1, 2y1

u2(x, y) = a0 + a1,1x2 + a1, 2y2

u3(x, y) = a0 + a1,1x3 + a1, 2y3

or in matrix form,

[
1 x1 y1

1 x2 y2

1 x3 y3
] {

a0

a1,1

a1, 2
} = {

u1

u2

u3
}

which can be solved for

a0 =
1

2Ae

 [u1(x2y3 − x3y2) + u2(x3y1 − x1y3) + u3(x1y2 − x2y1) ] (31.29)

a1,1 =
1

2Ae

 [u1(y2 − y3) + u2(y3 − y1) + u3(y1 − y2) ] (31.30)

a1, 2 =
1

2Ae

 [u1(x3 − x2) + u2(x1 − x3) + u3(x2 − x1) ] (31.31)

where Ae is the area of the triangular element,

Ae =
1
2

 [ (x2y3 − x3y2) + (x3y1 − x1y3) + (x1y2 − x2y1) ]

 Equations (31.29) through (31.31) can be substituted into Eq. (31.28). After collec-
tion of terms, the result can be expressed as

u = N1u1 + N2u2 + N3u3 (31.32)

where

N1 =
1

2Ae

 [ (x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y]

N2 =
1

2Ae

 [ (x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y]

N3 =
1

2Ae

 [ (x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y]

 Equation (31.32) provides a means to predict intermediate values for the element on 
the basis of the values at its nodes. Figure 31.10 shows the shape function along with 
the corresponding interpolation functions. Notice that the sum of the interpolation func-
tions is always equal to 1.
 As with the one-dimensional case, various methods are available for developing ele-
ment equations based on the underlying PDE and the approximating functions. The result-
ing equations are considerably more complicated than Eq. (31.26). However, because the 
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 31.3 TWO-DIMENSIONAL PROBLEMS 919

approximating functions are usually lower-order polynomials like Eq. (31.28), the terms 
of the final element matrix will consist of lower-order polynomials and constants.

31.3.3 Boundary Conditions and Assembly
The incorporation of boundary conditions and the assembly of the system matrix also 
become more complicated when the finite-element technique is applied to two- and 
three-dimensional problems. However, as with the derivation of the element matrix, the 

FIGURE 31.10
(a) A linear approximation function for a triangular element. The corresponding interpolation 
functions are shown in (b) through (d ).

u

x

y

u3 u2
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y
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920 FINITE-ELEMENT METHOD

FIGURE 31.11
A numbering scheme for the nodes and elements of a finite-element approximation of the 
heated plate that was previously characterized by finite differences in Chap. 29.
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FIGURE 31.12
The temperature distribution of a heated plate as calculated with a finite-element method.
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 31.4 SOLVING PDEs WITH SOFTWARE PACKAGES 921

difficulty relates to the mechanics of the process rather than to conceptual complexity. 
For example, the establishment of the system topology, which was trivial for the one- 
dimensional case, becomes a matter of great importance in two and three dimensions. In 
particular, the choice of a numbering scheme will dictate the bandedness of the resulting 
system matrix and hence the efficiency with which it can be solved. Figure 31.11 shows 
a scheme that was developed for the heated plate formerly solved by finite-difference 
methods in Chap. 29.

31.3.4 Solution and Postprocessing
Although the mechanics are complicated, the system matrix is merely a set of n simul-
taneous equations that can be used to solve for the values of the dependent variable at 
the n nodes. Figure 31.12 shows a solution that corresponds to the finite-difference solu-
tion from Fig. 29.5.

 31.4 SOLVING PDEs WITH SOFTWARE PACKAGES
Software packages have some capabilities for directly solving PDEs. However, as de-
scribed in the following sections, many of the solutions are limited to simple problems. 
This is particularly true of two- and three-dimensional cases. For these situations, generic 
packages (that is, ones not expressly developed to solve PDEs such as finite-element 
packages) are often limited to simple rectangular domains.
 Although this might seem limiting, simple applications can be of great utility in a 
pedagogical sense. This is particularly true when the packages’ visualization tools are 
used to display calculation results.

31.4.1 Excel
Although Excel does not have the direct capability to solve PDEs, it is a nice environ-
ment to develop simple solutions of elliptic PDEs. For example, the orthogonal layout 
of the spreadsheet cells (Fig. 31.13b) is directly analogous to the grid used in Chap. 29 
to model the heated plate (Fig. 31.13a).

FIGURE 31.13
The analogy between (a) a 
rectangular grid and (b) the 
cells of a spreadsheet.
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 As in Fig. 31.13b, the Dirichlet boundary conditions can first be entered along the 
periphery of the cell block. The formula for the Liebmann method can be implemented 
by entering Eq. (29.11) in one of the cells in the interior (like cell B2 in Fig. 31.13b). 
Thus, the value for the cell can be computed as a function of its adjacent cells. Then the 
cell can be copied to the other interior cells. Because of the relative nature of the Excel 
copy command, all the other cells will properly be dependent on their adjacent cells.
 Once you have copied the formula, you will probably get an error message: Cannot 
resolve circular references. You can rectify this by selecting File, Options and clicking 
on the Formulas category. Then, go to the Calculation options section and enable the 
Iterative calculation check box. This will allow the spreadsheet to recalculate (the default 
is 100 iterations) and solve Liebmann’s method iteratively. After this occurs, strike the F9 key 
to manually recalculate the sheet until the answers do not vary. This means that the solution 
has converged.
 Once the problem has been solved, Excel’s graphics tools can be used to visualize 
the results. An example is shown in Fig. 31.14a. For this case, we have

 Used a finer grid.
 Made the lower boundary insulated.
 Added a heat source of 150 to the middle of the plate (cell E5).

FIGURE 31.14
(a) Excel solution of the Pois-
son equation for a plate with 
an  insulated lower edge and a 
heat source. (b) A “topographic 
map” and (c) a 3-D display of 
the temperatures.
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 31.4 SOLVING PDEs WITH SOFTWARE PACKAGES 923

 The numerical results from Fig. 31.14a can then be displayed with Excel’s Chart 
Wizard. Figure 31.14b and c show 3-D surface plots. The y orientation of these is 
 normally the reverse of the spreadsheet. Thus, the top high-temperature edge (100) would 
normally be displayed at the bottom of the plot. We reversed the y values on our sheet 
prior to plotting so that the graphs would be consistent with the spreadsheet.
 Notice how the graphs help you visualize what is going on. Heat flows down from 
the source toward the boundaries, forming a mountainlike shape. Heat also flows from 
the high-temperature boundary down to the two side edges. Notice how the heat flows 
preferentially toward the lower-temperature edge (50). Finally, notice how the tempera-
ture gradient in the y dimension goes to zero at the lower insulated edge (∂T∕∂y → 0).

31.4.2 MATLAB
Although the standard MATLAB software package does not presently have great capabilities 
for solving PDEs, M-files and functions can certainly be developed for this purpose. In 
 addition, its display capabilities are very nice, particularly for visualization of 2-D spatial 
problems.
 To illustrate this capability, we first set up the Excel spreadsheet in Fig. 31.14a. 
These results can be saved as a text (Tab delimited) file with a name like plate.txt. 
This file can then be moved to the MATLAB directory.
 Once in MATLAB, the file can be loaded by typing

>> load  plate.txt

Next, the gradients can be simply calculated as

>> [px,py] =gradient(plate);

Note that this is the simplest method to compute gradients using default values of dx = 
dy = 1. Therefore, the directions and relative magnitudes will be correct.
 Finally, a series of commands can be used to develop the plot. The command contour 
develops a contour plot of the data. The command clabel adds contour labels to the plot. 
Finally, quiver takes the gradient data and adds it to the plot as arrows,

>> cs=contour(plate);clabel(cs);hold on
>> quiver(−px,−py);hold  off

Note that the minus signs are added because of the minus sign in Fourier’s law 
[Eq. (29.4)]. As seen in Fig. 31.15, the resulting plot provides an excellent representation 
of the solution.
 Note that any file in the proper format can be entered into MATLAB and displayed 
in this way. This sharing of files between tools is becoming commonplace. In addition, 
files can be created in one location on one tool, transmitted over the Internet to another 
location, where the file might be displayed with another tool. This is one of the exciting 
aspects of modern numerical applications.
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924 FINITE-ELEMENT METHOD

FIGURE 31.15
MATLAB-generated contour plots for the heated plate calculated with Excel (Fig. 31.14).
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31.4.3 Mathcad
Mathcad has two functions that can solve Poisson’s equation. You can use the relax 
function when you know the value of the unknown on all four sides of a square region. 
This function solves a system of linear algebraic equations using Gauss-Seidel iteration 
with overrelaxation to speed the rate of convergence. For the special case where there 
are internal sources or sinks, and the unknown function is zero on all four sides of the 
square, you can use the multigrid function, which is usually faster than relax. Both of 
these functions return a square matrix where the location of the element in the matrix 
corresponds to its location within the square region. The value of the element approxi-
mates the value of the solution of Poisson’s equation at this point.
 Figure 31.16 shows an example where a square plate contains heat sources while the 
boundary is maintained at zero. The first step is to establish dimensions for the temperature 
grid and the heat source matrix. The temperature grid has dimensions (R + 1) × (R + 1) 
while the heat source matrix is R × R. For example, a 3 × 3 temperature grid has 4 (2 × 2) 
possible heat sources. In this case, we establish a 33 × 33 temperature grid and a 32 × 32 
heat source matrix. The Mathcad command MRR := 0 (with R = 32) establishes the di-
mensions of the source matrix and sets all the elements to zero. Next, the location and strength 
of two heat sources are established. Finally, S is the resulting temperature distribution 
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E
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as calculated by the multigrid function. The second argument of multigrid is a parameter that 
controls the numerical accuracy. As suggested by Mathcad Help, a value of 2 generally gives 
a good approximation of the solution.
 The temperature distribution can be displayed with surface, contour, or vector-field 
plots. These plots can be placed anywhere on the worksheet by clicking to the desired 
location. This places a red crosshair at that location. Then, use the Insert/Graph pull-
down menu to place an empty plot on the worksheet with placeholders for the expressions 
to be graphed and for the ranges of variables. Simply type S in the placeholder on the  
z axis. Mathcad does the rest to produce the graphs shown in Fig. 31.16. Once the graph 
has been created, you can use the Format/Surface Plot and Format/Contour Plot pull-
down menus to change the color or add titles, labels, and other features.

FIGURE 31.16
Mathcad screen to determine the solution of an elliptic PDE.

PROBLEMS

31.1 Repeat Example 31.1, but for T(0, t) = 75 and T(10, t) = 150 
and a uniform heat source of 15.
31.2 Repeat Example 31.2, but for boundary conditions of T(0, t) = 
75 and T(10, t) = 150 and a heat source of 15.
31.3 Apply the results of Prob. 31.2 to compute the temperature 
distribution for the entire rod using the finite-element approach.
31.4 Use Galerkin’s method to develop an element equation for a 
steady-state version of the advection-diffusion equation described 

in Prob. 30.7. Express the final result in the format of Eq. (31.26) 
so that each term has a physical interpretation.
31.5 A version of the Poisson equation that occurs in mechanics is 
the following model for the vertical deflection of a bar with a dis-
tributed load P(x):

AcE 
∂2u

∂x2 = P(x)

 PROBLEMS 925
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926 FINITE-ELEMENT METHOD

where Ac = cross-sectional area, E = Young’s modulus, u = deflec-
tion, and x = distance measured along the bar’s length. If the bar is 
rigidly fixed (u = 0) at both ends, use the finite-element method to 
model its deflections for Ac = 0.1 m2, E = 200 × 109 N/m2, L = 10 m, 
and P(x) = 1000 N/m. Employ a value of Δx = 2 m.
31.6 Develop a user-friendly program to model the steady-state 
distribution of temperature in a rod with a constant heat source us-
ing the finite-element method. Set up the program so that unequally 
spaced nodes may be used.
31.7 Use Excel to perform the same computation as in Fig. 31.14, but 
insulate the right-hand edge and add a heat sink of −150 at cell C7.
31.8 Use MATLAB or Mathcad to develop a contour plot with 
flux arrows for the Excel solution from Prob. 31.7.
31.9 Use Excel to model the temperature distribution of the slab 
shown in Fig. P31.9. The slab is 0.02 m thick and has a thermal 
conductivity of 3 W/(m °C).

left end of the rod has a fixed temperature gradient and the 
 temperature is a variable. The right end has a fixed temperature and 
the gradient is a variable. The heat source f(x) has a constant value. 
Thus, the conditions are

dT

∂x ∣
x=0

= 0.25°C/m T  ∣x=50 = 100°C f (x) = 30 W/cm

Develop the nodal equations that must be solved for the tempera-
tures and temperature gradients at each of the six nodes. Assemble 
the equations, insert the boundary conditions, and solve the result-
ing set for the unknowns.
31.12 Find the temperature distribution in a rod (Fig. P31.12) with 
internal heat generation using the finite-element method. Derive 
the element nodal equations using Fourier heat conduction and heat 
conservation relationships:

qk = −kA 
dT

∂x

and

∑ [qk + f (x) ] = 0

where qk = heat flow (W), k = thermal conductivity [W/(m °C)], 
A = cross-sectional area (m2), and f(x) = heat source (W/cm). The 

100°C

50°C

75°C 25°C

2 m

0.6 m

1 m 0.4 m

–100 W/m2

FIGURE P31.9

31.10 Use MATLAB or Mathcad to develop a contour plot with 
flux arrows for the Excel solution from Prob. 31.9.
31.11 Find the temperature distribution in a rod (Fig. P31.11) with 
internal heat generation using the finite-element method. Derive 
the element nodal equations using Fourier heat conduction and heat 
conservation relationships:

qk = −kA 
dT

∂x

and

∑ [qk + f (x) ] = 0

where qk = heat flow (W), k = thermal conductivity [W/(m °C)], 
A = cross-sectional area (m2), and f(x) = heat source (W/cm). The 
rod has a value of kA = 100 W m/°C. The rod is 50 cm long, 
the x-coordinate is zero at the left end and positive to the right. 
Divide the rod into five elements (six nodes, each 10 cm long). The 

FIGURE P31.11

kA = 100 W/m  °C
f (x) = 30 W/cm
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dx x=0
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FIGURE P31.12

kA = 50 W m/°C

kA = 100 W m/°C
f (x) = 30 W/cm
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x
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rod is 50 cm long, the x-coordinate is zero at the left end and 
 positive to the right. The rod is also linearly tapered with a value of 
kA = 100 and 50 W m/°C at x = 0 and at x = 50, respectively. 
 Divide the rod into five elements (six nodes, each 10 cm long). 
Both ends of the rod have fixed temperatures. The heat source f(x) 
has a constant value. Thus, the conditions are

T ∣x=0 = 100°C T ∣x=50 = 50°C f (x) = 30 W/cm

The tapered areas must be treated as if they were constant over the 
length of an element. Therefore, average the kA values at each end 
of the node and take that average as a constant over the node. 
 Develop the nodal equations that must be solved for the temperatures 
and temperature gradients at each of the six nodes. Assemble the 
equations, insert the boundary conditions, and solve the resulting 
set for the unknowns.
31.13 Use a software package to solve for the temperature distribu-
tion of the L-shaped plate in Fig. P29.18. Display your results as a 
contour plot with flux arrows.
31.14 Use a software package like Excel or Matlab to determine 
the temperature distribution and fluxes for the plate depicted in 
Fig. P31.14. The plate is 60 × 60 × 1 cm, is made out of aluminum 
[k′ = 0.49 cal/(s cm °C)], and has an input of 10 cal/s into the 
middle node.
31.15 Repeat Prob. 31.14, but with the bottom edge insulated. 

50°C

100°C

0°C

75°C

FIGURE P31.14
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C H A P T E R

32
Case Studies: Partial  
Differential Equations

The purpose of this chapter is to apply the methods from Part Eight to practical engineer-
ing problems. In Sec. 32.1, a parabolic PDE is used to compute the time-variable distri-
bution of a chemical along the longitudinal axes of a rectangular reactor. This example 
illustrates how the instability of a solution can be due to the nature of the PDE rather 
than to properties of the numerical method.
 Sections 32.2 and 32.3 involve applications of the Poisson and Laplace equations to 
civil and electrical engineering problems, respectively. Among other things, this will 
allow you to see similarities as well as differences between field problems in these areas 
of engineering. In addition, they can be contrasted with the heated-plate problem that 
has served as our prototype system in this part of the book. Section 32.2 deals with the 
deflection of a square plate, whereas Sec. 32.3 is devoted to computing the voltage dis-
tribution and charge flux for a two-dimensional surface with a curved edge.
 Section 32.4 presents a finite-element analysis as applied to a series of springs. This 
application is closer in spirit to finite-element applications in mechanics and structures 
than was the temperature field problem used to illustrate the approach in Chap. 31.

 32.1 ONE-DIMENSIONAL MASS BALANCE OF A REACTOR 
(CHEMICAL/BIO ENGINEERING)
Background. Chemical engineers make extensive use of idealized reactors in their de-
sign work. In Secs. 12.1 and 28.1, we focused on single or coupled well-mixed reactors. 
These are examples of lumped-parameter systems (recall Sec. PT3.1.2).

FIGURE 32.1
An elongated reactor with a 
 single entry and exit point. A 
mass balance is developed 
around a finite segment along 
the tank’s longitudinal axis in 
 order to derive a differential 
equation for the concentration. Δx

x = 0 x = L
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 32.1 ONE-DIMENSIONAL MASS BALANCE OF A REACTOR 929

 Figure 32.1 depicts an elongated reactor with a single entry and exit point. This reac-
tor can be characterized as a distributed-parameter system. If it is assumed that the chem-
ical being modeled is subject to first-order decay1 and the tank is well-mixed vertically 
and laterally, a mass balance can be written for a finite segment of length Δx, as in

V 

Δc

Δt
= Qc(x)

Flow in

− Q[c(x) +
∂c(x)

∂x
 Δx]

Flow out

− DAc

∂c(x)
∂x

Dispersion in

   + DAc[
∂c(x)

∂x
+

∂
∂x

 
∂c(x)

∂x
 Δx]

Dispersion out

− kVc

Decay reaction

 (32.1)

where V = volume (m3), Q = flow rate (m3/h), c is concentration (moles/m3), D is a 
dispersion coefficient (m2/h), Ac is the tank’s cross-sectional area (m2), and k is the first-
order decay coefficient (h−1). Note that the dispersion terms are based on Fick’s first law,

Flux = −D  
∂c

∂x
 (32.2)

which is directly analogous to Fourier’s law for heat conduction [recall Eq. (29.4)]. It 
specifies that turbulent mixing tends to move mass from regions of high to low concen-
tration. The parameter D, therefore, reflects the magnitude of turbulent mixing.
 If Δx and Δt are allowed to approach zero, Eq. (32.1) becomes

∂c

∂t
= D  

∂2c

∂x2 − U 
∂c

∂x
− kc (32.3)

where U = Q∕Ac is the velocity of the water flowing through the tank. The mass balance 
for Fig. 32.1 is, therefore, now expressed as a parabolic partial differential equation. 
Equation (32.3) is sometimes referred to as the advection-diffusion equation with first-
order reaction. At steady state, it is reduced to a second-order ODE,

0 = D 
d2c

dx2 − U 
d 2c

dx
− kc (32.4)

 Prior to t = 0, the tank is filled with water that is devoid of the chemical. At t = 0, 
the chemical is injected into the reactor’s inflow at a constant level of cin. Thus, the fol-
lowing boundary conditions hold:

Qcin = Qc0 − DAc 

∂c0

∂x

and

c′(L, t) = 0

The second condition specifies that the chemical leaves the reactor purely as a function 
of flow through the outlet pipe. That is, it is assumed that dispersion in the reactor does 

1That is, the chemical decays at a rate that is linearly proportional to how much chemical is present.

⏟

⏟
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930 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

not affect the exit rate. Under these conditions, use numerical methods to solve Eq. (32.4) 
for the steady-state levels in the reactor. Note that this is an ODE boundary-value 
problem. Then solve Eq. (32.3) to characterize the transient response—that is, how the 
levels change in time as the system approaches the steady state. This application in-
volves a PDE.

Solution. A steady-state solution can be developed by substituting centered finite dif-
ferences for the first and the second derivatives in Eq. (32.4) to give

0 = D 
ci+1 − 2ci + ci−1

Δx2 − U 
ci+1 − ci−1

2Δx
− kci

Collecting terms gives

−(
D

UΔx
+

1
2)ci−1 + (

2D

UΔx
+

k Δx

U )c0 − (
D

UΔx
−

1
2)ci+1 = 0 (32.5)

 This equation can be written for each of the system’s nodes. At the reactor’s ends, this 
process introduces nodes that lie outside the system. For example, at the inlet node (i = 0),

−(
D

UΔx
+

1
2)c−1 + (

2D

UΔx
+

k Δx

U )c0 − (
D

UΔx
−

1
2)c1 = 0 (32.6)

 The c−1 can be removed by invoking the first boundary condition. At the inlet, the 
following mass balance must hold:

Qcin = Qc0 − DAc 

∂c0

∂x

where c0 = concentration at x = 0. Thus, this boundary condition specifies that the 
amount of chemical carried into the tank by advection through the pipe must be equal 
to the amount carried away from the inlet by both advection and turbulent dispersion in 
the tank. A finite divided difference can be substituted for the derivative

Qcin = Qc0 − DAc 

c1 − c−1

2 Δx

which can be solved for

c−1 = c1 +
2 ΔxU

D
 cin −

2 ΔxU

D
 c0

which can be substituted into Eq. (32.6) to give

(
2 D

U Δx
+

k Δx

U
+ 2 +

Δx U

D )c0 − (
2D

UΔx)c1 = (2 +
ΔxU

D )cin (32.7)

 A similar derivation can be performed for the outlet, where the original difference 
equation is

−(
D

UΔx
+

1
2)cn−1 + (

2 D

UΔx
+

k Δx

U )cn − (
D

UΔx
−

1
2)cn+1 = 0 (32.8)
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The boundary condition at the outlet is

Q cn − DAc 

dcn

dx
= Qcn

As with the inlet, a divided difference can be used to approximate the derivative:

Qcn − DAc 

cn+1 − cn−1

2 Δx
= Qcn (32.9)

Inspection of this equation leads us to conclude that cn+1 = cn−1. In other words, the slope 
at the outlet must be zero for Eq. (32.9) to hold. Substituting this result into Eq. (32.8) 
and simplifying gives

−(
2D

UΔx)cn−1 + (
2D

UΔx
+

k Δx

U )cn = 0 (32.10)

 Equations (32.5), (32.7), and (32.10) now form a system of n tridiagonal equations 
with n unknowns. For example, if D = 2, U = 1, Δx = 2.5, k = 0.2, and cin = 100, the 
system is

[

5.35 −1.6
−1.3 2.1 −0.3

−1.3 2.1 −0.3
−1.3 2.1 −0.3

−1.6 2.1
]

 

{

c0

c1

c2

c3

c4

}
=

{

325
0
0
0
0

}
which can be solved for

c0 = 76.44  c1 = 52.47  c2 = 36.06
c3 = 25.05  c4 = 19.09

These results are plotted in Fig. 32.2. As expected, the concentration decreases due to 
the decay reaction as the chemical flows through the tank. In addition to the above 
computation, Fig. 32.2 shows another case with D = 4. Notice how increasing the tur-
bulent mixing tends to flatten the curve.

FIGURE 32.2
Concentration versus distance  
along the longitudinal axis of a  
rectangular reactor for a  
chemical that decays with first- 
order kinetics.

c

20

40

60

80

100

0 2.5 5 7.5 10 x

D = 2

D = 4
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932 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

 In contrast, if dispersion is decreased, the curve will become steeper as mixing becomes 
less important relative to advection and decay. It should be noted that if dispersion is decreased 
too much, the computation will become subject to numerical errors. This type of error is 
referred to as static instability to contrast it with the dynamic instability due to too large a 
time step during a dynamic computation. The criterion to avoid this static instability is

Δx ≤
2D

U

Thus, the criterion becomes more stringent (lower Δx) for cases where advection domi-
nates over dispersion.
 Aside from steady-state computations, numerical methods can be used to generate time-
variable solutions of Eq. (32.3). Figure 32.3 shows results for D = 2, U = 1, Δx = 2.5,  
k = 0.2, and cin = 100, where the concentration in the tank is 0 at time zero. As expected, 
the immediate impact is near the inlet. With time, the solution eventually approaches the 
steady-state level.
 It should be noted that in such dynamic calculations, the time step is constrained by 
a stability criterion expressed as (Chapra 1997)

Δt ≤
(Δx)2

2D + k(Δx)2

Thus, the reaction term acts to make the time step smaller.

 32.2 DEFLECTIONS OF A PLATE  
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. A square plate with simply supported edges is subject to an areal load q 
(Fig. 32.4). The deflection in the z dimension can be determined by solving the elliptic 
PDE (see Carnahan, Luther, and Wilkes 1969)

∂4z

∂x4 + 2 
∂4z

∂x2∂y2 +
∂4z

∂y4 =
q

D
 (32.11)

FIGURE 32.3
Concentration versus distance  
at different times during the 
buildup of chemical in a 
 reactor.

c

100

100 x

Steady state
t = 0.4

t = 0.8 t = 1.6 t = 3.2t = 0.2
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 32.2 DEFLECTIONS OF A PLATE 933

subject to the boundary conditions that, at the edges, the deflection and slope normal to 
the boundary are zero. The parameter D is the flexural rigidity,

D =
E Δz3

12(1 − σ2)
 (32.12)

where E = the modulus of elasticity, Δz = the plate’s thickness, and σ = Poisson’s ratio.
 If a new variable is defined as

u =
∂2z

∂x2 +
∂2z

∂y2

Eq. (32.11) can be re-expressed as

∂2u

∂x2 +
∂2u

∂y2 =
q

D
 (32.13)

Therefore, the problem reduces to successively solving two Poisson equations. First, Eq. 
(32.13) can be solved for u subject to the boundary condition that u = 0 at the edges. 
Then, the results can be employed in conjunction with

∂2z

∂x2 +
∂2z

∂y2 = u (32.14)

to solve for z subject to the condition that z = 0 at the edges.
 Develop a computer program to determine the deflections for a square plate subject to 
a constant areal load. Test the program for a plate with 2-m-long edges, q = 33.6 kN/m2,  
σ = 0.3, Δz = 10−2 m, and E = 2 × 1011 Pa. Employ Δx = Δy = 0.5 m for your test run.

Solution. Finite-divided differences can be substituted into Eq. (32.13) to give
ui+1, j − 2ui, j + ui−1, j

Δx2 +
ui, j+1 − 2ui, j + ui, j−1

Δy2 =
q

D
 (32.15)

Equation (32.12) can be used to compute D = 1.832 × 104 N/m. This result, along with 
the other system parameters, can be substituted into Eq. (32.15) to give

ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j = 0.458

FIGURE 32.4
A simply supported square 
plate subject to an areal load.

y

z

x

Δz
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934 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

This equation can be written for all the nodes with the boundaries set at u = 0. The 
resulting equations are

[

−4 1 1
1 −4 1 1

1 −4 1
1 −4 1 1

1 1 −4 1 1
1 1 −4 1

1 −4 1
1 1 −4 1

1 1 −4

]{

u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3

}
=

{

0.458
0.458
0.458
0.458
0.458
0.458
0.458
0.458
0.458

}
which can be solved for

u1,1 = −0.315  u1,2 = −0.401  u1,3 = −0.315
u2,1 = −0.401  u2,2 = −0.515  u2,3 = −0.401
u3,1 = −0.315  u3,2 = −0.401  u3,3 = −0.315

These results in turn can be substituted into Eq. (32.14), which can be written in finite-
difference form and solved for

z1,1 = 0.063  z1,2 = 0.086  z1,3 = 0.063
z2,1 = 0.086  z2,2 = 0.118  z2,3 = 0.086
z3,1 = 0.063  z3,2 = 0.086  z3,3 = 0.063

 32.3 TWO-DIMENSIONAL ELECTROSTATIC FIELD PROBLEMS 
(ELECTRICAL ENGINEERING)

Background. Just as Fourier’s law and the heat balance can be employed to character-
ize temperature distribution, analogous relationships are available to model field prob-
lems in other areas of engineering. For example, electrical engineers use a similar 
approach when modeling electrostatic fields.
 Under a number of simplifying assumptions, an analog of Fourier’s law can be 
represented in one-dimensional form as

D = −ε 

dV

dx

where D is called the electric flux density vector, ε = permittivity of the material, and 
V = electrostatic potential.
 Similarly, a Poisson equation for electrostatic fields can be represented in two dimen-
sions as

∂2V

∂x2 +
∂2V

∂y2 = −
ρυ

ε
 (32.16)

where ρυ = volumetric charge density.
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 32.3 TWO-DIMENSIONAL ELECTROSTATIC FIELD PROBLEMS 935

 Finally, for regions containing no free charge (that is ρυ = 0), Eq. (32.16) reduces 
to a Laplace equation,

∂2V

∂x2 +
∂2V

∂y2 = 0 (32.17)

 Employ numerical methods to solve Eq. (32.17) for the situation depicted in Fig. 32.5. 
Compute the values for both V and for D if ε = 2.

Solution. Using the approach outlined in Sec. 29.3.2, Eq. (29.24) can be written for 
node (1, 1) as

2
Δx2[

V1,1 − V0,1

α1(α1 + α2)
+

V1,1 − V2,1

α2(α1 + α2) ] +
2

Δy2[
V1,1 − V0,1

β1(β1 + β2)
+

V1,1 − V2,1

β2(β1 + β2) ] = 0

According to the geometry depicted in Fig. 32.5, Δx = 3, Δy = 2, β1 = β2 = α2 = 1, 
and α1 = 0.94281. Substituting these values yields

0.12132 V1,1 − 121.32 + 0.11438 V1,1 − 0.11438 V2,1 + 0.25 V1,1

 + 0.25 V1,1 − 0.25 V1,2 = 0

Collecting terms gives

0.73570 V1,1 − 0.11438 V2,1 − 0.25 V1, 2 = 121.32

FIGURE 32.5
(a) A two-dimensional system with a voltage of 1000 along the circular boundary and a volt-
age of 0 along the base. (b) The nodal numbering scheme.

(a)

(b)

6

1000

1000

3

2

0 0

2,3
1,3

0,2

0,1

3,3

4,2

4,1

1,0 2,0 3,0

1,1 2,1 3,1

3,22,21,2
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936 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

 A similar approach can be applied to the remaining interior nodes. The resulting 
simultaneous equations can be expressed in matrix form as

[

0.73570 −0.11438 −0.25000
−0.11111 0.72222 −0.11111 −0.25000

−0.11438 0.73570 −0.25000
−0.31288 1.28888 −0.14907

−0.25000 −0.11111 0.72222 −0.11111
−0.31288 −0.14907 1.28888

]

×

{

V1,1

V2,1

V3,1

V1,2

V2,2

V3,2

}
=

{

121.32
0

121.32
826.92

250
826.92

}
which can be solved for

V1,1 = 521.19  V2,1 = 421.85  V3,1 = 521.19
V1,2 = 855.47  V2,2 = 755.40  V3,2 = 855.47

These results are depicted in Fig. 32.6a.
 To compute the flux (recall Sec. 29.2.3), Eqs. (29.14) and (29.15) must be modi-
fied to account for the irregular boundaries. For the present example, the modifications 

FIGURE 32.6
The results of solving the  
Laplace equation with correc-
tion factors for the irregular 
boundaries. (a) Potential and  
(b) flux.

(a)

(b)

1000

1000

10001000

1000

1000
1000

0 00

855 755 855

521 422 521
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result in

Dx = −ε 

Vi+1, j − Vi−1, j

(α1 + α2) Δx

and

Dy = −ε 

Vi, j+1 − Vi, j−1

(β1 + β2)Δy

For node (1, 1), these formulas can be used to compute the x and y components of the 
flux

Dx = −2 

421.85 − 1000
(0.94281 + 1)3

= 198.4

and

Dy = −2 

855.47 − 0
(1 + 1)2

= −427.7

which in turn can be used to calculate the electric flux density vector,

D = √198.42 + (−427.7)2 = 471.5

which has the direction

θ = tan−1
(

−427.7
198.4 ) = −65.1°

The results for the other nodes are

Node Dx Dy D θ

 2, 1 0.0 −377.7 377.7 −90
 3, 1 −198.4 −427.7 471.5 245.1
 1, 2 109.4 −299.6 281.9 −69.1
 2, 2 0.0 −289.1 289.1 −90.1
 3, 2 −109.4 −299.6 318.6 249.9

The fluxes are displayed in Fig. 32.6b.

 32.4 FINITE-ELEMENT SOLUTION OF A SERIES OF SPRINGS 
(MECHANICAL/AEROSPACE ENGINEERING)

Background. Figure 32.7 shows a series of interconnected springs. One end is fixed 
to a wall, whereas the other is subject to a constant force F. Using the step-by-step 
procedure outlined in Chap. 31, a finite-element approach can be employed to determine 
the displacements of the springs.

Solution.

Discretization. The way to partition this system is obviously to treat each spring as an 
element. Thus, the system consists of four elements and five nodes (Fig. 32.7b).

 32.4 FINITE-ELEMENT SOLUTION OF A SERIES OF SPRINGS 937
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938 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

Element equations. Because this system is so simple, its element equations can be 
written directly without recourse to mathematical approximations. This is an example of 
the direct approach for deriving elements.
 Figure 32.8 shows an individual element. The relationship between force F and 
displacement x can be represented mathematically by Hooke’s law:

F = kx

where k = the spring constant, which can be interpreted as the force required to cause a 
unit displacement. If a force F1 is applied at node 1, the following force balance must hold:

F = k(x1 − x2)

where x1 = displacement of node 1 from its equilibrium position and x2 = displacement 
of node 2 from its equilibrium position. Thus, x2 − x1 represents how much the spring 
is elongated or compressed relative to equilibrium (Fig. 32.8).
 This equation can also be written as

F1 = kx1 − kx2

For a stationary system, a force balance also necessitates that F1 = −F2 and, therefore,

F2 = −kx1 + kx2

FIGURE 32.7
(a) A series of interconnected 
springs. One end is fixed to a 
wall, whereas the other is sub-
ject to a constant force F.  
(b) The finite-element repre-
sentation. Each spring repre-
sents an element. Therefore, 
the system consists of four 
 elements and five nodes.

1 2 3 4 5

1 2 3 4

Force

(a)

(b)

Node

Element

FIGURE 32.8
A free-body diagram of an ele-
ment of the spring system.

Node 1 Node 2

F1 F2

0 x1 x2
x
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 32.4 FINITE-ELEMENT SOLUTION OF A SERIES OF SPRINGS 939

These two simultaneous equations specify the behavior of the element in response to 
prescribed forces. They can be written in matrix form as

[
k −k

−k k]{
x1

x2}
= {

F1

F2}

or

[k]{x} = {F} (32.18)

where the matrix [k] is the element property matrix. For this case, it is also referred to 
as the element stiffness matrix. Notice that Eq. (32.18) has been cast in the format of 
Eq. (31.9). Thus, we have succeeded in generating a matrix equation that describes the 
behavior of a typical element in our system.
 Before proceeding to the next step—the assembly of the total solution—we will 
introduce some notation. The elements of [k] and {F} are conventionally superscripted 
and subscripted, as in

[
k(e)

11 −k(e)
12

−k(e)
21 k(e)

22
]{

x1

x2}
= {

F(e)
1

F (e)
2 }

where the superscript (e) designates that these are the element equations. The k’s are 
also subscripted as kij to denote their location in the ith row and jth column of the matrix. 
For the present case, they can also be physically interpreted as representing the force 
required at node i to induce a unit displacement at node j.

Assembly. Before the element equations are assembled, all the elements and nodes must 
be numbered. This global numbering scheme specifies a system configuration, or topol-
ogy (note that the present case uses a scheme identical to that in Table 31.1). That is, it 
documents which nodes belong to which element. Once the topology is specified, the 
equations for each element can be written with reference to the global coordinates.
 The element equations can then be added one at a time to assemble the total system. 
The final result can be expressed in matrix form as [recall Eq. (31.10)]

[k]{x′} = {F′}

where

[k] =

[

k(1)
11 −k(1)

12

−k(1)
21 k(1)

22 + k(2)
11 −k(2)

12

−k(2)
21 k(2)

22 + k(3)
11 −k(3)

12

−k(3)
21 k(3)

22 + k(4)
11 −k(4)

12

−k(4)
21 k(4)

22

]
 (32.19)

and

{F′} =

{

F (1)
1

0
0
0

F (4)
2

}
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940 CASE STUDIES: PARTIAL DIFFERENTIAL EQUATIONS

and {x′} and {F′} are the expanded displacement and force vectors, respectively. Notice 
that, as the equations were assembled, the internal forces cancel. Thus, the final result 
for {F′} has zeros for all but the first and last nodes.
 Before proceeding to the next step, we must comment on the structure of the assem-
blage property matrix [Eq. (32.19)]. Notice that the matrix is tridiagonal. This is a direct 
result of the particular global numbering scheme that was chosen (Table 31.1) prior to 
assemblage. Although it is not very important in the present context, the attainment of 
such a banded, sparse system can be a decided advantage for more complicated problem 
settings. This is due to the efficient schemes that are available for solving such systems.

Boundary Conditions. The present system is subject to a single boundary condition, 
x1 = 0. Introduction of this condition and applying the global renumbering scheme re-
duces the system to (k’s = 1)

[

2 −1
−1 2 −1

−1 2 −1
−1 1

]{

x2

x3

x4

x5
}

=
{

0
0
0
F

}
The system is now in the form of Eq. (31.11) and is ready to be solved.
 Although reduction of the equations is certainly a valid approach for incorporating 
boundary conditions, it is usually preferable to leave the number of equations intact when 
performing the solution on the computer. Whatever the method, once the boundary con-
ditions are incorporated, we can proceed to the next step—the solution.

Generating Solution. Using one of the approaches from Part Three, such as the effi-
cient tridiagonal solution technique delineated in Chap. 11, the system can be solved for 
(with all k’s = 1 and F = 1)

x2 = 1  x3 = 2  x4 = 3  x5 = 4

Postprocessing. The results can now be displayed graphically. As in Fig. 32.9, the 
results are as expected. Each spring is elongated a unit displacement.

FIGURE 32.9
(a) The original spring system. (b) The system after the application of a constant force. The 
displacements are indicated in the space between the two systems.

F
x = 1

x = 2
x = 3

x = 4

(a)

(b)
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 PROBLEMS 941

PROBLEMS

Chemical/Bio Engineering
32.1 Perform the same computation as in Sec. 32.1, but use  
Δx = 1.25.
32.2 Develop a finite-element solution for the steady-state system 
of Sec. 32.1.
32.3 Compute mass fluxes for the steady-state solution of Sec. 32.1 
using Fick’s first law.
32.4 Compute the steady-state distribution of concentration for the 
tank shown in Fig. P32.4. The PDE governing this system is

D(
∂2c

∂x2 +
∂2c

∂y2) − kc = 0

and the boundary conditions are as shown. Employ a value of 0.6 
for D and 0.1 for k.
32.5 Two plates are 10 cm apart, as shown in Fig. P32.5. Initially, 
both plates and the fluids are still. At t = 0, the top plate is moved at 
a constant velocity of 8 cm/s. The equations governing the motions 
of the fluids are

∂ υoil

∂t
= μoil  

∂2υoil

∂x2  and 
∂ υwater

∂t
= μwater 

∂2υwater

∂x2

and the following relationships hold true at the oil-water interface:

υoil = υwater and μoil 
∂υoil

∂x
= μwater 

∂υwater

∂x

What is the velocity of the two fluid layers at t = 0.5, 1, and 1.5 s at 
distances x = 2, 4, 6, and 8 cm from the bottom plate? Note that 
μwater and μoil = 1 and 3 cP, respectively.
32.6 The displacement of a uniform membrane subject to a tension 
and a uniform pressure can be described by the Poisson equation

∂2z

∂x2 +
∂2z

∂y2 = −
P

T

Solve for the displacement of a 1-cm-square membrane that has 
P∕T = 0.7/cm and is fastened so that it has zero displacement along 
its four boundaries. Employ Δx = Δy = 0.1 cm. Display your re-
sults as a contour plot.

Civil/Environmental Engineering
32.7 Perform the same computation as in Sec. 32.2, but use  
Δx = Δy = 0.4 m.
32.8 The flow through porous media can be described by the 
 Laplace equation

∂2h

∂x2 +
∂2h

∂y2 = 0

FIGURE P32.4
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FIGURE P32.8
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where h is head. Use numerical methods to determine the distribu-
tion of head for the system shown in Fig. P32.8.
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32.9 The velocity of water flow through the porous media can be 
related to head by D’Arcy’s law

qn = −K 
dh

dn

where K is the hydraulic conductivity and qn is discharge velocity 
in the n direction. If K = 5 × 10−4 cm/s, compute the water veloci-
ties for Prob. 32.8.

Electrical Engineering
32.10 Perform the same computation as in Sec. 32.3 but for the 
system depicted in Fig. P32.10.
32.11 Perform the same computation as in Sec. 32.3 but for the 
system depicted in Fig. P32.11.

32.12 Use Poisson’s equation to compute the electric potential 
over a unit square (1 × 1) plate with zero voltage at the edges and 
point charge sources of ρυ∕ε (0.7, 0.7) = 1.5 and ρυ∕ε (0.3, 0.3) = −2. 
Employ Δx = Δy = 0.1, and display your results as a contour plot.

Mechanical/Aerospace Engineering
32.13 Perform the same computation as in Sec. 32.4, but change 
the force to 1.5 and the spring constants to

Spring 1 2 3 4
k 0.75 1.5 0.5 2

32.14 Perform the same computation as in Sec. 32.4, but use a 
force of 2 and five springs with the following spring constants:

Spring 1 2 3 4 5
k 0.25 0.5 1.5 1 2

32.15 An insulated composite rod is formed of two parts arranged 
end to end, and both halves are of equal length. Part a has thermal 
conductivity ka, for 0 ≤ x ≤ 1∕2, and part b has thermal conductiv-
ity kb, for 1∕2 ≤ x ≤ 1. The nondimensional transient heat conduc-
tion equations that describe the temperature u over the length x of 
the composite rod are

∂2u

∂x2 =
∂u

∂t
  0 ≤ x ≤ 1∕2

r 
∂2u

∂x2 =
∂u

∂t
  1∕2 ≤ x ≤ 1

where u = temperature, x = axial coordinate, t = time, and r = ka∕kb. 
The boundary and initial conditions are

Boundary conditions u(0, t ) = 1 u(1, t ) = 1

 (
∂u
∂x)a

= (
∂u
∂x)b

 x = 1/2

Initial conditions u(x, 0) = 0 0 < x < 1

Solve this set of equations for the temperature distribution as a func-
tion of time. Use second-order accurate finite-difference analogues 
for the derivatives with a Crank-Nicolson formulation to integrate in 
time. Write a computer program for the solution, and select values of 
Δx and Δt for good accuracy. Plot the temperature u versus length x 
for various values of time t. Generate a separate curve for the follow-
ing values of the parameter r = 1, 0.1, 0.01, 0.001, and 0.
32.16 Solve the nondimensional transient heat conduction equa-
tion in two dimensions, which represents the transient temperature 
distribution in an insulated plate. The governing equation is

∂2u

∂x2 +
∂2u

∂y2 =
∂u

∂t

FIGURE P32.10

FIGURE P32.11
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where u = temperature, x and y are spatial coordinates, and  
t = time. The boundary and initial conditions are

Boundary conditions u(x, 0, t ) = 0 u(x, 1, t ) = 1

 u(0, y, t ) = 0 u(1, y, t ) = 1

Initial condition u(x, y, 0) = 0 0 ≤ x < 1 0 ≤ y < 1

Solve using the alternating-direction implicit (ADI) technique 
(Sec. 30.5.2). Write a computer program to implement the solution. 
Plot the results using a three-dimensional plotting routine where 
the horizontal plane contains the x and y axes and the z axis is the 
dependent variable u. Construct several plots at various times, in-
cluding the following: (a) the initial conditions; (b) one intermedi-
ate time, approximately halfway to steady state; and (c) the 
steady-state condition.
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 PT8.3 TRADE-OFFS
The primary trade-offs associated with the use of numerical methods for the solution of 
partial differential equations involve choosing between finite-difference and finite-element 
approaches. The finite-difference methods are conceptually easier to understand. In ad-
dition, they are easy to program for systems that can be approximated with uniform grids. 
However, they are difficult to apply to systems with complicated geometries.
 Finite-difference approaches can be divided into categories depending on the type 
of PDE that is being solved. Elliptic PDEs can be approximated by a set of linear alge-
braic equations. Consequently, the Liebmann method (which, in fact, is Gauss-Seidel) 
can be employed to obtain a solution iteratively.
 One-dimensional parabolic PDEs can be solved in two fundamentally different ways: 
explicit or implicit approaches. The explicit method steps out in time in a fashion that is 
similar to Euler’s technique for solving ODEs. It has the advantage that it is simple to 
program but has the shortcoming of a very stringent stability criterion. In contrast, stable 
implicit methods are available. These typically involve solving simultaneous tridiagonal 
algebraic equations at each time step. One of these approaches, the Crank-Nicolson method, 
is both accurate and stable and, therefore, is widely used for one-dimensional linear para-
bolic problems.
 Two-dimensional parabolic PDEs can also be modeled explicitly. However, their 
stability constraints are even more severe than for the one-dimensional case. Special 
implicit approaches, which are generally referred to as splitting methods, have been 
developed to circumvent this shortcoming. These approaches are both efficient and sta-
ble. One of the most common is the ADI, or alternating-direction implicit, method.
 All the above finite-difference approaches become unwieldy when applied to systems 
involving nonuniform shapes and heterogeneous conditions. Finite-element methods are 
available that handle such systems in a superior fashion.
 Although the finite-element method is based on some fairly straightforward ideas, 
the mechanics of generating a good finite-element code for two- and three-dimensional 
problems is not a trivial exercise. In addition, this method can be computationally ex-
pensive for large problems. However, it is vastly superior to finite-difference approaches 
for systems involving complicated shapes. Consequently, its expense and conceptual 
“overhead” are often justified because of the detail of the final solution.

 PT8.4 IMPORTANT RELATIONSHIPS AND FORMULAS
Table PT8.3 summarizes important information that was presented regarding the finite-
difference methods in Part Eight. This table can be consulted to quickly access important 
relationships and formulas.

EPILOGUE: PART EIGHT
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TABLE PT8.3 Summary of finite-difference methods.

 Computational Molecule Equation

Elliptic PDEs

 

i – 1, j i, j i + 1, j

i, j + 1

i, j – 1

 

Ti, j =
Ti+1, j + Ti−1, j + Ti, j+1 + Ti,j−1

4

 

 Liebmann’s

 

 method

Parabolic PDEs 
 

 (one-dimensional) 
 

  Explicit 
 

  method
 

i – 1, l i, l i + 1, l

i, l + 1

 
T 
l+1
i = T l

i + λ(T l
i+1 − 2T l

i + T l
i−1)

  Implicit  
  method

 

i – 1, l + 1

i, l

i + 1, l + 1i, l + 1

 

−λT l+1
i−1 + (1 + 2λ)T l+1

i − λT l+1
i+1 = T l

i

  Crank-Nicolson

 

  method

 

i – 1, l + 1

i – 1, l i, l

i + 1, l + 1

i + 1, l

i, l + 1

i, l + 1
2

 

−λT l+1
i−1 + 2(1 + λ)T l+1

i − λT l+1
i+1

  

= λT l
i−1 + 2(1 − λ)T l

i + λT l
i+1

 PT8.5 ADVANCED METHODS AND ADDITIONAL REFERENCES
Carnahan, Luther, and Wilkes (1969); Rice (1983); Ferziger (1981); and Lapidus and 
Pinder (1981) provide useful surveys of methods and software for solving PDEs. You 
can also consult Ames (1977), Gladwell and Wait (1979), Vichnevetsky (1981, 1982), and 
Zienkiewicz (1971) for more in-depth treatments. Additional information on the finite-
element method can be found in Allaire (1985), Huebner and Thornton (1982), Stasa 
(1985), and Baker (1983). In addition to elliptic and parabolic PDEs, numerical methods 
are also available to solve hyperbolic equations. Nice introductions and summaries of 
some of these methods can be found in Lapidus and Pinder (1981), Ferziger (1981), 
Forsythe and Wasow (1960), and Hoffman (1992).
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A P P E N D I X

A
The Fourier Series

The Fourier series can be expressed in a number of different 
formats. Two equivalent trigonometric expressions are

f(t) = a0 +∑
∞

k=1
[ak cos (kω0t) + bk sin (kω0t) ]

or

f(t) = a0 +∑
∞

k=1
[ck cos (kω0t + θk) ]

where the coefficients are related by (see Fig. A.1)

ck = √a2
k + b2

k

and

θk = −tan−1 

(
bk

ak)

 In addition to the trigonometric formats, the series can 
also be expressed in terms of the exponential function as

f(t) = c∼0 +∑
∞

k=1
[c∼k 

eikω0t + c∼−k 
e−ikω0 t] (A.1)

where (see Fig. A.2)

c∼0 = a0

c∼k =
1
2

 (ak − ibk) = ∣c∼k∣  e
iϕk

c∼−k =
1
2

 (ak + ibk) = ∣c∼k∣  e
−iϕk

FIGURE A.1
Relationships between rectangular and polar forms of the 
Fourier series coefficients.

ak

bk

–θk

a k
 + b k2

2

FIGURE A.2
Relationships between complex exponential and real 
 coefficients of the Fourier series.

c–k
~

ck

ϕk

ϕ–k

ak
2

~

|ck|
~

|ck|
~bk

2
–
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where ∣c∼0∣ = a0 and

∣c∼k∣ =
1
2

√a2
k + b2

k =
ck

2

and

ϕk = tan−1
(

−bk

ak )

Note that the tilde signifies that the coefficient is a complex 
number.

 Each term in Eq. (A.1) can be visualized as a rotating 
phasor (the arrows in Fig. A.2). Terms with a positive sub-
script rotate in a counterclockwise direction, whereas those 
with a negative subscript rotate clockwise. The coefficients 
c∼k and c∼−k specify the position of the phasor at t = 0. The 
infinite summation of the spinning phasors, which are 
allowed to rotate at t = 0, is then equal to f(t).
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A P P E N D I X

B
Getting Started with MATLAB

MATLAB software is a computer program that provides the user with a convenient 
environment for many types of calculations—in particular, those that are related to matrix 
manipulations. MATLAB operates interactively, executing the user’s commands one-by-one 
as they are entered. A series of commands may be saved as a script and run like an 
interpretive program. MATLAB has a large number of built-in functions; however, it is 
possible for users to build their own functions made up of MATLAB commands and 
functions. The primary features of MATLAB are built-in vector and matrix computations 
including:

 Vector-matrix arithmetic.
 Matrix inversion and eigenvalue/vector analysis.
 Complex arithmetic and polynomial operations.
 Statistical calculations.
 Graphical displays.
 Control system design.
 Fitting process models from test data.

MATLAB has a number of optional toolboxes that provide specialized functions. These 
include: signal processing, control systems, system identification, optimization, and statistics.
 MATLAB is available in versions that run on PCs, Macs, and workstations. The 
modern version that runs on PCs does so in the Windows environment. The seven exer-
cises that follow are meant to give you the flavor of computing with MATLAB; they do 
not constitute a comprehensive tutorial. There are additional tutorial materials in the 
MATLAB manuals. A number of textbooks now feature MATLAB exercises. Also, on-
line information is available for any command or function by typing: help name, where 
name identifies the command. Do not just look through these exercises; try them all and 
try variations that occur to you. Check the answers that MATLAB gives and make sure 
you understand them and they are correct. That is the effective way to learn MATLAB.
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1. Assignment of Values to Variable Names

Assignment of values to scalar variables is similar to what is done in other computer 
languages. Try typing

a = 4

and

A = 6

Note how the assignment echoes to confirm what you have done. This is a characteristic 
of MATLAB. The echo can be suppressed by terminating the command line with the 
semicolon (;) character. Try typing

b = −3;

MATLAB treats names in a case-sensitive manner, that is, the name a is not the same 
as the name A. To illustrate this, enter

a

and

A

See how their values are distinct. They are distinct names.
 Variable names in MATLAB generally represent matrix quantities. A row vector can 
be assigned as follows:

a = [1 2 3 4 5]

The echo confirms the assignment again. Notice how the new assignment of a has taken 
over. A column vector can be entered in several ways. Try them.

b = [ 1 ; 2 ; 3 ; 4 ; 5 ]

or

b = [ 1; 
      2; 
      3; 
      4; 
      5 ]

or, by transposing a row vector with the ' operator,

b = [ 1 2 3 4 5 ]'

A two-dimensional matrix of values can be assigned as follows:

A = [ 1 2 3 ; 4 5 6 ; 7 8 8 ]

or

A = [ 1 2 3 ; 
      4 5 6 ; 
      7 8 8  ]
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The values stored by a variable can be examined at any time by typing the name alone, 
for example,

b

or

A

Also, a list of all current variables can be obtained by entering the command

who

or, with more detail, enter

whos

There are several predefined variables, for example, pi.
 It is also possible to assign complex values to variables, since MATLAB handles 
complex arithmetic automatically. To do this, it is convenient to assign a variable name, 
usually either i or j, to the square root of −1.

i = sqrt(−1)

Then, a complex value can be assigned, like

x = 2 + i*4

2. Mathematical Operations

Operations with scalar quantities are handled in a straightforward manner, similar to how 
they are handled in computer languages. The common operators, in order of priority, are

^ Exponentiation
* / Multiplication and division
\ Left division (applies to matrices)
+ − Addition and subtraction

These operators will work in calculator fashion. Try

2 * pi

Also, scalar real variables can be included:

y = pi / 4
y ^ 2.45

Results of calculations can be assigned to a variable, as in the next-to-last example, or 
simply displayed, as in the last example.
 Calculations can also involve complex quantities. Using the x defined above, try

3 * x
1 / x
x ^ 2
x + y
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The real power of MATLAB is illustrated in its ability to carry out matrix calculations. 
The inner product of two vectors (dot product) can be calculated using the * operator,

a * b

and likewise, the outer product

b * a

To illustrate vector-matrix multiplication, first redefine a and b,

a = [1 2 3]

and
b = [4 5 6]'

Now, try

a * A

or
A * b

What happens when the dimensions are not those required by the operations? Try

A * a

Matrix-matrix multiplication is carried out in likewise fashion:

A * A

Mixed operations with scalars are also possible:

A / pi

It is important to always remember that MATLAB will apply the simple arithmetic oper-
ators in vector-matrix fashion if possible. At times, you will want to carry out calculations 
item-by-item in a matrix or vector. MATLAB provides for that too. For example,

A ^ 2

results in matrix multiplication of A with itself. What if you want to square each element 
of A? That can be done with

A .^ 2

The · preceding the  operator signifies that the operation is to be carried out item-by-
item. The MATLAB manual calls these array operations.
 When the division operator (/) is used with matrices, the use of a matrix inverse is 
implied. Therefore, if A is a square, nonsingular matrix, then b/A corresponds to the right 
multiplication of b by the inverse of A. A longer way to do this used the inv function, that is, 
b*inv(A) ; however, using the division operator is more efficient since X = b/A is actually 
solved as the set of equations X*A=b using a decomposition/elimination scheme.
 The “left division” operator (\ , the backslash character) is used in matrix oper-
ations also. As above, A\b corresponds to the left multiplication of b by the inverse 
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of A. This is actually solved as the set of equations A*X=b, a common engineering 
calculation.
 For example, if c is a column vector with values 0.1, 1.0, and 10, the solution of 
A * x = c, where A has been set above, can be obtained by typing

c = [0.1 1.0 10]'
x = A\c

Try that.

3. Use of Built-In Functions

MATLAB and its toolboxes have a rich collection of built-in functions. You can use 
online help to find out more about them. One of their important properties is that they 
will operate directly on vector and matrix quantities. For example, try

log(A)

and you will see that the natural logarithm function is applied in array style, element by 
element, to the matrix A. Most functions, like sqrt, abs, sin, acos, tanh, and exp, operate 
in array fashion. Certain functions, like the exponential and square root functions, have 
matrix definitions also. MATLAB will evaluate the matrix version when the letter m is 
appended to the function name. Try

sqrtm(A)

A common use of functions is to evaluate a formula for a series of arguments. Create a 
column vector t that contains values from 0 to 100 in steps of 5,

t = [100]'

Check the number of items in the t array with the length function,

length(t)

Now, say that you want to evaluate a formula y = f(t), where the formula is computed 
for each value of the t array, and the result is assigned to a corresponding position in the y 
array. For example,

y = t .^ 0.34 − log10(t) + 1 ./ t

Done! [Note the array operators include adjacent decimal points.] This is similar to 
creating a column of the t values on a spreadsheet and copying a formula down an 
adjacent column to evaluate y values.

4. Graphics

MATLAB’s graphics capabilities have similarities to those of a spreadsheet program. 
Graphs can be created quickly and conveniently; however, there is not much flexibility 
to customize them.
 For example, to create a graph of the t,y arrays from the data above, enter

plot(t, y)
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That’s it! You can customize the graph a bit with commands like the following:

title('Plot of y versus t')
xlabel('Values of t')
ylabel('Values of y')
grid

The graph appears in a separate window and can be printed or transferred via the clipboard 
(in PCs with Windows or Macs) to other programs.
 There are other features of graphics that are useful, for example, plotting objects 
instead of lines, families of curves plots, plotting on the complex plane, multiple graphs 
windows, log-log or semilog plots, three-dimensional mesh plots, and contour plots.

5. Polynomials

There are many MATLAB functions that allow you to operate on arrays as if their entries 
were coefficients or roots of polynomial equations. For example, enter

c = [1 1 1 1]

and then
r = roots(c)

and the roots of the polynomial x3 + x2 + x + 1 = 0 should be printed and are also 
stored in the r array. The polynomial coefficients can be computed from the roots with 
the poly function,

poly(r)

and a polynomial can be evaluated for a given value of x. For example,
polyval(c, 1.32)

If another polynomial, 2x2 − 0.4x − 1, is represented by the array d,
d = [2 −0.4 −1]

the two polynomials can be multiplied symbolically with the convolution function, conv, 
to yield the coefficients of the product polynomial,

cd = conv(c,d)

The deconvolution function, deconv, can be used to divide one polynomial into another, 
for example,

[q,r] = deconv(c,d)

The q result is the quotient, and the r result is the remainder.
 There are other polynomial functions that may become useful to you, such as the 
residue function for partial fraction expansion.

6. Statistical Analysis

The Statistics Toolbox contains many features for statistical analysis; however, common 
statistical calculations can be performed with MATLAB’s basic function set. You can 
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generate a series of (pseudo) random numbers with the rand function. Either a uniform 
(rand) or normal (randn) distribution is available:

n = 0:5:1000;

(Did you forget the ; ?)

num = randn(size(n));

You probably understand why using the semicolon at the end of the commands above is 
important, especially if you neglected to do so.
 If you would like to see a plot of noise, try

plot(num)

These are supposed to be normally distributed numbers with a mean of zero and variance 
(and standard deviation) of one. Check by

mean(num)

and

std(num)

No one is perfect! You can find minimum and maximum values,

min(num)
max(num)

There is a convenient function for plotting a histogram of the data:

hist(num,20)

where 20 is the number of bins.
 If you would like to fit a polynomial to some data by least squares, you can use the 
polyfit function. Try the following example:

t = 05
y = [−0.45 0.56 2.34 5.6 9.45 24.59]
coef = polyfit(t, y, 3)

The values in coef are the fitted polynomial coefficients. To generate the computed 
value of y, use

yc = polyval(coef,t)

and to plot the data versus the fitted curve, enter

plot(t,yc,t,y,'o')

The plot of the continuous curve is piecewise linear; therefore, it does not look very 
smooth. Improve the smoothness as follows:

t1 = [0 : 0.05 : 5];
yc = polyval(coef, t1);
plot(t1, yc, t, y, 'o')
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7. This and That

There are many, many other features to MATLAB. Some of these you will find useful; 
perhaps others you will never use. We encourage you to explore and experiment.
 To save a copy of your session, MATLAB has a useful capability called diary. You 
issue the command

diary problem1

and MATLAB opens a disk file in which it stores all the subsequent commands and 
results (not graphs) of your session. You can turn the diary feature off:

diary off

and back on with the same file:

diary on

After you leave MATLAB, the diary file is available to you. It is common to use an 
editor or word processor to clean up the diary file (getting rid of all those errors you 
made before anyone can see them!) and then print the file to obtain a hard copy of the 
important parts of your work session, for example, key numerical results.
 Exit MATLAB with the quit or exit command. It is possible to save the current 
state of your work with the save command. It is also possible to reload that state with 
the load command.
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A P P E N D I X

C
Getting Started with Mathcad

Mathcad has a unique way to handle equations, numbers, text, and graphs. It works like 
a scratch pad and pencil. The screen interface is a blank worksheet on which you can 
enter equations, graph data or functions, and annotate operations with text. It uses stan-
dard mathematical symbols to represent operators when possible. Therefore, you may 
find that the Mathcad interface is quite natural and familiar.
 Mathcad can solve a wide range of mathematical problems either numerically or 
symbolically. The symbolic capabilities of Mathcad have relatively little application in 
this text, although they may be used to check our numerical results. Therefore, they will 
not be covered in detail in this overview. Mathcad has a comprehensive set of operators 
and functions that allow you to perform many of the numerical methods covered in this 
text. It also has a programming language that allows you to write your own multiline 
procedures and subprograms. The following discussion provides a brief description of 
the features of Mathcad you will find most useful for this text.

THE BASICS OF MATHCAD

Applications in this text will require that you be able to create your own worksheets. To 
facilitate your efforts, let’s go over the main features of the Mathcad application window.

The Main Menu

This is your gateway to Mathcad. It also provides commands that handle the details of 
editing and managing your worksheets. For example, click on the File and Tools menus 
to see some of the functionality available to you.

The Standard Toolbar

Several toolbars should be automatically displayed just below the Main menu. As the 
name implies, the Standard toolbar provides shortcuts for many common tasks, from 
worksheet opening and file saving to bringing up lists of built-in functions and units. 
Depending on what you are doing in your worksheet, one or more of the buttons on this 
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toolbar may appear grayed out. If you let your mouse hover over each of the buttons on 
the palette, you will see a description of the button’s function.

The Math Palette

The Math Palette may automatically be displayed at the top of the screen. If not, just 
select View, Toolbars, Math and it will appear. The buttons and their functions are listed 
below:

  Calculator   Boolean

  Graph   Programming

  Vector and Matrix   Greek Symbol

  Evaluation   Symbolic Keyword

  Calculus

Click on one of these buttons to bring up the full palette. You can use the palettes to 
insert math symbols and operations directly into your Mathcad worksheet.

ENTERING TEXT AND MATHEMATICAL OPERATIONS

Entering Text

To create a text region, click in a blank area of the screen to position the red crosshair 
cursor and type a double quote ["]. Now you can type whatever you like, just as in a 
word processor. As the region grows, a black box appears around the text. The box has 
resizing “handles” on the right and bottom edges of the rectangle. Once you are done, 
click outside the text region to go back to inputting math operations. The black selection 
box disappears when you are no longer working in the text region.

Mathematical Operations

Type See on Screen

1+ 

Click somewhere in the upper-left-hand corner of the worksheet, and the red crosshair 
should move to where you click. After you type the number 1 and the + sign you will see 
a little black box delimited by blue editing lines. In Mathcad this black box is called a 
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placeholder. If you continue typing, whatever you type next will appear in the placeholder. 
For example, type 2 in the placeholder, then press the equals key ( = ) to see the result.

1 + 2 = 3

The basic arithmetic operators are listed below, along with their keystrokes and Calculator 
Palette button equivalents.

Operation Keystroke Palette Example

Addition + + 2 + 2 = 4
Subtraction − − 2 − 2 = 0
Multiplication * × 2 · 2 = 4
Division / ÷ 2

2 = 1
Exponentiation ^ xY 22 = 4

 Notice that operations in a Mathcad worksheet appear in familiar notation—multiplication 
as a dot, division with a fraction bar, exponents in a raised position, and so on. Calculations 
are computed internally to 15 places, but you can show fewer places in the answer. To 
change the default display of numerical and symbolic results in a worksheet, click in a 
blank area of the worksheet. Then select Result from the Format menu to display the 
Result Format dialog box, and choose your default settings. Make sure that the box labeled 
“Set as default” is checked, and click OK. If you just want to change the display of a 
particular result, click on the equation, and follow the same steps.
 Here are a few more examples that demonstrate Mathcad features.

√
1.837 · 103

100 + 35 = 2.3142353232

Most standard engineering and mathematical functions are built in.

log(1347.2) · sin(
3
5

 · π) = 2.976

Mathcad’s functions and operators easily handle complex numbers.

(2.3 + 4.7i)3 + e3−2i = −148.613 − 47.498i

MATHEMATICAL FUNCTIONS AND VARIABLES

The definition symbol := is used to define a function or variable in Mathcad. For example, 
click an empty worksheet to position the red crosshair in a blank area and type:

Type See on Screen

f(x):x^2 
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The definition symbol is also located on the Evaluation selection of the Math Palette. 
When you change a definition function or variable, Mathcad immediately recalculates 
any new values that depend on it. Once you’ve defined a function like f(x), you can use 
it in a number of ways, for example:

f(x) := x2

Now you can insert a numerical value as the argument of f(x),

f(10) = 100

or define a variable and insert it as the argument of f(x),

x := 3

f(x) = 9

You can even define another function in terms of f(x):

g(y) := f(y) + 6

g(x) = 15

Note that you can define a function using expressions you build up from the keyboard 
or from the palettes of math operators. You can also include any of Mathcad’s hundreds 
of built-in functions. To see a list of built-in functions along with brief descriptions, 
select Function from the Insert menu, or click on the f(x) button. You can also type 
the name of any built-in function directly from the keyboard. The following are just a 
few examples that use some of Mathcad’s built-in functions.

Trig and Logs

ln(26) = 3.258  csc(45 · .deg) = 1.414

Matrix Functions

identity(3) = [
1   0   0
0   1   0
0   0   1]

Probability Distributions

pnorm(2,0,1) = 0.977

Range Variables

In Mathcad you will find yourself wanting to work with a range of values for many 
applications—for example, to define a series of values to plot. Mathcad therefore provides 
the range operator ( .. ), which can be entered by typing a semicolon ( ; ) on the keyboard. 
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The first and last numbers establish the endpoints of the range variable, and the second 
number sets the increment. For example,

Type See on Screen

z:0,0.5;2 z:=0,0.5..2

z = 

 

Matrix Computations and Operations

To enter a matrix, click on the 3 × 3 matrix icon in the Matrix Palette (or choose Matrix 
from the Insert menu), choose the number of rows and columns, then fill in the placehold-
ers. For example,

A := [
4   5   1
5   0   −12

−7   2   8 ]
To compute the inverse,

Type See on Screen

A^–1= A−1 = [
0.074 −0.117 −0.184
0.135  0.12    0.163
0.031 −0.132 −0.077 ]

Mathcad has a comprehensive set of commands to perform various matrix operations. 
For example, to find the determinant, type a vertical bar ( ∣ ) or use the button on the 
Matrix Palette.

∣A∣ = 326

Units

Mathcad can also handle units. To see the built-in units, choose Unit from the Insert 
menu, or click on the appropriate toolbar button. Let’s start with a simple example. Open 
a new worksheet in Mathcad and type Mass:75kg[Enter]. You should see

Mass := 75 kg
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You could also have typed Mass:75*kg[Enter], multiplying the quantity times the unit. 
Now, enter g:9.8m/sˆ2 and you should have

g := 9.8 

m
s2

To see how Mathcad manages the units with calculations, enter Mass*g= and the result 
should be displayed with combined units as

Mass · g = 735 N

 Mathcad uses the SI unit system by default, but you can change that from Tools, 
Worksheet Options, Unit System. Alternate systems include CGS, MKS, and US. 
Instead of typing in the unit, you can also insert it from a list. Try the following. Type 
Temp:273.16* then click on Insert, Unit. Select Temperature from the upper box and 
Kelvin (K) from the lower box and click OK.

NUMERICAL METHODS FUNCTION

Mathcad has a number of special built-in functions that perform a variety of numerical 
operations of particular interest to readers of this book. Examples of the development 
and application of these functions are described in detail in the text. Here we will provide 
a brief list of some of the more important functions just to give you an overview of the 
capabilities. We illustrate their use in the relevant sections of this book.

Function Name Use

root Solves f(x) = 0
polyroots Finds all roots of a polynomial
find Solves a system of nonlinear algebraic equations
minerr Returns a minimum error solution of a system of equations
lsolve Solves a system of linear algebraic equations
linterp Linear interpolation
cspline Cubic spline interpolation
regress Polynomial regression
genfit General nonlinear regression
fft Fourier transform
ifft Inverse Fourier transform
rkfixed  Solves a system of differential equations using a fixed step-size 

fourth-order Runge-Kutta method
rkadapt  Solves a system of differential equations using a variable step-size 

fourth-order Runge-Kutta method
sbval Solves a two-point boundary-value problem
eigenvals Finds eigenvalues
eigenvecs Finds eigenvectors
relax Solves Poisson’s equation for a square domain
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MULTILINE PROCEDURES AND SUBPROGRAMS

The Programming Palette in Mathcad provides the capability for multiline procedures 
or subprograms with standard control structures such as FOR and WHILE loops, branch-
ing, recursion, and more. Subprograms can be integrated with Mathcad’s worksheets and 
can operate on scalars, vectors, arrays, and even arrays of arrays.

CREATING GRAPHS

Mathcad’s graphics capabilities are particularly important to engineering work. The first 
type of graph to know about is the QuickPlot. Start with a new worksheet and enter the 
following formula. Leave the formula selected.

e
−X
4  · (2 − x) − 1∣

From the menu, select Insert, Graph, X-Y Plot. Click away from the formula and you 
should see an automatic QuickPlot.

This plot can now be adjusted as desired. For example, click in the plot to select it and 
change the x limits to 0 to 1. This should appear as

Then, click away from the plot, and the y axis will rescale automatically. Double-click 
on the plot, and the Formatting Currently Selected X-Y Plot dialog box should appear. 
Check the boxes for X and Y gridlines and click OK. Click away from the plot, and you 
should now have
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 Mathcad graphs one point for each value of the range variable x. This variable was 
created automatically in this case. The x-y points are joined by short straight-line seg-
ments. You can create your own range variables for the x axis.
 Instead of using a formula for the y axis, you can use a function. To illustrate this, 
enter the following function definition above your plot:

and change the y axis from the formula to f(x). You should have the same plot, but now 
it is in terms of the function f(x) instead of the direct formula.
 A function can also be used for the x axis. Try another example below your current 
graph. Make the following definitions:

N := 100      θ := 0, 
2 · x
N

.. 2 · x

x(θ) := cos(θ)  y(θ) := sin(θ)

Insert a blank plot by pressing the @ key [Shift-2]. Enter y(θ) in the y-axis placeholder 
and x(θ) in the x-axis placeholder and click away from the graph. This should yield the 
plot of a circle:
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It is also possible to plot the elements of a vector. Create the following vector of binomial 
probabilities:

i :=0.. 10
pi :=0.4i.0.6(10−i)

and insert a graph with i on the x axis and pi on the y axis (you can use the [ key for the 
subscript). Your graph should look like

Of course, you can plot one vector against another too, as long as they have the same 
number of elements. The vectors could contain data instead of a mathematical formula.
 There are many axis settings that can be adjusted by double-clicking on the graph. 
These are self-explanatory to a great extent, and you can become familiar with them 
through practice.
 There are many other styles of plots that can be generated by Mathcad. These include 
polar, surface, contour, 3D bar, scatter, vector-field plots, and graphical animations.

SYMBOLIC MATHEMATICS

An intriguing and valuable feature of Mathcad is its capability to carry out symbolic 
math manipulations. The symbolic capabilities include

 Algebraic manipulations.
 Calculus: differentiation and integration.
 Solving algebraic equations and systems of such equations.

and more advanced features:

 Symbolic Fourier, Laplace, and z transforms.
 Symbolic optimization.

We will review the first group here.
 Let’s start with a simple example of symbolic algebra. Enter the expression

(x + 2) · (x − 1) · (x + 4)

Expand the horizontal editing line to encompass the entire expression and then select 
Expand from the Symbolics menu. You should see below:

x3 + 5 · x2 + 2 · x − 8
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Now, enter the polynomial x3 + 3x2 + 3x + 1 and follow the same procedure, except pick 
Factor from the Symbolics menu. You should have

x3 + 3 · x2 + 3 · x + 1
(x + 1)3

Another way to carry out symbolic commands is with keystrokes. Enter the following 
expression:

x2 − 3 · x − 4
x − 4

+ 2 · x − 5∣

Then press the Ctrl-Shift-. key combination and type simplify into the placeholder 
that appears. You should get

x2 − 3 · x − 4
x − 4

+ 2 · x − 5 simplify →  3 · x − 4

This is a different style of symbolic evaluation with the keyword retained and the result 
appearing out to the right. You’ve seen the use of three important symbolic operators:

 expand Expand all powers and products of sums.
 factor Factor into a product of simpler functions.
 simplify  Simplify by performing arithmetic, canceling common factors, using 

identities, and simplifying powers.

Additional algebraic features include expansion to a series, partial fraction expansion, 
and extracting coefficients of a polynomial into a vector.
 Now, let’s experiment with simple differentiation. Enter the expression

and leave the T selected (or click on it to select it). Then select Variable and Differenti-
ate from the Symbolics menu. You should have the result

Another way to do this is to use the differentiation operator from the Calculus toolbar. 
Enter the following expression:
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and then click on the  button on the Evaluation toolbar (you can also press Ctrl-.). 
The result should be

 Symbolic integrals can be determined either in indefinite or definite form. For an

indefinite integral, start by pressing Ctrl-i or click on the  button on the Calculus

toolbar. Then enter the desired function and differential followed by clicking on the  
button to produce the following result:

Mathcad can also compute limits symbolically. The appropriate buttons are on the Calculus 
toolbar.

LEARNING MORE ABOUT MATHCAD

In this brief introduction we have covered only the Mathcad basics. Further help is avail-
able in the Mathcad software package in a variety of forms.

ToolTips

Let your mouse pointer hover over a palette or toolbar button for a few seconds. You 
will see an explanatory tooltip displayed near the button. Look also on the message line 
at the bottom of the Mathcad application window for helpful tips and shortcuts.

Resource Center and QuickSheets

To help you get going fast and keep you learning, Mathcad comes complete with Quick-
Sheets. These provide mathematical shortcuts for frequently used analyses—from graph-
ing a function to solving simultaneous equations to the analysis of variance. There are 
numerous QuickSheets. To open the QuickSheets section, choose QuickSheets from the 
Help option on the Main menu.

Online Help

Online Help provides detailed, step-by-step instructions for using all of Mathcad’s features. 
Help is available at any time by simply going to the Help button on the Main menu. There 
you will find several links including the Mathcad website and Mathcad training.
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A
Accuracy, 60–61, 114
Adams-Bashforth formula, 783–785, 787
Adams-Moulton formula, 771, 785–787
Adaptive integration, 642
Adaptive quadrature, 610, 649–651
Adaptive Runge-Kutta (RK) methods, 719, 756–763, 855
Adaptive step-size control, 757–758, 760–761
Addition, 75

estimated error bounds, 103
large and small number, 77–78
matrix operations, 240
smearing, 79–81

Advanced methods/additional references, 115–116
curve fitting, 594–595
linear algebraic equations, 348–349
numerical integration, 709
ordinary differential equations (ODEs), 856–857
partial differential equations (PDEs), 945
roots of equations, 232–234

Advection-diffusion equation, 929
Air resistance

falling parachutist problem, 13–18
formulation, 14

Allosteric enzymes, 572–576
Alternating-direction implicit (ADI) method, 862, 891–895, 898–901,  

944, 945
Amplitude, 537–538
Analytical/direct approach

curve fitting, 447–448
falling parachutist problem, 13–18. See also Falling parachutist 

problem
finite-element methods, 910–914
linear algebraic equations, 235–236
nature of, 14, 15
numerical differentiation, 599–600, 601–602
numerical integration, 600–602
optimization, 357, 375, 376–380
partial differential equations (PDEs), 861–862
roots of equations, 117–118, 231

Angular frequency, 538
Antidifferentiation, 608
Antoine’s equation, 437

Approximations, 57–66. See also Estimation
accuracy/inaccuracy, 60–61, 114
algorithm for iterative calculations, 64–66
approximate percent relative error, 62, 64, 116
continuous Fourier series, 543–545
error calculation, 61–64, 76
error definitions, 61–66
finite-element methods, 904–907
functional, 595
polynomial, 85–87
precision/imprecision, 60–61, 114
significant figures/digits, 58–59, 268
Taylor series, 83–99, 667–670

Archimedes’ principle, 25–26
Areal integrals, 605
Arithmetic mean, 450
Arithmetic operations, 75–76, 950–953, 957–958
Assemblage property matrix, 907
Associative property, matrix operations, 240
Augmentation, matrix operations, 243–244
Auxiliary conditions, 716

B
Background information

blunders, 108–109
computer programming and software, 28–56
conservation laws and engineering, 18–21
curve fitting, 449–458
data uncertainty, 60–61, 109, 674
eigenvalue problems, 801
error propagation, 99–103, 116
Excel, 40–44. See also Excel
formulation errors, 109
linear algebraic equations, 237–245
Mathcad, 48–49, 956–966. See also Mathcad
MATLAB, 44–48, 948–955. See also MATLAB
modular programming, 38–40
numerical differentiation, 95–99, 606–608
numerical integration, 606–608
optimization, 355–357
ordinary differential equations (ODEs), 715–717
root equation, 119–120, 180–183
roots of polynomials, 177–180
round-off errors, 67–81, 105–107
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simple mathematical model, 11–18
structured programming, 29–38
Taylor series, 83–99
total numerical error, 104–108
truncation errors, 83, 91–99, 105–107

Back substitution, 256, 258–260, 261–262
LU decomposition, 288, 306

Backward deflation, 183
Backward difference approximation, 95–98, 669
Bairstow’s method, 122, 188–193, 231
Banded matrices, 305–306
Banded matrix, 239
Base-2 (binary) number system, 67, 72–73
Base-8 (octal) number system, 67
Base-10 (decimal) number system, 67, 68–69, 75–76
Basic feasible solution, 402
Basic variables, 402
Bernoulli’s equation, 229–230
BFGS algorithm, 393, 406
Bias/inaccuracy, 60–61
Bilinear interpolation, 529–531
Binary chopping. See Bisection method
Binary (base-2) number system, 67, 72–73
Binding constraints, 399
Bisection method, 120–121, 128–136, 231, 361

bisection algorithm, 134, 135, 233
computer methods, 133–134, 135
defined, 128
error estimates, 130–134
false-position method vs., 138–140
graphical method, 129–130, 131, 132, 233
incremental search methods vs., 128
minimizing function evaluations, 135–136
termination criteria, 130

Blasius formula, 220
Blunders, 108–109
Bolzano’s method. See Bisection method
Boole’s rule, 631, 632, 650
Boundary conditions, 873–879

derivative, 799–800, 873–876, 890
finite-element methods, 907, 916–917, 919–921, 940
irregular boundaries, 876–879
Laplace equation, 862, 868–871, 873–879

Boundary-value problems, 717, 794–801, 856
eigenvalue, 804–807
finite-difference method, 719
initial-value problems vs., 793
shooting method, 719, 795–798

Bracketing methods, 124–145, 371
bisection method, 120–121, 128–136, 231, 361
computer methods, 126–128
defined, 124

false-position method, 120–121, 136–142, 231
graphical method, 124–128
incremental searches/determining initial guesses, 142

Break command, 47
Break loops, 33, 34–35
Brent’s root-location method, 122, 163–167, 231, 232

algorithm, 165–167, 372–373
graphical method, 163, 164
inverse quadratic interpolation, 163–165
optimization, 357, 361, 371–373, 445
roots of polynomials, 201

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms, 393, 406
B splines, 595
Butcher’s fifth-order Runge-Kutta method, 749–751
Butterfly network, 557, 558

C
C++, 49
Cartesian coordinates, 605
CASE structure, 32, 33, 42, 46
Cash-Karp RK method, 759–760, 761–762
Centered finite divided-difference approximation, 96, 97,  

98, 669
Central Limit Theorem, 455
Chaotic solutions, 834
Characteristic, 69–70
Characteristic equation, 178–179
Charge, conservation of, 20
Chebyshev economization, 595
Chemical/biological engineering

analyzing transient response of reactor, 823–830
conservation of mass, 20
curve fitting, 572–576
determining total quantity of heat, 685–687
fitting enzyme kinetics, 572–576
ideal gas law, 206–209
least-cost design of a tank, 421–425
linear algebraic equations, 325–328
numerical integration, 685–687
one-dimensional mass balance of reactor, 928–932
optimization, 421–425
ordinary differential equations (ODEs), 823–830
partial differential equations (PDEs), 928–932
roots of equations, 206–209
steady-state analysis of system of reactors, 325–328

Cholesky decomposition, 307–309
Chopping, 72–73, 76
Civil/environmental engineering

analysis of statically determinate truss, 328–332
conservation of momentum, 20
curve fitting, 576–577
deflections of a plate, 932–934
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Civil/environmental engineering—Cont.

effective force on mast of racing sailboat, 687–689
greenhouse gases and rainwater, 209–211
least-cost treatment of wastewater, 426–430
linear algebraic equations, 328–332
numerical integration, 687–689
optimization, 421, 426–430
ordinary differential equations (ODEs), 830–834
partial differential equations (PDEs), 932–934
predator-prey models and chaos, 830–834
roots of equations, 209–211
splines to estimate heat transfer, 576–577

Clamped end condition, 528–529
Classical fourth-order Runge-Kutta method, 747–749, 857
Coefficient, method of undetermined, 653–654
Coefficient of determination, 469
Coefficient of interpolating polynomial, 513
Coefficient of thermal conductivity, 866
Coefficient of variation, 451
Colebrook equation, 214, 216, 227
Column, defined, 238
Column-sum norms, 298
Column vectors, 238
Commutative property, matrix operations, 240, 242
Complete pivoting, 268
Complex systems, linear algebraic equations, 275
Composite, integration formulas, 618–621
Computational error, 61–64, 76
Computer programming and software, 28–56. See also Pseudocode 

algorithms
bisection method, 133–134, 135
bracketing methods, 126–128
computer programs, defined, 29
cost comparison, 112–115
curve fitting, 455–456, 460, 470–474, 561–569
eigenvalues, 813–820
Excel. See Excel
linear algebraic equations, 247–248, 272–274, 316–321
linear programming, 407–409
linear regression, 470–474
Mathcad. See Mathcad
MATLAB. See MATLAB
modular programming, 38–40
numerical integration/differentiation, 675–682
optimization, 357, 407–418, 424–425
ordinary differential equations (ODEs), 719, 813–820
other languages and libraries, 49
partial differential equations (PDEs), 864, 882–883, 921–925
roots of equations, 126–128, 193–203, 214–215
software user types, 28–29
step-size control, 780
structured programming, 29–38

Condition numbers, 102–103
matrix, 245, 299–301

Confidence intervals, 452–458, 487–488
Conjugate directions, 379–380
Conjugate gradient, 357, 391, 406
Conservation laws, 18–21

by field of engineering, 20
simple models in specific fields, 20
stimulus-response computations, 295–296

Conservation of charge, 20
Conservation of energy, 20
Conservation of mass, 20, 325–328
Conservation of momentum, 20
Constant of integration, 715–716
Constant step size, 780
Constitutive equation, 866–867
Constrained optimization, 356, 357, 395–420

linear programming, 356, 357, 395–406
nonlinear, 357, 406, 409–413, 418

Constraints
binding/nonbinding, 399
optimization, 353, 355

Continuous Fourier series, 542–545
approximation, 543–545
determination of coefficients, 543

Control-volume approach, 879–882
Convergences

defined, 890
fixed-point iteration, 148–151
Gauss-Seidel (Liebmann) method, 311–314
linear, 148–151
nature of, 151
Newton-Raphson method, 155–156
of numerical methods of problem solving, 113

Cooley-Tukey algorithm, 554, 558–560
Corrector equation, 735, 771–772
Corrector modifier, 777–779
Correlation coefficient, 469
Count-controlled loops, 34–35, 42, 46, 47, 64
Cramer’s rule, 252, 253–254, 347
Crank-Nicolson technique, 862, 895–898, 944, 945
Critically damped case, 179
Crout decomposition, 290–292
Cubic splines, 517, 523–528, 592–594, 709

derivation, 524–528
interpolation with Mathcad, 568–569
natural, 527

Cumulative normal distribution, 660–662
Current balance, 20
Curvature, 596
Curve fitting, 447–595

advanced methods and additional references, 594–595
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Dependent variables, 11–12, 118, 711
Derivative

defined, 596
first, 596, 668–669
second, 596, 668–669

Derivative boundary conditions, 799–800, 873–876, 890
Derivative mean-value theorem, 90
Descriptive statistics, 109, 449–452
Design, 21
Design variables, 355
Determinants, in Gauss elimination, 252–253, 265–267
Determination, coefficient of, 469
DFP algorithm, 393, 446
Diagonally dominant systems, 313–314
Diagonal matrix, 239
Differential calculus. See Numerical differentiation
Differential equations, 14–16, 28, 39, 711
Dilatant (“shear thickening”) fluids, 589
Direct approach. See Analytical/direct approach
Directional derivative, 381
Dirichlet boundary condition, 799, 868–871, 873, 922
Discrete Fourier transform (DFT), 551–554
Discretization, finite-element methods, 904, 909, 917, 937–938
Discriminant, 179
DISPLAY statements, 39
Distributed-parameter system, 929
Distributed-variable systems, 236, 237, 316
Distributive property, matrix operations, 242
Division, 76

estimated error bounds, 103
synthetic, 181–182
by zero, 262

DOEXIT loops, 33, 34, 36, 42, 46, 47
DOFOR loops, 34–35
Double integrals, 637–638
Double roots, 167
Drag coefficient, 14
Dynamic instability, 932

E
Eigenvalue problems, 801–820, 856

boundary-value problem, 804–807
computer methods, 813–820
eigenvalue, defined, 801
eigenvalue analysis of axially loaded column, 806–807
eigenvectors, 801, 803–804
mass-spring system, 803–804
mathematical background, 801
other methods, 812–813
physical background, 802–804
polynomial method, 178–179, 719, 807–809
power method, 719, 809–812

case studies, 572–591
coefficients of an interpolating polynomial, 513
comparisons of alternative methods, 592–593
computer methods, 455–456, 460, 470–474, 561–569
defined, 447
engineering applications, 448–449, 572–591
estimation of confidence intervals, 452–458
extrapolation, 515
fast Fourier transform (FFT), 460
Fourier approximation, 485, 535–571
frequency domains, 545–549
general linear least squares model, 459, 485–489
goals/objectives, 460–461
important relationships and formulas, 593–594
interpolation, 447, 460, 496–534
inverse interpolation, 513–514
Lagrange interpolating polynomial, 460, 496, 508–513, 515,  

592–594
least-squares regression, 447, 458, 462–495
linear regression, 458, 462–478
mathematical background, 449–458
multidimensional interpolation, 529–531
multiple linear regression, 458, 482–485, 592–594
Newton’s divided-difference interpolating polynomials, 497–508
Newton’s interpolating polynomial, 460, 496, 497–509, 515, 516,  

592–594
noncomputer methods, 447–448
nonlinear regression, 460, 475–476, 489–492, 564, 592
normal distribution, 452
polynomial regression, 458, 478–482, 594
power spectrum, 560–561
scope/preview, 458–460
simple statistics, 449–452
with sinusoidal functions, 536–542
spline interpolation, 460, 517–529
time domains, 545–549

D
Dartboard Monte Carlo integration, 662–664
Data distribution, 452
Data uncertainty, 60–61, 109, 674
Davidon-Fletcher-Powell (DFP) method of optimization, 393, 446
Decimal (base-10) number system, 67, 68–69, 75–76
Decimation-in-frequency, 554–555
Decimation-in-time, 554–555, 559
Decision loops, 33, 64
Definite integration, 598n

Deflation, 812
backward, 183
forward, 183
polynomial, 181–183

Degrees of freedom, 450
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numerical integration, 603–606, 675–682, 685–707
optimization, 351–355, 357, 421–444
ordinary differential equations (ODEs), 713–715, 719, 823–854
parameters, 11–12, 118, 828
partial differential equations (PDEs), 859–861, 862–863, 928–943
practical issues, 21
roots of equations, 118–119, 122, 177–180, 206–230
roots of polynomials, 177–180
two-pronged approach, 11, 13–18

Entering variables, 403–404
Epilimnion, 576
Equal-area graphical differentiation, 600
Equality constraint optimization, 356
Error(s)

approximations. See Approximations
bisection method, 130–134
blunders, 108–109
calculation, 61–64, 76
data uncertainty, 60–61, 109, 674
defined, 57, 60–61
estimates for iterative methods, 63–64
estimates in multistep method, 774–777
estimation, 470, 503–505, 625
estimation for Euler’s method, 724–729
falling parachutist problem, 17, 57
formulation, 109
Gauss quadrature, 658–659
linear algebraic equations, 296–302
Newton-Raphson estimation method, 153–155
Newton’s divided-difference interpolating polynomial estimation,  

503–505
numerical differentiation, 105–108, 673–674
numerical integration, 673–674
predictor-corrector approach, 734–736, 771–779
quantizing, 72–74, 77
relative, 102
residual, 463, 467–470
round-off. See Round-off errors
Simpson’s 1/3 rule estimation, 625
total numerical, 104–108
trapezoidal rule, 616–617, 645–646, 771–772
true, 61, 116
true fractional relative error, 61–62
truncation. See Truncation errors

Error definitions, 61–66
approximate percent relative error, 62, 64, 116
stopping criterion, 64–65, 116
true error, 61, 116
true fractional relative error, 61–62
true percent relative error, 61–62, 66, 116

Error propagation, 99–103, 116
condition, 102–103
functions of more than one variable, 101–102

Eigenvectors, 801, 803–804
Electrical engineering

conservation of charge, 20
conservation of energy, 20
currents and voltages in resistor circuits, 332–334
curve fitting, 578–579
design of electric circuit, 211–214
Fourier analysis, 578–579
linear algebraic equations, 332–334
maximum power transfer for a circuit, 430–434
numerical integration, 689–692
optimization, 421, 430–434
ordinary differential equations (ODEs), 834–839
partial differential equations (PDEs), 934–937
root-mean-square current, 689–692
roots of equations, 211–214
simulating transient current for electric circuit, 834–839
two-dimensional electrostatic field problems, 934–937

Element properties, finite-element methods, 907
Element stiffness matrix, 907, 939
Elimination of unknowns, 254–260

back substitution, 256, 258–260, 261–262
forward, 256–258, 259

Elliptic partial differential equations (PDEs), 859–860, 865–885, 944, 945
boundary conditions, 862, 873–879
computer software solutions, 882–883
control-volume approach, 879–882
Gauss-Seidel (Liebmann) method, 862, 869–871, 894–895
Laplace equation, 859–860, 862, 865–867, 935–937
Laplacian difference equation, 868–869
solution technique, 867–873

Embedded Runge-Kutta (RK) method, 759–760
ENDDO statement, 34–35
End statement, 47
Energy

conservation of, 20
equilibrium and minimum potential, 434–435

Energy balance, 118
Engineering problem solving

chemical engineering. See Chemical/biological engineering
civil engineering. See Civil/environmental engineering
conservation laws, 18–21
curve fitting, 448–449, 572–591
dependent variables, 11–12, 118, 711
electrical engineering. See Electrical engineering
falling parachutist problem. See Falling parachutist problem
forcing functions, 11–12
fundamental principles, 118
independent variables, 11–12, 118, 711
linear algebraic equations, 236–237, 325–346
mechanical engineering. See Mechanical/aerospace engineering
Newton’s laws of motion, 11–18, 57, 118, 334, 714, 839–840
numerical differentiation, 602–603, 675–682
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functions of single variable, 99–100
stability, 102–103

Estimated mean, 455
Estimation. See also Approximations

confidence interval, 452–458, 487–488
defined, 453
errors, 470, 503–505, 625, 724–729
Newton-Raphson estimation method, 153–155
parameter, 828
standard error of the estimate, 468
standard normal estimate, 454–455

Euclidean norms, 297–299
Euler-Cauchy method. See Euler’s method
Euler’s method, 16–17, 28, 39, 49, 179, 722–741

algorithm, 730–733
backward/implicit, 768–771
effect of reduced step size, 727–729
error analysis, 724–729
Euler’s formula, 806
improvements, 733–741
ordinary differential equations (ODEs), 719, 722–741, 835–836,  

841–842, 855–857
as predictor, 771–772
systems of equations, 752

Excel, 28–29, 34–35, 40–44
computer implementation of iterative calculation, 65–66
curve fitting, 561–564
Data Analysis Toolpack, 562–564
described, 40
double precision to represent numerical quantities, 75
Goal Seek, 194
infinite series evaluation, 80
linear algebraic equations, 316–317
linear programming, 407–409
linear regression, 470
nonlinear constrained optimization, 409–413
optimization, 357, 407–413, 424–425, 428–430, 431–434
ordinary differential equations (ODEs), 813, 828–830
partial differential equations (PDEs), 921–923
pseudocode vs., 42
roots of equations, 78–79, 193–197, 214–215
Solver, 195–197, 407–413, 428–430, 431–434, 829–830
standard use, 40–41
Trendline command, 561–562
VBA macros, 40–44

Explicit solution technique, 119
ordinary differential equations (ODEs), 769–771
parabolic partial differential equations (PDEs), 887–892, 898, 944

Exponent, 69–70
Exponential model of linear regression, 474–475
Extended midpoint rule, 660
Extended precision, round-off error, 74–75
Extrapolation, 515

Extreme points, 400
Extremum, 361–364

F
Factors, polynomial, 181
Falling parachutist problem, 13–18, 119, 714, 717, 721–722

algorithm, 272–274
error, 17, 57
Gauss elimination, 272–274
Gauss quadrature application, 658
optimization of parachute drop cost, 351–355, 409–413
schematic diagram, 13
velocity of the parachutist, 471–473, 721–722

False-position method, 120–121, 136–142, 231
bisection method vs., 138–140
false-position formula, 137–139, 233
graphical method, 136, 140
modified false position, 141–142, 231
pitfalls, 139–141
secant method vs., 159–161

Fanning friction factor, 225
Faraday’s law, 714
Fast Fourier transform (FFT), 460, 554–560, 569

Cooley-Tukey algorithm, 554, 558–560
Sande-Tukey algorithm, 554–558

Feasible extreme points, 400
Feasible solution space, 397–400
Fibonacci numbers, 362–363
Fick’s law of diffusion, 696, 714, 929
Finish, 34–35
Finite-difference methods, 16–17, 83, 95–99

elliptic partial differential equations (PDEs), 859–860, 862, 865–885, 
944, 945

high-accuracy differentiation formulas, 610, 667–670
optimization, 385–386
ordinary differential equations (ODEs), 719, 798–801
parabolic partial differential equations (PDEs), 860–861, 862,  

886–902, 944, 945
Finite-divided-difference approximations of derivatives, 16–17, 95–99, 

667–670
Finite-element methods, 903–927

assembly, 907, 914–916, 939–940
boundary conditions, 907, 916–917, 919–921, 940
defined, 903–904
discretization, 904, 909, 917, 937–938
element equations, 904–907, 910–914, 917–919, 938–939
general approach, 904–908
partial differential equations (PDEs), 862, 903–927, 944
single dimension, 908–917
solution and postprocessing, 907–908, 921, 940
two dimensions, 917–921

First backward difference, 95, 96
First derivative, 596, 668–669
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Fourth-order methods
Adams, 785, 786, 789, 790–791, 855, 856, 857
Runge-Kutta, 747–749, 753–754, 755–756, 758, 762–763, 835,  

841–842, 855–857
Fractional parts, 69–71
Frequency domain, 545–549
Frequency plane, 546–547
Friction factor, 214–217
Frobenius norms, 55, 299
Fully augmented version, 401
FUNCTION, 39
Function(s)

error propagation, 99–103
forcing, 11–12
interpolation, 905–906
mathematical behavior, 114
modular programming, 38–39
penalty, 406
sinusoidal, 536–542
spline, 517, 595

Functional approximation, 595
Fundamental frequency, 542
Fundamental theorem of integral calculus, 607

G
Gauss elimination, 249–282, 349

algorithm, 272–274
Cramer’s rule, 252, 253–254, 347
determinants, 252–253, 265–267
elimination of unknowns, 254–260
Gauss-Jordan method, 277–279, 405–406
graphical method, 249–251
improving solutions, 268–274
LU decomposition version, 285–290
more significant figures, 268
naive approach, 245, 256–262
operation counting, 260–262
pitfalls of elimination methods, 262–268
pivoting, 245, 257–258, 262, 268–272, 347
solving small numbers of equations, 249–255

Gauss-Jordan method, 277–279, 405–406
Gauss-Legendre formulas, 652, 654–658, 691, 709

higher-point, 657–658
two-point, 654–657

Gauss-Newton method, 489–492, 595
Gauss quadrature, 610, 642, 651–659, 692, 708–710

error analysis, 658–659
Gauss-Legendre formulas, 652, 654–658, 691, 709
method of undetermined coefficients, 653–654

Gauss-Seidel (Liebmann) method, 245–247, 305, 309–316, 347–348,  
349, 944

algorithm, 314–315

First finite divided difference, 95
First forward difference, 95, 96, 116
First forward finite divided difference, 116
First-order approximation, 84, 86, 88, 95–98
First-order equations, 711–712, 727
First-order splines, 519–520
Fixed (Dirichlet) boundary condition, 799, 868–871, 873, 922
Fixed-point iteration, 147–152, 231

algorithm, 151–152
convergences, 148–151
graphical method, 148–151
nonlinear equations, 171–172

Fletcher-Reeves conjugate gradient algorithm, 391, 446
Floating-point operations/flops, 260–262
Floating-point representation

chopping, 72–73, 76
fractional part/mantissa/significand, 69–71
integer part/exponent/characteristic, 69–71
machine epsilon, 73–74
quantizing errors, 72–74, 77

Flowcharts, 30–35
defined, 30
sequence structure, 31
simple selection constructs, 32
symbols, 30

Force balance, 20, 118
Forcing functions, 11–12
Formulation errors, 109
Fortran 90, 49, 76–77
Forward deflation, 183
Forward difference approximation, 95, 96, 97, 668
Forward elimination of unknowns, 256–258, 259
Forward substitution, LU decomposition, 287–289, 306
Fourier approximation, 485, 535–571

continuous Fourier series, 542–545
curve fitting with sinusoidal functions, 536–542
defined, 535–536
discrete Fourier transform (DFT), 551–554
engineering applications, 578–579
fast Fourier transform (FFT), 460, 554–560, 569
Fourier integral and transform, 549–551
frequency domain, 545–549
power spectrum, 560–561
time domain, 545–549

Fourier integral, 549–551
Fourier series, 542–545, 546, 946–947
Fourier’s law of heat conduction, 603, 714, 866–867, 929
Fourier transform, 549–551

discrete Fourier transform (DFT), 551–554
fast Fourier transform (FFT), 460, 554–560, 569

Fourier transform pair, 549
Fourth derivative, 668–669
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convergence criterion, 311–314
elliptic partial differential equations (PDEs), 862, 869–871, 894–895
graphical method, 312, 313–314
iteration cobwebs, 313–314
problem contexts, 315–316
relaxation, 314

Generalized reduced gradient (GRG), 406, 446
General linear least-squares model, 459, 485–489

confidence intervals for linear regression, 487–488
general matrix formulation, 485–486
statistical aspects of least-squares theory, 486–489

General solution, 178, 180
Genetic algorithm, 378
Given’s method, 813
Global truncation error, 725
Golden ratio, 362–364
Golden-section search optimization, 357, 361–368, 432–434, 445

extremum, 361–364
golden ratio, 362–364
single-variable optimization, 361
unimodal, 361–362

Gradient, defined, 603
Gradient methods of optimization, 375, 380–393

conjugate gradient method (Fletcher-Reeves), 357, 391, 446
finite-difference approximation, 385–386
gradients, 381–383
Hessian, 357, 383–386, 446
Marquardt’s method, 357, 392–393, 445, 595
Newton’s method, 357, 370–371, 385, 391–392, 445–446
path of steepest ascent/descent, 357, 382–383, 386–391, 595
quasi-Newton methods, 357, 393, 406, 446

Greenhouse gases, 209–211

H
Hagen-Poiseulle law, 438
Half-saturation constant, 220
Hamming’s method, 791
Harmonics, 542
Hazen-Williams equation, 580
Heat balance, 118
Heat-conduction equation, 860–861, 862, 886–887. See also Parabolic 

partial differential equations (PDEs)
Hessenberg form, 813
Hessian, 357, 383–386, 446
Heun’s method, 719, 734–738, 740, 744–746, 855, 857

non-self-starting, 719, 771–779, 855, 857
High-accuracy differentiation formulas, 610, 667–670
Hilbert matrix, 300–301, 320–321
Histograms, 453–454
Hooke’s law, 334, 434–435
Hotelling’s method, 812
Householder’s method, 813

Humps function, 765
Hyperbolic partial differential equations (PDEs), 861
Hypolimnion, 576
Hypothesis testing, 449

I
Ideal gas law, 56, 206–209
Identity matrix, 239
IEEE format, 74
IF/THEN structure, 31–32, 38, 42, 46, 270
IF/THEN/ELSE structure, 31–32, 36, 42, 46
IF/THEN/ELSE/IF structure, 32, 33, 42, 46
Ill-conditioned systems, 103, 263–267

effect of scale on determinant, 265–267
elements of matrix inverse as measure of, 297
singular systems, 251, 267–268

Implicit solution technique, 119
ordinary differential equations (ODEs), 719, 767–771
parabolic partial differential equations (PDEs), 862, 891–895,  

898–901, 944, 945
Imprecision, 60–61, 114
Improper integrals, 610, 642, 659–662

cumulative normal distribution, 660–662
extended midpoint rule, 660
normalized standard deviate, 660–662

Improved polygon (midpoint) method, 719, 739–740, 744–746,  
775–776, 855

Inaccuracy, 60–61
Incremental search methods

bisection method vs., 128
defined, 128
determining initial guesses, 142

Increment function, 741–742
Indefinite integral, 712
Indefinite integration, 598n

Independent variables, 11–12, 118, 711
Indexes, 34–35
Inequality constraint optimization, 356
Inferential statistics, 453, 455
Infinite series

computation, 78, 80
smearing, 79–81

Initial value, 716–717
Initial-value problems, 717

boundary-value problems vs., 793
defined, 793

Inner products, 81
In place implementation, 270
INPUT statements, 39
Integer part, 69–71
Integer representation, 67–69
Integral calculus. See Numerical integration
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Gauss-Seidel (Liebmann) method, 862, 869–871, 944
secondary variables, 872–873
solution technique, 867–873

Laplacian difference equation, 868–869
Large computations, interdependent computations, 76–77
Large versus small systems, 21
Law of mass action, 846
LC networks/circuits, 835–837
Least-squares fit of a sinusoid, 539–542
Least-squares regression, 447, 458, 462–495

general linear least-squares model, 459, 485–489
least-squares fit of a straight line, 465–467
linear regression, 458, 462–478, 592–593
multiple linear regression, 458, 482–485, 592–594
nonlinear, 460, 475–476, 489–492, 564, 592
polynomial regression, 458, 478–482, 594

Leaving variables, 403–404
Levenberg-Marquardt method, 417
Liebmann method. See Gauss-Seidel (Liebmann) method
Linear algebraic equations, 235–349

advanced methods and additional references, 348–349
case studies, 325–346
comparisons of methods, 347–348
complex systems, 275
computer methods, 247–248, 272–274, 316–321
Cramer’s rule, 252, 253–254, 347
determinants, 252–253
distributed-variable systems, 236, 237
division by zero, 262
elimination of unknowns, 254–260
engineering applications, 236–237, 325–346
error analysis, 296–302
Gauss elimination. See Gauss elimination
Gauss-Jordan method, 277–279, 405–406
Gauss-Seidel (Liebmann) method. See Gauss-Seidel (Liebmann) 

method
general form, 235
goals/objectives, 247–248
graphical method, 249–251, 326, 327, 329, 331, 332–334, 347
ill-conditioned systems, 103, 251, 263–267
important relationships and formulas, 348, 349
Liebmann method. See Gauss-Seidel (Liebmann) method
LU decomposition methods, 245, 283–292, 336, 347, 349
lumped-variable systems, 236, 237, 316
mathematical background, 237–245
matrix inverse, 242–243, 245, 292–296
matrix notation, 238–239
matrix operating rules, 240–244
more significant figures, 268
noncomputer methods, 235–236
nonlinear systems of equations, 275–277
pivoting, 245, 257–258, 262, 268–272
representing in matrix form, 244–245

Integral form, 84
Integrand, 597, 676
Interdependent computations, 76–77
Interpolation, 496–534

coefficients of interpolating polynomial, 513
computers in, 511–513, 568–569
curve fitting, 447, 460
with equally spaced data, 516
finite-element methods, 905–906
interpolation functions, 905–906
inverse, 513–514
inverse quadratic interpolation method, 163–165
Lagrange interpolating polynomials, 460, 496, 508–513, 515, 592–594
linear interpolation method, 163, 497–498
multidimensional, 529–531
Newton’s divided-difference interpolating polynomials, 460, 496,  

497–509, 515, 516, 592–594
polynomial, 496–534
quadratic, 499–501
spline, 460, 517–529

Interval estimator, 453
Interval halving. See Bisection method
Inverse Fourier transform, 549–550
Inverse interpolation, 513–514
Inverse quadratic interpolation, 163–165
Irregular boundaries, 876–879
Iterative approach to computation

algorithms, 64–66
defined, 62–63
error estimates, 63–64
Gauss-Seidel (Liebmann) method, 245–247, 305, 309–316, 347–348, 

349, 944
iterative refinement, 301–302

J
Jacobian, 173, 174
Jacobi iteration, 311
Jacobi’s method, 812–813
Jenkins-Traub method, 193, 234

K
Kirchhoff’s laws, 118, 211–214, 332–333, 431, 834–837

L
Lagging phase angle, 538
Lagrange interpolating polynomials, 460, 496, 508–513, 515, 592–594
Lagrange multiplier, 351, 429
Lagrange polynomial, 164
Laguerre’s method, 193, 201, 234
Laplace equation, 859–860, 935–937

boundary conditions, 862, 868–871, 873–879
described, 865–867
flux distribution of heated plate, 872–873
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round-off errors, 263
scaling, 265–267, 270–272
scope/preview, 245–247
singular systems, 251, 267–268
special matrices, 305–309
system condition, 296–302

Linear convergences, 148–151
Linear interpolation method. See also False-position method; Secant 

method
defined, 163, 497–498
linear-interpolation formula, 497–498

Linearization, 713
Linear programming (LP)

computer solutions, 407–409
defined, 395
feasible solution space, 397–400
graphical solution, 397–400
optimization, 351, 356, 357, 395–406
possible outcomes, 399–400
setting up LP problem, 396–397
simplex method, 351, 357, 401–406
standard form, 395–397

Linear regression, 462–478
computer programs, 470–474
confidence intervals, 487–488
criteria for “best” fit, 464–465
curve fitting, 458
engineering applications, 572–576
estimation errors, 470
exponential model, 474–475
general comments, 478
general linear least-squares model, 459, 485–489
least-squares fit of straight line, 465–467
linearization of nonlinear relationships, 474–478
linearization of power equation, 476–478
minimax criterion, 465, 595
multiple, 458, 482–485, 592–594
quantification of error, 467–470
residual error, 463, 467–470
spread around the regression line, 468
standard error of the estimate, 468

Linear splines, 517–521
Linear trend, 84–85
Line spectra, 547–549
Local truncation error, 725
Logical loops, 34–35
Logical representation, 31–38

algorithm for roots of a quadratic equation, 35–38
repetition, 32–35
selection, 31–32
sequence, 31

Loops, 32–35, 64
Lorenz equations, 831–834

Lotka-Volterra equations, 830–834
Lower triangular matrix, 239
LR method (Rutishauser), 813
LU decomposition methods, 245, 283–292, 336, 347, 349

algorithm, 287, 288–290, 291–292
Crout decomposition, 290–292
defined, 283
LU decomposition step, 284, 285, 287–290, 305, 306
overview, 284–285
substitution step, 284, 285, 287–289
version of Gauss elimination, 285–290

Lumped-parameter systems, 928
Lumped-variable systems, 236, 237, 316

M
MacCormack’s method, 890–891
Machine epsilon, 73–74
Maclaurin series expansion, 63–64, 65–66
Manning equation, 440
Mantissa, storage, 74n

Maple V, 49
Marquardt’s method, 357, 392–393, 445, 595
Mass, conservation of, 20, 325–328
Mass balance, 20, 118
Mathcad, 48–49, 956–966

basics, 956–957
curve fitting, 567–569
double precision to represent numerical quantities, 75
entering text, 957–958
graphics, 962–964
linear algebraic equations, 319–321
mathematical functions and variables, 958–961
mathematical operations, 957–958
Minerr, 417
multigrid function, 924–925
multiline procedures/subprograms, 962
numerical integration/differentiation, 681–682
numerical methods function, 961
online help, 966
optimization, 357, 417–418
ordinary differential equations (ODEs), 818–820
partial differential equations (PDEs), 924–925
QuickSheets, 966
relax function, 924–925
resource center, 966
roots of equations, 200–203, 214–215
symbolic mathematics, 964–966
ToolTips, 966

Mathematical laws, 20
Mathematical models

defined, 11–12
overview of problem-solving process, 12
simple model, 11–18
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conservation of momentum, 20
curve fitting, 579–580
equilibrium and minimum potential energy, 434–435
finite-element solution of series of springs, 937–940
linear algebraic equations, 334–336
numerical integration to compute work, 692–695
optimization, 421, 434–435
ordinary differential equations (ODEs), 839–842
partial differential equations (PDEs), 937–940
pipe friction, 214–217
roots of equations, 214–217
spring-mass systems, 334–336
swinging pendulum, 839–842

Method of false position. See False-position method
Method of lines, 890–891
Method of undetermined coefficients, 653–654
Method of weighted residuals (MWR), finite-element methods, 910–914
M-files (MATLAB), 44–48. See also MATLAB
Michaelis-Menten model, 220, 572–576, 846
Microsoft, Inc., 40
Midpoint (improved polygon) method, 719, 738–740, 744–746,  

775–776, 855
Midtest loops, 34
Milne’s method, 788–789, 790–791, 855
Minimax criterion, 465, 595
MINPACK algorithms, 417
Mixed partial derivatives, 675
Model errors, 109
Modified Euler. See Midpoint (improved polygon) method
Modified false position, 141–142, 231
Modified fixed-point method, 231
Modified Newton-Raphson method, 168–170, 231, 232
Modified secant method, 162–163, 231
Modular programming, 38–40

advantages, 39
defined, 38

Momentum, conservation of, 20
Monte Carlo (MC) integration, 610, 642, 662–664, 708, 709
m surplus variables, 401–402
Müller’s method, 122, 184–188, 200–201, 231
Multidimensional interpolation, 529–531
Multidimensional unconstrained optimization, 356, 375–394

direct methods (nongradient), 357, 375, 376–380
gradient methods (descent/ascent), 357, 375, 380–393
MATLAB, 415–417
pattern searches/directions, 357, 379–380
Powell’s method, 379–380, 391, 445
random search method, 357, 376–378
univariate search method, 357, 378

Multimodal optimization, 360–361
Multiple-application trapezoidal rule, 618–621, 709, 710
Multiple integrals, 636–638

Mathematical programming. See Optimization
Mathsoft Inc., 48
MathWorks, Inc., The, 44
MATLAB, 28–29, 34–35, 948–955

assignment of values to variable names, 949–950
built-in functions, 952
computer implementation of iterative calculation, 65–66
curve fitting, 564–567
described, 44
double precision to represent numerical quantities, 75
Fourier analysis, 578–579
graphics, 952–953
linear algebraic equations, 317–319
linear regression, 470
mathematical operations, 950–953
M-files, 44–48, 105–107, 435
numerical differentiation errors, 105–107
numerical integration/differentiation, 675–681
optimization, 357, 371–373, 413–417, 435
ordinary differential equations (ODEs), 814–818, 827–829, 837–839
partial differential equations (PDEs), 923–924
polynomials, 953
roots of equations, 197–200, 214–215, 216–217
statistical analysis, 953–955

Matrix condition number, 245, 299–301
Matrix inverse, 242–243, 245, 292–296

calculating, 293–295
stimulus-response computations, 295–296

Matrix norms, 297–299
Matrix operations

banded matrices, 305–306
Cholesky decomposition, 307–309
components, 238–239
error analysis and system condition, 296–302
matrix, defined, 238
matrix condition number, 245, 299–301
matrix inverse, 242–243, 245, 292–296
matrix notation, 238–239
representing linear algebraic equations in matrix form, 244–245
rules, 240–244
special matrices, 305–309
symmetric matrices, 305
tridiagonal systems, 245, 306–307

Maximum likelihood principle, 467–468
Maximum-magnitude norms, 298, 299
Mean value, 450, 455, 537–538

confidence interval on the mean, 457–458
derivative mean-value theorem, 90
determining mean of discrete points, 603–604
spread around, 468

Mechanical/aerospace engineering
analysis of experimental data, 579–580
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Multiple linear regression, 458, 482–485, 592–593, 594
Multiple roots, 126, 167–170

double roots, 167
modified Newton-Raphson method for multiple roots, 168–170, 231, 

232
Newton-Raphson method, 167–168
secant method, 167–168
triple roots, 167

Multiplication, 76
estimated error bounds, 103
inner products, 81
matrix operations, 240–242

Multistep methods, 719, 767, 771–791, 855
defined, 771
higher-order methods, 787–791
integration formulas, 780–787
non-self-starting Heun, 719, 771–779, 855, 857
step-size control, 780

N
Naive Gauss elimination, 245, 256–262

back substitution, 256, 258–260, 261–262
forward elimination of unknowns, 256–258, 259
operation counting, 260–262

n-dimensional vector, 356
Nelder-Mead method, 415
Newmann boundary condition, 799–800, 873–876
Newton-Cotes integration formulas, 608–610, 612–641, 642–643, 740

Boole’s rule, 631, 632, 650
closed formulas, 783–785
comparisons, 708–709
defined, 612
higher-order, 631–633, 646–647, 708–709
open formulas, 782–785
ordinary differential equations (ODEs), 781, 782–787
Simpson’s 1/3 rule, 609–610, 624–629, 631–633, 634–636, 688–689, 

693, 694, 708–709, 710
Simpson’s 3/8 rule, 609–610, 629–633, 634–636, 693, 694, 708–709, 

710
trapezoidal rule, 609–610, 614–624, 633–636, 645–646, 688–689, 

694, 708, 709, 710, 738
Newton-Gregory forward formula, 516
Newtonian fluid, 583
Newton-Raphson method, 122, 152–158, 208–209, 215–216, 370

algorithm, 156–158, 233
error estimates, 153–155
graphical method, 152, 157, 233
modified method for multiple roots, 168–170, 231, 232
multiple roots, 167–170
Newton-Raphson formula, 153
nonlinear equations, 172–174
pitfalls, 155–156

roots of polynomials, 181, 184, 189
slowly converging function, 155–156
Taylor series derivation, 153–154
Taylor series expansion, 276
termination criteria, 153–155

Newton’s divided-difference interpolating polynomials, 460, 496,  
497–508, 515, 516, 592, 593, 594

algorithm, 505–508
defined, 502
derivation of Lagrange interpolating polynomial from, 508–509
error estimation, 503–505
general form, 501–503
quadratic interpolation, 499–501

Newton’s formula, 516
Newton’s law of cooling, 24, 704
Newton’s laws of motion, 118, 839–840

second law of motion, 11–18, 57, 119, 334, 714, 802
Newton’s method of optimization, 357, 370–371, 385, 391–392, 445–446
Nodal lines/planes, 904
Nonbasic variables, 402
Nonbinding constraints, 399
Nonideal versus idealized laws, 21
Nonlinear constrained optimization, 357, 406

Excel, 409–413
Mathcad, 418

Nonlinear equations
defined, 170
fixed-point iteration, 171–172
linear equations vs., 21, 170
Newton-Raphson method, 172–174
roots of equations, 122, 170–174
shooting method for boundary-value problems, 796–798
systems of equations, 122, 235–236, 275–277

Nonlinear programming optimization, 356
Nonlinear regression, 460, 475–476, 489–492, 564, 592
Non-self-starting Heun, 719, 771–779, 855, 857
Normal distribution, 452
Normalization, 70
Normalized standard deviate, 660–662
Norms

defined, 297
matrix, 297–299
vector, 297–299

“Not-a-knot” condition, 528–529
n structural variables, 401–402
nth finite divided difference, 501–502
Number systems, 67. See also specific number systems
Numerical differentiation, 95–99, 116, 667–684. See also Optimization

backward difference approximation, 95, 96, 97, 669
centered difference approximation, 96, 97, 98, 669
with computer software, 675–682
control of numerical errors, 107–108
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Simpson’s 1/3 rule, 609–610, 624–633, 634–636, 688–689, 693, 694, 
708–709, 710

Simpson’s 3/8 rule, 609–610, 629–633, 634–636, 693, 694, 708–709, 710
terminology, 597–598
trapezoidal rule, 609–610, 614–624, 632, 633–634, 645–646, 652, 

688–689, 694, 708, 709, 710, 738
Numerical methods of problem solving, 112–115, 113–114

falling parachutist problem, 17–18
nature of, 15–16

Numerical Recipe library, 49
Numerical stability, 102–103
Nyquist frequency, 552

O
Objective function optimization, 353, 355, 356
Octal (base-8) number system, 67
ODEs. See Ordinary differential equations (ODEs)
Ohm’s law, 332
One-dimensional unconstrained optimization, 356, 357, 360–374

Brent’s root-location method, 357, 361, 371–373, 445
golden-section search, 357, 361–368, 432–434, 445
MATLAB, 414–415
multimodal, 360–361
Newton’s method, 357, 370–371, 385, 391–392, 445–446
parabolic interpolation, 357, 368–370, 445

One-point iteration, 122. See also Fixed-point iteration
One-sided interval, 453
One-step methods, 717–719, 721–766, 855
Open methods, 121–122, 146–176, 371

Brent’s root-location method, 122, 163–167, 231, 232
defined, 146–147
fixed-point iteration, 147–152, 231
graphical method, 146
multiple roots, 167–170
Newton-Raphson method, 122, 152–158, 208–209, 215–216, 232,  

233, 370
secant method, 122, 157–163, 233
simple fixed-point iteration, 147–152
systems of nonlinear equations, 170–174

Optimal steepest ascent, 389–391, 595
Optimization, 350–446

additional references, 446
Brent’s root-location method, 357, 361, 371–373, 445
case studies, 421–444
computer methods, 357, 407–418, 424–425
defined, 350
engineering applications, 351–355, 357, 421–444
goals/objectives, 358–359
golden-section search, 357, 361–368, 432–434, 445
gradient methods. See Gradient methods of optimization
history, 351
linear programming, 351, 356, 357, 395–406

Numerical differentiation—Cont.
data with errors, 673–674
derivatives of unequally spaced data, 672–673
differentiate, defined, 596
engineering applications, 602–603, 675–682
error analysis, 105–108, 673–674
finite-divided-difference approximations, 16–17, 95–99
first derivative, 596, 668–669
forward difference approximations, 95, 96, 97, 668
goals/objectives, 610–611
high-accuracy differentiation formulas, 610, 667–670
mathematical background, 95–99, 606–608
noncomputer methods, 599–600, 601–602
ordinary differential equations. See Ordinary differential equations (ODEs)
partial derivatives, 596–597, 674–675
partial differential equations. See Partial differential equations (PDEs)
polynomials, 180–181
Richardson extrapolation, 610, 642, 644–647, 649–650, 670–672
round-off errors, 105–107
scope/preview, 608–610
second derivative, 596, 667–669
terminology, 596–597

Numerical integration, 642–666
Adams formula, 783–787, 789, 790–791, 855, 856, 857
adaptive integration, 642
adaptive quadrature, 610, 649–651
advanced methods and additional references, 709
Boole’s rule, 631, 632, 650
calculation of integrals, 603–606
case studies, 685–707
closed forms, 608–610, 613–614, 631–633, 783–785
comparisons, 708–709
with computer software, 675–682
data with errors, 673–674
engineering applications, 603–606, 675–682, 685–707
fundamental theorem, 607
Gauss quadrature, 610, 642, 651–659, 692, 708, 709, 710
goals/objectives, 610–611
important relationships and formulas, 709, 710
improper integrals, 610, 642, 659–662
integrate, defined, 597
integration with unequal segments, 610, 633–636
mathematical background, 606–608
Monte Carlo (MC) integration, 610, 642, 662–664, 708, 709
multiple integrals, 636–638
Newton-Cotes formulas, 608–610, 612–641, 642–643, 708–709, 740, 

781, 782–787
noncomputer methods, 600–602
open forms, 610, 613–614, 636, 782–785
Richardson extrapolation, 610, 642, 644–647, 649–650, 670–672
Romberg integration, 610, 642, 643–649, 691, 708, 709, 710
scope/preview, 608–610
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mathematical background, 355–357
multidimensional unconstrained, 356, 357, 375–394
Newton’s method, 357, 370–371, 385, 391–392, 445–446
noncomputer methods, 351
nonlinear constrained optimization, 357, 406, 409–413, 418
one-dimensional unconstrained, 356, 357, 360–374
parabolic interpolation, 357, 368–370, 445
problem classification, 355–357
random search method, 357, 376–378
scope/preview, 357–358

Order of polynomials, 120
Ordinary differential equations (ODEs), 177–180, 711–857

advanced methods and additional references, 856–857
algorithms, 730–733, 740, 741, 750–751, 754–756, 761–763
boundary-value problems, 717, 719, 794–801, 804–807, 856
case studies, 823–854
components, 711
computer programming and software, 719, 813–820
defined, 711
eigenvalue problems, 719, 801–820, 856
engineering applications, 713–715, 719, 823–854
Euler’s method, 719, 722–741, 835–836, 841–842, 855–857
explicit solution technique, 769–771
falling parachutist problem, 714, 717, 721–722
finite-difference methods, 719, 798–801
first-order equations, 711–712, 727
fourth-order Adams, 785, 786, 789, 790–791, 855–857
fourth-order RK, 747–749, 753–754, 755–756, 758, 762–763, 835, 

841–842, 855–857
goals/objectives, 719–720
Heun’s method, 719, 734–738, 740, 744–746, 771–779, 855, 857
higher-order equations, 711–712, 733, 787–791
implicit solution technique, 719, 767–771
important relationships and formulas, 856, 857
initial-value problems, 717, 793
mathematical background, 715–717
midpoint (improved polygon) method, 719, 738–740, 744–746,  

775–776, 855
Milne’s method, 788–789, 790–791, 855
multistep methods, 719, 767, 771–791, 855
Newton-Cotes integration formulas, 782
noncomputer methods, 712–713
one-step methods, 717–719, 721–766, 855
power methods, 719, 809–812
Ralston’s method, 744–746, 747, 855, 857
Runge-Kutta (RK) methods, 719, 741–751, 855, 856, 857
scope/preview, 717–719
second-order equations, 711–712, 742–746
shooting method, 719, 795–798
stiff systems, 719, 767–771, 816–817, 818, 856
systems of equations, 719, 751–756
third-order RK, 746–747

Orthogonal, 383
Orthogonal polynomials, 593, 594–595
Overconstrained optimization, 356
Overdamped case, 179
Overdetermined equations, 349
Overflow error, 71–72
Overrelaxation, 314

P
Parabolic interpolation optimization, 357, 368–370, 445
Parabolic partial differential equations (PDEs), 886–902

alternating-direction implicit (ADI) method, 862, 891–895, 898–901, 
944, 945

Crank-Nicolson technique, 862, 895–898, 944, 945
explicit methods, 887–892, 898, 944
finite-difference methods, 860–861, 862, 886–902, 944, 945
heat-conduction equation, 860–861, 862, 886–887
implicit methods, 862, 891–895, 898–901, 944, 945
one-dimensional, 897–898, 944
two-dimensional, 898–901, 944

Parameter estimation, 828
Parameters, 11–12, 118

distributed-parameter system, 929
estimation, 828
lumped-parameter systems, 928
sinusoidal function, 537–539

Parametric Technology Corporation (PTC), 48
Partial derivatives, 596–597, 674–675
Partial differential equations (PDEs), 858–945

advanced methods and additional references, 945
boundary conditions, 868–871, 873–879
case studies, 928–943
characteristics, 858–859
computer solutions, 864, 882–883, 921–925
defined, 711, 858
elliptic equations, 859–860, 862, 865–885, 944, 945
engineering applications, 859–861, 862–863, 928–943
finite-difference methods, 859–861, 862, 886–902, 944, 945
finite-element methods, 862, 903–927, 944
goals/objectives, 863–864
higher-order temporal approximations, 890–891
hyperbolic equations, 861
important relationships and formulas, 944–945
order of, 858
parabolic equations, 860–861, 862, 886–902, 944, 945
precomputer methods, 861–862
scope/preview, 862–863

Partial pivoting, 245, 268–272, 273, 347
Pattern searches/directions, 357, 379–380
Penalty functions, 406
Period, sinusoidal function, 536–537
Phase-plane representation, 831–834
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Phase shift, 538
Pivoting, 268–272, 347

complete, 268
division by zero, 262
effect of scaling, 270–272
partial, 245, 268–272, 273, 347
pivot coefficient/element, 257–258

Place value, 67
Point-slope method. See Euler’s method
Poisson equation, 867, 908–917
Polynomial regression, 458, 478–482, 594

algorithm, 481–482
fit of second-order polynomial, 479–481

Polynomials
computing with, 180–183
defined, 120
deflation, 181–183
eigenvalue problems, 178–179, 719, 807–809
engineering applications, 177–180
evaluation and differentiation, 180–181
factored form, 181
interpolation, 496–534
Lagrange, 164
Lagrange interpolating, 460, 496, 508–513, 515, 592–594
Newton’s divided-difference, 460, 496, 497–508, 508–509, 515, 516, 

592, 593, 594
order, 120
ordinary differential equations (ODEs), 177–180, 719
orthogonal, 593, 594–595
polynomial approximation, 85–87
regression, 458, 478–482, 594
roots. See Roots of polynomials
synthetic division, 181–182

Polyroots, 201, 202
Populations, estimating properties of, 452–453
Positional notation, 67
Positive definite matrix, 309
Postprocessing, finite-element methods, 907–908, 921, 940
Posttest loops, 33–34
Potential energy, 434–435
Potentiometers, 430
Powell’s method of optimization, 379–380, 391, 445
Power equations, linear regression of, 476–478
Power methods, 719, 809–812

defined, 809
determining largest eigenvalue, 809–811
determining smallest eigenvalue, 811–812

Power spectrum, 560–561
Precision, 60–61, 114
Predator-prey models, 830–834
Predictor-corrector approach, 734–736, 771–779
Predictor equation, 734–735, 771
Predictor modifier, 777–779
Pretest loops, 33–34

Principal/main diagonal of matrix, 239
Product, matrix operations, 240
Programming and software. See Computer programming and software; 

Pseudocode algorithms
Propagated truncation error, 725
Propagation problems, 860–861. See also Hyperbolic partial differential 

equations (PDEs); Parabolic partial differential equations (PDEs)
Proportionality, 296
Pseudocode algorithms, 31–38

adaptive quadrature, 650–651
Bairstow’s method, 192–193
bisection, 134, 135
Brent’s root-location method, 165–167, 372–373
Cholesky decomposition, 309
computing with polynomials, 181–183
curve fitting, 460, 577
defined, 31
discrete Fourier transform (DFT), 551–554, 553–554
Euler’s method, 730–733
Excel VBA vs., 42
fast Fourier transform (FFT), 557–560
fixed-point iteration, 151–152
forward elimination, 258
function that solves differential equations, 39
Gauss-Jordan method, 279
Gauss-Seidel (Liebmann) method, 314–315
for generic iterative calculation, 64–66
golden-section-search optimization, 366, 367, 432–434
Lagrange interpolation, 511
linear regression, 471, 484
logical representation, 31–38
LU decomposition, 287, 289–290, 291–292
MATLAB vs., 46
matrix inverse, 294–295
modified false-position method, 141
Müller’s method, 187–188
multiple linear regression, 484
Newton’s divided-difference interpolating polynomials, 505–508
ordinary differential equations (ODEs), 730–733, 750–751, 754–756, 

761–763
partial pivoting, 270, 273
polynomial regression, 482
Romberg integration, 647–649
roots of quadratic equation, 35–38, 78–79
Runge-Kutta (RK) method, 761–762
Simpson’s rules, 631–633, 635–636
Thomas algorithm, 306–307
trapezoidal rule, 621–624

Q
QR factorization, 488
QR method (Francis), 813
Quadratic equation, algorithm for roots, 35–38
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open methods. See Open methods
optimization and, 350
polynomials. See Roots of polynomials
scope/preview, 120–122
secant method, 122, 157–163, 167–168, 231, 233
as zeros of equation, 117–118

Roots of polynomials, 177–205. See also Roots of equations
Bairstow’s method, 122, 188–193, 231
Brent’s method, 201
characteristic equation, 178–179
computer methods, 193–203
conventional methods, 183–184
critically damped case, 179
discriminant, 179
eigenvalue problems, 178–179
engineering applications, 177–180
general solution, 178, 180
Jenkins-Traub method, 193, 234
Laguerre’s method, 193, 201, 234
mathematical background, 177–180
Müller’s method, 122, 184–188, 200–201, 231
Newton-Raphson method, 181, 184, 189
other methods, 193
overdamped case, 179
Ridder method, 201
secant method, 200–201
underdamped case, 179

Rosin-Rommler-Bennet (RRB) equation, 706
Rounding, 73
Round-off errors, 67–81

adding a large and a small numbers, 77–78
arithmetic manipulation of computer numbers, 75–81
common arithmetic operations, 75–76
computer representation of numbers, 67–75
defined, 58, 61
Euler’s method, 725
extended precision, 74–75
Gauss elimination, 263
integer representation, 67–69
iterative refinement, 301–302
large computations, 76–77
linear algebraic equations, 263
number systems, 67
numerical differentiation, 105–107
polynomial deflation, 182–183
significant digits and, 58–59, 268
smearing, 79–81
subtractive cancellation, 78–79
total numerical error, 104–108

Row, defined, 238
Row-sum norms, 298, 299
Row vectors, 238
Runge-Kutta Fehlberg method, 759–760, 761–762

Quadratic interpolation, 499–501
Quadratic programming, 356
Quadratic splines, 521–523
Quadrature methods, 601
Quantizing errors, 72–74, 77
Quasi-Newton methods of optimization, 357, 393, 406, 446
Quotient difference (QD) algorithm, 233–234

R
Ralston’s method, 744–746, 747, 855, 857
Random search method of optimization, 357, 376–378
Rate equations, 711
Razdow, Allen, 48
Reaction kinetics, 828
Redlich-Kwong equation, 219
Regression. See Linear regression; Polynomial regression
Relative error, 102
Relaxation, 314, 924–925
Remainder, 116

Taylor series, 89–91, 116
Repetition, in logical representation, 32–35
Residual error, 463, 467–470
Respiratory quotient, 699
Response, 36
Richardson extrapolation, 610, 642, 644–647, 649–650, 670–672
Ridder method, root of polynomials, 201
Romberg integration, 610, 642, 643–649, 691, 708, 709, 710
Root-mean-square current, 689–692
Root polishing, 183
Roots of equations, 117–234

advanced methods and additional references, 232–234
analytical/direct method, 117, 231
bisection method, 120–121, 128–136, 231, 233, 361–362
bracketing methods. See Bracketing methods
Brent’s method, 163–167, 231, 232
case studies, 122, 206–230
computer methods, 126–128, 214–215
engineering applications, 118–119, 122, 177–180, 206–230
false-position method, 120–121, 136–142, 231, 233
fixed-point iteration, 147–152, 231
goals/objectives, 122
graphical methods, 117, 124–128, 146, 148–151, 158, 160–161, 231
important relationships and formulas, 232, 233
incremental searches/determined incremental guesses, 128, 142
Jenkins-Traub method, 234
Laguerre’s method, 234
mathematical background, 119–120, 180–183
multiple roots, 126, 167–170
nature of “roots,” 117
Newton-Raphson method, 122, 152–158, 167–170, 208–209, 231, 232, 

233, 370
noncomputer methods, 117–118, 231
nonlinear equations, 122, 170–174

cha32077_ndx_970-990.indd   985 1/24/20   3:02 PM



986 INDEX

implementation, 403–406
slack variables, 401

Simpson’s 1/3 rule, 609–610, 624–633, 688–689, 693, 694, 708–709, 710
algorithms, 631–633
derivation and error estimate, 625
multiple-application, 627–629, 650
single-application, 626–627
with unequal segments, 634–636

Simpson’s 3/8 rule, 609–610, 629–633, 693, 694, 708–709, 710
algorithms, 631–633
with unequal segments, 634–636

Simultaneous overrelaxation, 314
Single-value decomposition, 595
Single-variable optimization, 361
Singular systems, 251, 267–268
Sinusoidal functions, 536–542

least-squares fit of sinusoid, 539–542
parameters, 537–539

Slack variables, 401
Smearing, 79–81
Software. See Computer programming and software
Special matrices, 305–309
Spectral norms, 298
Spline functions, 517, 595
Spline interpolation, 460, 517–529

cubic splines, 517, 523–528, 568–569, 592–594, 709
end conditions, 527, 528–529
engineering applications, 576–577
linear splines, 517–521
quadratic splines, 521–523
splines, defined, 517

Spread around the mean, 468
Spread around the regression line, 468
Spreadsheets. See Excel
Square matrices, 239
Stability

defined, 890
error propagation, 102–103
of multistep methods, 790–791, 856
of numerical methods of problem solving, 113–114

Standard atmosphere, 55
Standard deviation, 450
Standard error of the estimate, 468
Standard normal estimate, 454–455
Standard normal random variable, 455
Start, 34–35
Statistical inference, 453, 455
Statistics, 449–458

descriptive, 109, 449–452
estimation of confidence interval, 452–458, 487–488
inferential, 453, 455
least-squares theory, 486–489

Runge-Kutta (RK) methods, 719, 741–751, 855–857
adaptive, 719, 756–763, 855
adaptive step-size control, 757–758, 760–761
algorithms, 751, 761–763
Cash-Karp RK method, 759–760, 761–762
comparison, 749–750
embedded, 759–760
fourth-order, 747–749, 753–754, 755–756, 758, 762–763, 835,  

841–842, 855–857
higher-order, 749–751
Runge-Kutta Fehlberg method, 759–760, 761–762
second-order, 742–746
systems of equations, 752–754
third-order, 746–747

S
Saddle, 384
Samples, estimating properties of, 452–453
Sande-Tukey algorithm, 554–558
Scaling

effect of scale on determinant in ill-conditioned systems, 265–267
effect on pivoting and round-off, 270–272

Secant method, 122, 157–163
algorithm, 162, 233
false-position method vs., 159–161
graphical method, 158, 160–161, 163, 233
modified, 162–163, 231
multiple roots, 167–168
root of polynomials, 200–201

Second Adams-Bashforth formula, 784–785
Second Adams-Moulton formula, 785–786
Second derivative, 596, 667–669
Second finite divided difference, 501
Second forward finite divided difference, 98–99
Second-order approximation, 84–85, 88
Second-order closed Adams formula, 785–786
Second-order equations, 711–712, 742–746
Second-order open Adams formula, 784–785
Selection, in logical representation, 31–32
Sensitivity analysis, 21, 43–44
Sentinel variables, 314–315
Sequence, in logical representation, 31
Shadow price, 429
Shooting method, 719, 795–798
Sigmoid (S-shaped), 572–573
Signed magnitude method, 67–69
Significance level, 454
Significand, 69–71
Significant figures/digits, 58–59, 268
Simple statistics, 449–452
Simplex method, 351, 357, 401–406

algebraic solution, 402–403
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error propagation, 99–103
to estimate error for Euler’s method, 725–727, 733
to estimate truncation errors, 91–99, 725–727, 733
expansion of Newton-Raphson method, 276
expansion of Newton’s divided-difference interpolating polynomials, 

503–504
expansions, 85–91, 116, 276, 503–504
finite-difference approximations, 95–99
finite-divided-difference approximations, 95–99, 667–670
first-order approximation, 84, 86, 88, 95–98
first theorem of mean for integrals, 84
forward difference approximations, 95, 96, 97, 668
infinite number of derivatives, 88–89
linear trend, 84–85
nonlinearity, 91–95, 489
numerical differentiation, 95–99
remainder, 89–91, 116
second-order approximation, 84–85, 88
second theorem of mean for integrals, 84
step size, 91–95
Taylor’s theorem/formula, 84
zero-order approximation, 83, 86, 88, 89

t distribution, 456
Terminal velocity, 15, 18
Thermal conductivity, 866
Thermal diffusivity, 866
Thermocline, 576
Third derivative, 668–669
Third-order methods, 746–747
Thomas algorithm, 306–307
Time domains, 545–549
Time plane, 545–546
Time-variable (transient) computation, 18
Topography, 357
Total numerical error, 104–108
Total sum of the squares, 468–469
Total truncation error, 725
Total value, 597–598
Trace, matrix operations, 243
Transcendental function, 120
Transient computation, 18
Transpose, matrix operations, 243
Trapezoidal rule, 609–610, 614–624, 632, 633–636, 688–689, 694, 708, 

710, 738
algorithms, 621–624
defined, 614
error/error correction, 616–617, 645–646, 771–772
multiple-application, 618–621, 709, 710
single-application, 617–618
with unequal segments, 633–634

Trend analysis, 449
Tridiagonal systems, 245, 306–307

maximum likelihood principle, 467–468
normal distribution, 452

Steady-state computation, 19, 325–328. See also Elliptic partial 
differential equations (PDEs)

Steepest ascent/descent optimization, 357, 386–391
optimal steepest ascent, 389–391, 595
using gradient to evaluate, 382–383

Stefan-Boltzmann law, 225
Step-halving method, 758
Stiffness matrix, 336

finite-element methods, 907, 939
Stiff ordinary differential equations (ODEs), 719, 767–771, 816–817,  

818, 856
Euler’s method, 768–771
stiff system, defined, 767

Stimulus-response computations, 295–296
Stokes law, 229
Stopping criterion, 64–65, 116
Strange attractors, 834
Streeter-Phelps model, 439
Strip method, 601, 613
Structured programming, 29–38

defined, 30
flowcharts, 30–35
logical representation, 31–38
pseudocode, 31–38. See also Pseudocode algorithms

Subroutines, modular programming, 38–39
Subtraction, 76

estimated error bounds, 103
matrix operations, 240
subtractive cancellation, 78–79

Successive overrelaxation, 314
Successive substitution. See Fixed-point iteration
Summation, 597–598
Superposition, 296
Swamee-Jain equation, 214
Symmetric matrices, 305
Symmetric matrix, 239
Synthetic division, 181–182
Systems of equations

nonlinear equations, 122, 235–236, 275–277
ordinary differential equations (ODEs), 719, 751–756

T
Tableau, 403–406
Taylor series, 83–99. See also Finite-difference methods

approximation of polynomial, 85–87
backward difference approximation, 95, 96, 97, 98, 669
centered finite divided-difference approximation, 96, 97, 98, 669
defined, 83
derivation of Newton-Raphson method, 153–154
derivative mean-value theorem, 90
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V
Van der Waals equation, 207–208
Variable metric methods of optimization, 357, 393
Variables

basic, 402
dependent, 11–12, 118, 711
design, 355
distributed-variable systems, 236, 237, 316
entering, 403–404
independent, 11–12, 118, 711
leaving, 403–404
lumped-variable systems, 236, 237, 316
single-variable optimization, 361
slack, 401
standard normal random, 455

Variable step size, 780
Variance, 450, 454–455
Vector norms, 297–299
Videoangiography, 698
Visual Basic Editor (VBE), 40–44
Voltage balance, 20
Volume-integral approach, 879–882
Volume integrals, 605

W
Waste minimization, 437
Wave equation, 859, 861
Well-conditioned systems, 103, 263
WHILE structure, 34
Wolf sunspot number, 578–579

Z
Zero, division by, 262
Zero-order approximation, 83, 86, 88, 89

Triple roots, 167
True derivative approximation, 96
True error, 61, 116
True fractional relative error, 61–62
True mean, 453–455
True percent relative error, 61–62, 66, 116
Truncation errors. See also Discretization, finite-element methods

defined, 58, 61, 83
Euler’s method, 724, 725–727, 733
numerical differentiation, 105–107
per-step, 776–777
significant digits and, 58–59, 268
Taylor series to estimate, 91–99, 725–727, 733. See also Taylor series
total numerical error, 104–108
types, 725

Twiddle factors, 557
Two-dimensional interpolation, 529–531
2’s complement, 69
Two-sided interval, 453–454

U
Uncertainty, 60–61, 109, 674
Unconditionally stable, 769
Unconstrained optimization, 356, 357

multidimensional. See Multidimensional unconstrained optimization
one-dimensional. See One-dimensional unconstrained optimization

Underdamped case, 179
Underdetermined equations, 348–349, 401
Underflow “hole,” 72
Underrelaxation, 314
Underspecified equations, 401
Uniform-matrix norms, 298, 299
Uniform-vector norms, 298, 299
Unimodal optimization, 361–362
Univariate search method, 357, 378
Upper triangular matrix, 239
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